
remote sensing  

Article

Integrated Geological and Geophysical Mapping of
a Carbonatite-Hosting Outcrop in Siilinjärvi, Finland,
Using Unmanned Aerial Systems

Robert Jackisch 1,*, Sandra Lorenz 1 , Moritz Kirsch 1 , Robert Zimmermann 1 , Laura Tusa 1,
Markku Pirttijärvi 2, Ari Saartenoja 2, Hernan Ugalde 3, Yuleika Madriz 1, Mikko Savolainen 4

and Richard Gloaguen 1

1 Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology,
Division “Exploration Technology”, Chemnitzer Str. 40, 09599 Freiberg, Germany; s.lorenz@hzdr.de (S.L.);
m.kirsch@hzdr.de (M.K.); r.zimmermann@hzdr.de (R.Z.); l.tusa@hzdr.de (L.T.);
y.madriz-diaz@hzdr.de (Y.M.); r.gloaguen@hzdr.de (R.G.)

2 Radai Oy, Teknologiantie 18, 90590 Oulu, Finland; markku.pirttijarvi@radai.fi (M.P.);
ari.saartenoja@radai.fi (A.S.)

3 DIP Geosciences, 100 Burris Street, Hamilton, ON L8M 2J5, Canada; hernan.ugalde@dipgeosciences.com
4 Yara Suomi Oy, Nilsiäntie 50, 71801 Siilinjärvi, Finland; mikko.savolainen@yara.com
* Correspondence: r.jackisch@hzdr.de; Tel.: +49-0351-260-4750

Received: 3 August 2020; Accepted: 10 September 2020; Published: 15 September 2020
����������
�������

Abstract: Mapping geological outcrops is a crucial part of mineral exploration, mine planning and
ore extraction. With the advent of unmanned aerial systems (UASs) for rapid spatial and spectral
mapping, opportunities arise in fields where traditional ground-based approaches are established
and trusted, but fail to cover sufficient area or compromise personal safety. Multi-sensor UAS are
a technology that change geoscientific research, but they are still not routinely used for geological
mapping in exploration and mining due to lack of trust in their added value and missing expertise and
guidance in the selection and combination of drones and sensors. To address these limitations and
highlight the potential of using UAS in exploration settings, we present an UAS multi-sensor mapping
approach based on the integration of drone-borne photography, multi- and hyperspectral imaging
and magnetics. Data are processed with conventional methods as well as innovative machine learning
algorithms and validated by geological field mapping, yielding a comprehensive and geologically
interpretable product. As a case study, we chose the northern extension of the Siilinjärvi apatite mine
in Finland, in a brownfield exploration setting with plenty of ground truth data available and a survey
area that is partly covered by vegetation. We conducted rapid UAS surveys from which we created
a multi-layered data set to investigate properties of the ore-bearing carbonatite-glimmerite body.
Our resulting geologic map discriminates between the principal lithologic units and distinguishes
ore-bearing from waste rocks. Structural orientations and lithological units are deduced based
on high-resolution, hyperspectral image-enhanced point clouds. UAS-based magnetic data allow
an insight into their subsurface geometry through modeling based on magnetic interpretation.
We validate our results via ground survey including rock specimen sampling, geochemical and
mineralogical analysis and spectroscopic point measurements. We are convinced that the presented
non-invasive, data-driven mapping approach can complement traditional workflows in mineral
exploration as a flexible tool. Mapping products based on UAS data increase efficiency and maximize
safety of the resource extraction process, and reduce expenses and incidental wastes.
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1. Introduction

Investigating the earth’s surface using unmanned aerial systems (UASs) is becoming popular
in the earth sciences, as they provide a tool for fast, flexible and high-resolution data acquisition.
The integration of spectral and geophysical UAS-based information offers a refined scale between
airborne and ground surveys. Numerous studies and reviews have investigated the potential of
UASs for various applications, e.g., in the fields of agriculture and forestry, structural geology,
and sedimentology [1–7].

UASs offer multiple potential applications in the exploration and mining industry. In mining
environments, UASs are nowadays routinely used for topographical surveys, material volume
calculation and post-mining environmental monitoring [8,9]. In the context of mineral exploration,
UASs provide a non-invasive way to determine vectors towards ore occurrence at deposit scale.

Successful applications of UAS-based surveys in mineral exploration were used to explore rare
earths using spectral imaging [10] and target uranium deposits using radiometric gamma survey [11].
UAS geophysical magnetic mapping was employed in exploration for iron, zinc, chromite, or gold
deposits [12–15]. UAS-based photogrammetric surface models were used to explore structurally
controlled gold deposits [16].

Within the development of an exploration project, drilling is the decisive step for validation
and modeling. It represents one primary decision-making tool [17] and at the same time is the most
cost-intensive part of mine planning [18]. Hence, UAS-based non-invasive and socially acceptable
data acquisition (e.g., geophysical and hyperspectral) combined with robust data-processing methods
can help decision-makers minimize investment risks and optimize the drilling program [19].

Most of the above-mentioned studies only employ single sensors to derive geoscientific data.
A combination of information from different sensors allows for a more robust geological interpretation.
The combination of spectral and magnetic data has long been recognized as a potent tool in airborne
mineral exploration [20], because of their capability to provide both surface and subsurface information.
Bridging the observation gap between airborne and ground surveying, UASs provide the possibility of
carrying different sensors to acquire high-resolution spatial, spectral and temporal data [21,22] which
contribute to the understanding of geologic settings [23].

UAS-based hyperspectral imaging and magnetics were identified as a promising sensor
combination for direct targeting of iron ores [24], using surficial proxy iron-bearing minerals and
high magnetic susceptibility. While there is ample scientific literature on using UAS for geological
investigations, UAS are not established in the mineral exploration and mining industry. Arguably,
that is due to a lack of case studies, processing and validation schemes, and dedicated software.
This study showcases the value of multi-sensor UAS data and provides a guideline to maximize UAS
potential in exploration scenarios in order to provide support to exploration geologists.

Here, multi- and hyperspectral drone-based imagery is used to delineate and classify surface
lithologies using data fusion. Magnetic data are used to survey the extension of lithologic features
and close observation gaps. The data provided by the different sensors are fused and supervised
image classification is used to separate spectrally non-distinct rock types. Thus, we can link surface
and subsurface information as indicators for mineral occurrences, relating surface classifications to
magnetic minerals as lithologic proxies. Our final result is a UAS-borne digital geologic outcrop
model, augmented by UAS data-based magnetic forward modeling and validated by a ground-truthing
strategy for indirect exploration targeting. This study, to our knowledge at the time, is the first to
attempt this integrated approach used for UAS data in geologic mapping and mineral exploration.

Our area of investigation is the Siilinjärvi apatite ore mine in Finland [25]. The site is an
ideal testing ground due to the wealth of existing evaluation data, including geophysical [26–29]
structural–geological [30–32], geochronological, and mineralogical information [33,34]. We used two
on-site survey days to acquire high-resolution UAS data and ground validation in an area of about
1 km2. We introduce our general and transferable workflow, which we adapt to the specifications of
our survey site, show results and interpretation and finalize in five concluding statements.
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2. Materials and Methods

In this section, we lay out the UAS survey approach. Our proposed workflow is based upon
two fixed-wing UASs, one for magnetic and one for RGB and multispectral measurements, and one
multicopter UAS for detailed hyperspectral data acquisition. Both fixed-wings cover the complete
target area with high spatial resolution but in reduced spectral detail. The multicopter, on the other
hand, provides high spectral resolution but reduced spatial coverage as it acquires data at a lower
altitude and pace. This allows higher detail for selected areas of interest within the survey area.
We show that the methodic combination of fixed-wings and multicopter complement each other.
In the following subsection, we define the proposed workflow (Figure 1), introducing data processing
routines and the used ground truthing methods that include spectroscopy, magnetic susceptibility,
and structural measurements for a successful field campaign.

Figure 1. Detailed chart of proposed data-driven unmanned aerial system (UAS) based integration and
modeling workflow.

2.1. UAS Data Acquisition Method

We collect RGB and multispectral images (MSI) with a fixed-wing UAS. Structure-from-motion
multi view stereo (SfM-MVS) photogrammetric workflows allow us to construct a digital surface
model and an orthomosaic from RGB and MSI orthophotos. RGB information, that provides the
highest spatial resolution, is used to identify geological structures. MSIs provide additional spectral
information compared to RGB images, and a much larger footprint than hyperspectral image (HSI)
data in this acquisition setup. All images are geotagged from the drone’s onboard GPS. Images are
rectified using a number of ground control points.

The resulting SfM-MVS digital surface model (DSM) is used for topographic correction and
referencing of the HSIs, and for structural analysis. By means of CloudCompare (www.danielgm.net/cc,
vers. 2.11) and its Compass tool plugin [35], we semi-automatically trace and define best-fit planes for
faults, foliation, and lithologic contacts directly on the point cloud. For ambiguous areas, supporting
UAS data layers (e.g., HSIs, magnetics) are re-examined in the 3D environment.

We acquire UAS-based hyperspectral data frames with pre-coded flight paths in stop-and-go mode
along the outcrop to maximize UAS surface coverage. We employ UAS-borne frame-based cameras
because of their advantage in creating full image frames which, in our experience, are inherently

www.danielgm.net/cc
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less distorted than push-broom scanner data. For all HSI data, we manually crop water bodies and
non-geologic structures such as roads and vegetated zones from the mosaics, or use semi-automatic
masking with a spectral vegetation index.

We conduct UAS-based magnetic surveys using a fixed-wing drone to collect a high-resolution
magnetic data set over the survey area, using predefined flight plans. Subsequently, we apply standard
magnetic interpretation methods to inspect the shape and dimensions of the measured magnetic
anomalies. The analytic signal or total gradient amplitude method [36] is utilized to estimate the
location and depth of anomaly sources, as this function is independent of source magnetization
direction [37]. Furthermore, we compute the first vertical derivative from total magnetic intensity
(TMI) data to enhance the magnetic anomalies and reduce residual influences [38].

2.2. Data Products: Feature Extraction, Supervised Image Classification and Magnetic Forward Modeling

We perform data fusion on a “noisy” outcrop to reduce ambiguity of interpretation while
increasing detection confidence and accuracy of classifications [39]. The feasibility of such a fusion
approach was laid out for different lithologies at laboratory scale where multi-source hyperspectral and
photogrammetric techniques were combined [40]. We apply spatially constrained feature extraction on
the UAS-based optical imagery for a consistent classification as part of our multi-sensor data approach
to enhance image classification results. The orthogonal total variation component analysis (OTVCA) is
used to reduce data dimensionality [41]. It optimizes a cost function to obtain the best representation
for multi-layer image data in lower-dimensional feature space, while giving a spatial smoothness
over local neighboring pixels by minimizing the total variation of the image signal. OTVCA is robust
towards non-systematic, random noise (e.g., salt-and-pepper noise) and has increased weight on
neighboring pixels during the dimensionality reduction [42].

For supervised image classification, we choose the support vector machine (SVM) algorithm with
Gaussian radial basis function (RBF) kernel, using the library for support vector machines (LibSVM)
toolbox [43]. RBF-SVM is proven to perform well with heterogeneous classes and sparse training data,
both of which are common cases in geological mapping [42]. Training and validation samples or pixels
are defined by selecting pixel aggregates from the HSI data in a GIS environment from points with
defined lithologies. The number of training/validation classes varies according to our field observations
of the local lithologies.

For a 3D integration and interpretation of our UAS magnetic data, we use forward modeling.
Model geometries are established by the UAS-based orthoimagery, hyperspectral mosaics and the
DSM. The photogrammetric 3D outcrop model and ground measurements provide constraints on
strike/dip and azimuth of the source bodies. Magnetic susceptibility values assigned to the modeled
bodies are taken from published literature [27,28,44] and from additional measurements collected with
a handheld susceptibility sensor over selected rock samples.

2.3. The Adapted Workflow Conducted for This Survey

We summarize the main characteristics of used sensors here (Table 1) and for specific technical
details of our UAS workflow and data acquisition, we refer to Appendix A and [24].
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Table 1. Sensors with technical specifications and platforms used for experimental data during
this study.

Senor Type/Carrier
Platform Sensor Resolution

Spatial/Spectral
Bands/Sampling
Range/Frequency Data Product

Snapshot
camera/Fixed-wing UAS Parrot S.O.D.A. 5472 × 3648/ – 3/RGB/0.3 Hz

Orthomosaic-RGB,
digital surface

model
Snapshot

camera/Fixed-wing UAS Parrot Sequoia 1280 × 960/10–40 nm
(FWHM) 4/550–790 nm/0.3 Hz Orthomosaic

multispectral
Frame-based

camera/Multicopter UAS Senop Rikola 1010 × 648/8 nm 50/504–900 nm/manual Orthomosaic
hyperspectral

Three-component
fluxgate/Fixed-wing UAS

Radai
magnetometer – /0.5 nT 1/±100,000 nT/10 Hz Magnetic raster

grid

We used the senseFly eBee Plus fixed-wing (www.sensefly.com, senseFly, Cheseaux-sur-Lausanne,
Switzerland) equipped with either a high-resolution RGB camera (www.parrot.com, Parrot S.O.D.A.,
Parrot SA, Paris, France), or a multispectral camera (Parrot Sequoia). Processing of RGB and
multispectral drone-based data was conducted in Agisoft Photoscan (vers. 1.4, Agisoft Ltd.,
St.Petersburg, Russia) following recommended protocols [45,46].

Our used hyperspectral frame camera was the Senop Rikola hyperspectral imager (www.senop.fi,
Senop, Oulu, Finland). The camera was stabilized by a gimbal (roll and pitch axes) and transported
on board of the Aibotix Aibot X6v2 multicopter (www.leica-geosystems.com, Leica Geosystems,
Heerbrugg, Switzerland). Automatic HSI georeferencing, mosaicking and application of topographic
corrections (c-factor method) on each HSI scene based on the photogrammetric DSM was conducted
after Jakob et al., 2017 [47]. We applied the empirical line method [48] to convert the images from
radiance to reflectance units, using ground calibration targets.

Magnetics were flown with a composite material fixed-wing UAS Albatros VT2 from Radai Oy
(www.radai.fi, Radai Ltd., Oulu, Finland). This UAS utilizes a three-component fluxgate magnetometer,
a cost-reducing drone-based sensor [49], attached to the drone’s tail boom. With 2.5 m of wingspan and
a flight endurance of roughly 3 h, it can easily cover outcrops at square kilometer scales. The survey was
flown with traverse lines at 30 m spacing, 99.40 azimuth and tie lines at 60 m spacing and 9.40 azimuth.
The fixed-wing follows the topography along the flight plan based on any available high-resolution
digital elevation model. In this case, we used publicly available data from the National Land Survey
of Finland.

Magnetic data processing involved removal of spikes and duplicate points, compensation of the
fluxgate magnetometer, computation of the total magnetic intensity from the compensated component
magnetic data and removal of diurnal effects. Position coordinates, time stamps, barometric pressure
and the three-component magnetic data were recorded simultaneously by data logging hardware.
An equivalent source algorithm (equivalent layer model (ELM) after [50]) was utilized to prepare the
final TMI grid for the survey with the minimum curvature gridding method of ELM data at 15 m cell
size. The software Model Vision (vers. 16.0, Tensor Research Pty Ltd., Greenwich, Australia) was used
for subsequent forward modeling. Five magnetic profiles crossing along the E–W direction on top and
near the main trenches were used in the forward model. A number of simplified bodies with tabular
geometries were modeled until a reasonable root mean square error (3–5%) between the measured and
synthetic TMI response was achieved.

Covering the known lithologies, ground sampling locations of rock specimens (n = 23) and
ground control points (n = 19) were localized with a Trimble global navigation satellite system (GNSS)
kit (Trimble R5 base station, Trimble R10 rover; Trimble Inc., Sunnyvale, USA). An overview of the
complete workflow is shown in Figure 1.

www.sensefly.com
www.parrot.com
www.senop.fi
www.leica-geosystems.com
www.radai.fi
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2.4. Ground Truthing and Laboratory Validation

Data integration at multiple scales, using local ground truth, airborne magnetics, and regional
geology is an established method that can provide excellent results and meaningful geologic
interpretations [51]. Our ground-truthing program involves rock sampling, as well as structural
(n = 38) and spectral measurements (n = 336) and ground-based photogrammetry. All ground samples
are geolocated using GNSS. All rock samples are cut and polished for optical investigation and some
for analysis with selected geochemical and mineralogical methods.

We take several structural measurements (geological compass), which we incorporate in forward
modeling of magnetic data. Main observations are made for contacts, orientation of dykes, and foliation.

During the outcrop studies, we record point representative spectra using a portable
spectroradiometer in the available wavelength range of 400–2500 nm. We use selected scans as reference
for the supervised image classifications (see Appendix A for point distribution and spectrometer
specifications).

Laboratory validation methods, which represent traditional geological, mineralogical,
and petrophysical verification methods, are selected to confirm our field observations, and to extract
further geologic information from the study site itself. All measurements are conducted on collected
rock specimens in the laboratory. Thin section samples are created from specimens covering all
main lithologies of the outcrop and examined with optical and polarized light microscopy. Magnetic
susceptibility and X-ray diffraction analysis is applied on selected samples (see Appendix D for
additional information).

3. Case Study: The Siilinjärvi Carbonatite Complex

Here, we introduce the test area together with the geology. The Siilinjärvi carbonatite complex is
situated 20 km north of the city of Kuopio in central Finland and extends for 16 km in N–S and 1.5 km
in E–W directions (Figure 2a), with an estimated depth of 800 m [27]. It is one of the oldest known
carbonatites with an Archean age of 2.6 Ga±10 Ma, according to U-Pb zircon dating [52]. The Siilinjärvi
mine extracts carbonatite–glimmerite-hosted apatite ore for fertilizer production as one of the biggest
producers in Europe.

3.1. Local Geology and Study Area

The carbonatite intrusion was emplaced into basement gneiss and deformed by the Svecofennian
orogeny at 1.8 Ga [53]. Local rock types are fenite, gneiss, carbonatite–glimmerite, diabase, and other
dykes (e.g., local diorites). The central carbonatite–glimmerite ore body has a tabular form, is up
to 900 m in width, and is surrounded by a fenite margin created by carbonatite-derived alkali
metasomatism of the granite–gneiss country rock and syenite [54].

Brittle and ductile deformation caused structural segmentation of the carbonatite complex and
surrounding rock, expressed as sharp boundaries within some areas of intermixed diabase, fenite,
tonalite and carbonatite–glimmerite. Fenites as metasomatic products of diorite and gneiss are found
in the magmatic contact zones between country rock and carbonatite–glimmerite [25]. This halo of
fenitized rocks contains microcline, orthoclase, amphibole, and pyroxene, as well as carbonate, zircon,
and quartz.

Several generations of mafic dykes (dolerite) cut the Siilinjärvi intrusion in NW–SE and NNW–SSE
directions, with widths ranging from centimeters to meters [54]. Most of the dykes are steeply
dipping and, depending on their generation, were subjected to deformation [31]. Sheared feldspar-rich
pegmatite dykes with widths varying from 1–50 m were recently discovered by a large-scale drilling
program in the Jaakonlampi area [55] and are exposed on the surface. Structural emplacement of
the dykes is still not fully understood, but given their size and increased magnetic susceptibilities,
they could be an important component of forward modeling.
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Figure 2. (a) Official geologic map (bedrock of Finland scale-free map© Geological Survey of Finland
2019, http://hakku.gtk.fi) that combines data of different map scales. The Jaakonlampi region of interest
(ROI) includes our test area for UAS survey. (b) UAS-based orthophoto of the Jaakonlampi ROI,
showing structural measurements, rock sample positions and ground spectroscopy.

http://hakku.gtk.fi
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3.2. The Jaakonlampi Test Area

Situated 1.2 km north of the Särkijärvi main pit, the Jaakonlampi area (Figure 2b) provided the test
zone for our UAS survey. Jaakonlampi extends ~1 km in the northern direction and is characterized
by three distinct exploration trenches, which from north to south, henceforth we refer to as trench
1, trench 2, and trench 3. The mine company expanded the exploration program for trench 3 in
2018 and removed significant soil overburden, uncovering a large exploration trench (Figure 3c).
However, the recent uncovering resulted in some remains of sand and clays on top of trench 3’s surface,
challenging subsequent image classifications.

Figure 3. Photographic illustrations of the applied field methods, data acquisition by UASs and ground
truthing, and overviews for the visited outcrops in the Jaakonlampi area. (a) Hyperspectral survey
using multicopter UAS. (b) Magnetic fixed-wing UAS. (c) Ground spectroscopy and geo-locating
on trench 3. (d) Trench 1 during hyperspectral survey. (e) Ground sampling on trench 2 including
structural measurements and spectral surface scans. (f) Contact between dolerite dyke and feldspar-rich
pegmatite intrusions. (g) Photograph of the test pit wall that marks the southern survey end zone.

Within the glimmerite, the carbonatite is featured as thin, sub-vertical veins. The composition
of carbonatite is mainly calcite, apatite (1.4–2.3 vol.%,) and magnetite (1 vol.%). On average, the ore
contains 65% phlogopite, 19% carbonates, 10% apatite, 5% richterite, and 1% accessories that are mainly
magnetite and zircon [54]. The composition of the three trenches (Figure 3c–f) is similar to the general
configuration of the Siilinjärvi deposit. The southern-located trench 3 connects seamlessly to a so-called
test pit (Figure 3g), an outcrop wall which presents a vertical geologic cross section of the lithological
units further used in this study:

• Carbonatite–glimmerite (CGL) and carbonatite (CRB)
• Dolerite (DL)
• Felspar-rich pegmatite veins (FSP-PEG)
• Fenite (resp. syenitic fenite or fenite-syenite) (FEN-SYN)
• Glimmerite (GL)
• Granite–gneiss (GRGN)
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4. Results

We present the mapping results sorted by method. Survey conditions, camera settings,
and technical UAS-related data are found in Appendix A (Table A1). All trenches and the forested
areas in between were surveyed by high-resolution RGB and multispectral UAS images and UAS
magnetics. Additional hyperspectral imaging covers trench 1 completely, the western half of trench 2
(the other half was submerged by water), and the northern half of trench 3. Visual observation of the
test pit wall showed dipping bodies between 70–90◦, broadly striking along N–S.

4.1. Ground Spectroscopy and Principal Lithologic Representation

We measured the three trenches in situ with a representative dense spectral point sampling
campaign (Figure 2b) at trench 1 and 2 (275 locations). For trench 3, we conducted a broader sampling
sweep (61 locations, 37 of those covered by UAS-based HSIs and MSIs). While understanding the
spectral differences of the lithologies, we selected training samples for the supervised classification
(Figure 1, last row) guided by the ground spectra (representative spectra in Figure 4), the RGB mosaic,
and the OTVCA layers.

Figure 4. (a–f) Representative hyperspectral image (HSI) drone-based spectra compared to
handheld point scans from the same lithologies and in direct spatial neighborhood, plotted between
504–900 nm. Spectra were manually extracted from representative spots of the main lithologies.
GCL = Carbonatite–glimmerite; CRB = Carbonatite; GL = Glimmerite; FEN-SYN = Fenite–syenite;
DL = Dolerite; FSP-PEG = Feldspar–pegmatite.
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A relatively broad absorption between 900~1200 nm is attributed to the Fe2+ content in calcite
and dolomite-rich carbonatite [56]. We detected rare earth element (REE) related absorptions at
580 ± 10 nm, 740 ± 10 nm, and 800 ± 10 nm (Figure 5b) [57]. A spectral shift from calcite-rich to
dolomite-rich carbonatite is visible in our point scans, at the spectral minima transition from 2320 nm
to 2340 nm (Figure 5c), related to vibrational processes of CO3 combinations and overtones [58,59].
For glimmerite spectra, rich in phlogopite and biotite, we observe characteristic OH- features at
1380 ± 10 nm and Mg-OH vibrational bands at 2320 ± 10 nm and 2380 ± 5 nm [58]. Carbonates are
likely to influence the position of the absorption minima here. Hydroxyl group absorption features are
seen for fenitized syenite spectra at 2315 nm and 2385 nm. Dolerite spectra show the lowest overall
reflectance, weak Fe2+/Fe3+ charge-transfer absorptions at 800 nm [60] due to iron alteration but a
prominent absorption at 1920 nm (OH- related). Feldspar-rich pegmatites, expressing a larger spectral
variety and incorporating Fe2+ and pronounced OH- features are found at 1410 nm, 2200 nm (Al-OH),
and 2350 nm (Mg-OH). We observed apatite in carbonatite–glimmerite rock samples as a possible
proxy for REE occurrence.

Figure 5. (a) Six selected handheld scans, representative for the mapped lithologies, plotted between
450–2500 nm and with indicated positions of spectral absorptions. (b) Zoom within the available UAS-based
HSI wavelength window (504–900 nm) showing two carbonatites, where both apatite-rich carbonatites
express some rare earth element-related absorption. (c) Enhanced view of the shortwave-infrared
region between 2000–2500 nm, same color legend. DL = Dolerite; FSP-PEG = Feldspar–pegmatite;
CRB = Carbonatite; CGL = Carbonatite–glimmerite; FEN-SYN = Fenite–syenite; GL = Glimmerite.

4.2. UAS-Based Optical Remote Sensing Observations

The RGB orthophoto (Figure 6a), the MSI mosaic (Figure 6b) and the HSI mosaics (Figure 6c)
provide first-order information for subsequent interpretation. Low ceiling clouds were present during
the RGB acquisition flight, producing horizontal gray stripes in the data. Occasional leftover dirt
patches reduce the spectral quality in some HSI scans of trench 3. Topographic expressions are seen
in the UAS-based DSM (ground sampling distance 10.6 cm; Figure 6d). The eBee RGB and MSI
orthomosaics envelope the complete rock outcrop extension, which is covered by vegetation stripes
between trenches 1 and 2 and between trenches 2 and 3. HSI mosaics were acquired completely for
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trenches 1 and 2. Trench 2 was partly covered with water on large surface portions. Low illumination
conditions during the HSI acquisition of trench 3 reduced the spectral quality for all scans there.
We augment the data set of trench 3 by using two additional data layers (DSM, MSIs) from the area.
Those additional layers were resampled to the common lowest resolution (from the DSM) and fused
with the HSI data set before applying the dimensionality reduction by OTVCA to improve supervised
image classification.

Figure 6. Overview of image-based data products showing the three trenches, with the test pit at
the southern end of trench 3. (a) RGB orthomosaic from the eBee Plus UAS and S.O.D.A. camera.
(b) Multispectral false-color infrared mosaic from the eBee Plus UAS and Sequoia camera (bands
735 nm, 660 nm, 550 nm). (c) Hyperspectral false-color RGB mosaic from Rikola camera images
(bands 650 nm, 551 nm, 504 nm) flown on multicopter UAS. (d) Hillshaded digital surface model
derived from SfM-MVS photogrammetry, based on eBee Plus orthophotos, elevation in meters above
sea level.

The OTVCA-based false-color band combinations we selected for high variations are shown in
Figure 7a,b. Only the merged multi-sensor OTVCA bands for trench 3 (Figure 7c) contain MS, RGB,
and DSM data. Fusing those additional data layers for the classification of trench 3 helped to close some
data coverage gaps of the hyperspectral survey (Figure 7c). The final classification produced by the
SVM classifier and visual inspection was used to create the surface geology map. The resulting overall
accuracy (OA) for all three trenches (>90% OA each) is acceptable. Overall supervised classification
accuracies with used ground truth are as follows in mean accuracy (MA), OA, and kappa coefficient
(κ): trench 1—MA 96.5, OA: 95.3, κ: 0.94; trench 2—MA 91.0, OA: 90.0, κ: 0.88; trench 3—MA 95.3,
OA: 95.3, κ: 0.95. We refer to Appendix A for visualized training and validation samples, as well as
confusion matrices per trench classification.

Although we achieved high classification accuracies, three falsely classified zones are identified
(Figure 7f), i.e., a large block of carbonatite (25 m length) in the fenitized syenite and a stripe of dolerite
extending into the feldspar–pegmatites and the mine road.
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Figure 7. Display of feature extractions (a–c) and supervised classification maps, where only the
geologically meaningful classes are shown for comparison (d–f), plotted on a grayscale UAS-RGB
background orthophoto. (a) Trench 1—Orthogonal total variation component analysis (OTVCA)
color combination bands 2,1,4. (b) Trench 2—OTVCA color combination bands 2,1,3. (c) Trench
3—OTVCA color combination bands 3,5,2. (d) Trench 1—Support vector machine (SVM) supervised
image classification. (e) Trench 2—SVM supervised image classification. (f) Trench 3—SVM supervised
image classification. Black frames highlight misclassified zones.

4.3. UAS-Based Magnetic Observations

Magnetic data interpretation is based on the processed TMI (Figure 8a) and filtered data products.
The total survey length was ~ 39 km, with a mean flight height of 48 m above sea level (a.s.l.), a sampling
line point distance of 2.1 m, and a mean velocity of 17.7 m/s. We show regional airborne magnetics ([61]
modified after Geologic Survey of Finland © 2016) for comparison (Figure 8b). The regional field
shows a decreasing tendency towards the west. A pronounced magnetic anomaly, with values reaching
400 nT, is heading in the north to south direction. At the center of trench 3, the TMI trend is decreasing.
A TMI field strength reduction is visible at the southern end of trench 3 above the vertical wall of the
test pit.
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Figure 8. (a) Total magnetic intensity data plotted with shaded relief and UAS flight paths as stippled
lines from fixed-wing magnetics. Recovered in-line sampling distance after processing varies between
1.5–2.2 m. Bold black profile lines are used in magnetic forward modeling. (b) Regional aeromagnetic
data from the Geological Survey of Finland (40 m nominal flight altitude, 200 m line spacing; colors are
hard-coded; definitive magnetic reference field version 1965 removed from the data).

The first vertical derivative (1VD, Figure 9a) sharpens the edge of the N–S trending anomaly
and the 1VD outlines the distinct transition from low to high TMI values, which we interpreted
as possible lithologic contact between country rock and fenite. By using the analytic signal (AS),
which serves to minimize the impact of any magnetic remanence on the observed magnetic anomaly
pattern, we enhance magnetic contacts, interpreted here as carbonatite–glimmerite and country rock
(Figure 9b). Based on the aforementioned image classification (Figure 7f), the western border of the
dolerite unit could be traced, which is running from N–S through the whole study area. A decrease in
the vertical gradient magnitude is seen again in the center of trench 3, where the shear zone is located
(Figures 2 and 9) [55]. The spatial width and field strength of the central anomaly could be related to
the volume of material replaced by the non-magnetic feldspar-rich pegmatite dykes. The magnetic low
at the center of trench 3, starting 50 m north from the test pit, is measured atop the observed fold and
shear tectonics, where magnetic minerals are altered, displaced, or destroyed [62]. The two spatially
large, oval-shaped anomalies cross above the eastern map border of Figure 8a.
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Figure 9. Comparison of magnetic data at different scales with black outlines representing the trenches.
(a) Analytical signal from UAS total magnetic intensity (TMI) data. (b) First vertical derivative from
UAS TMI data.

4.4. Geologic Modeling and Ground Magnetic Susceptibility

Magnetic susceptibility measurements are imperative for a supporting forward model as a
secondary data derivative, based on UAS magnetics. The susceptibility ranges of our sampled
lithologies are aligned with values presented in the literature and our own sampling. Table 2 lists
susceptibility ranges for the relevant lithologies.

Table 2. Augmented value range for magnetic susceptibilities based on reference literature and own
measurements, values given in SI units.

Lithology Almqvist et al., 2017 [44] V. Laakso, 2019 [28] Measured Used

Dolerite 1.26 × 10−4 – 1.29 × 10−3 1.0 × 10−2 – 1.6 × 10−1 7.0 × 10−4 – 1.35 × 10−2 1.0 × 10−5 – 1.7 × 10−2

Carbonatite–Glimmerite 4.27 × 10−4 – 2.09 × 10−1 1.3 × 10−1 – 2.1 × 10−1 1.0 × 10−4 – 1.1 × 10−2 3.2 × 10−3 – 2.5 × 10−2

Feldspar–Pegmatite – 0 – 5.0 × 10−4 7 × 10−5 – 1.4 × 10−4 1.0 × 10−5 – 5.0 × 10−4

Fenite – 1.3 × 10−1 – 1.5 × 10−1 1 × 10−6 – 1 × 10−5 –
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We constructed a model, starting with simple cuboidal geometries, and advanced to polygonal
tabular sheets, with their surface geometry constrained by our UAS-based surface geologic map
(Figure 10). UAS-based DSM data were used to constrain the top surface of each polygon.
An approximate maximum depth of 250 m meters was imposed, based here on available
literature information for the study area. Body geometry (strikes and dip, width, azimuth) were
taken from photogrammetric interpretation and compared with our own ground measurements.
Initial susceptibility values were assigned to geological units on the basis of the literature and measured
susceptibilities (Table 2). Optimization of the model was achieved using the inversion tool provided
with the ModelVision software. After continuous reiterations, a root mean squared error between
synthetic and modeled TMI response of 3–5% was reached per profile. In our model (cross section in
Appendix B) one implication could be that the dolerites we measured can reach magnetic susceptibilities
close to carbonatite–glimmerite. Yet, this could be an observation at only some depth or related to
shearing. The dolerites are known to be low or non-magnetic in the mine area (personal communication,
Yara chief mine geologist). The modeling results are integrated in Section 5.1 with the surface data for
the final mapping. Extracted body boundaries are used to refine the surface map in a 2D cross section
depth map over trench 3 (Figure 10c).
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Figure 10. Structural and geological information is synthesized. A semi-transparent MSI mosaic is set
as a background for referencing on both maps. (a) Extracted isolines from magnetics (Mag contour)
are shown together with structural interpretations as observed discontinuities and lithologic contacts,
based on UAS-based point clouds, digital surface model (DSM), and orthophotos. (b) Interpreted
geologic map of surface lithologies. Color legend valid for (b) and (c), which shows an interpreted
profile plot crossing trench 3. Main lithologies are drawn from surface mapping and extended in
depth, based on forward modeling and structural measurements from photogrammetry; TMI response
plotted above DSM. Orientation of planar features is indicated in dip→dip direction. In the shear
zone, the magnetic anomaly is diminished, possibly caused by subsequent alteration and relocation of
magnetite. A small diorite intrusion was observed during field mapping.
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5. Data Integration and Validation

In this section, we present the integrated results of our UAS mapping approach, bringing together
data acquired with UAS platforms and ground survey. All analyses and maps were conducted and
created in Quantum GIS (vers. 3.4, QGIS development team). The inferred lithologies between
the outcrop trenches are mapped using the UAS magnetic observations. The following link to the
integrated 3D model is available online at https://skfb.ly/6U6Xo.

5.1. Geologic Mapping and Interpretation

Structural features (e.g., foliations, discontinuities, lineaments) and contours are interpreted
visually in magnetic and DSM data, and with finer detail aided by the RGB orthophotos (Figure 8a).
We produced magnetic contours from TMI, AS, and 1VD data. To do so, we calculated the contour
lines from TMI and for filtered magnetics, to obtain magnetic isolines per data set in quartered data
range steps and subsequently kept only each isoline representing the 50% data threshold. Thus, one
isoline shows the arithmetic data threshold representing a mean. We observe that the TMI and 1VD
isoline are superimposed along the western border of the main anomaly in the center of trench 3.
This might reflect a well-expressed, deep contact of carbonatite–glimmerite and country rock. The ‘mag
gradient’ outlines the observed field decrease (center of trench 3; Figure 9). The geologic surface
interpretation (Figure 10b) brings together all data sources: RGB orthophoto, supervised classification
of HSIs, and fused data. We extracted 66 discontinuities manually for the three trenches (sum of length:
4.46 km), with a mean length of 50 m per structure. We mapped a high density of features along trench
3, as a result of high contrast in both RGB and HSI mosaics. The visual overlap of RGB, HSIs, DSM and
magnetics aided the extraction when contacts or boundaries were blurred or ambiguous. The shear
zone in the south-east of trench 3 (Figure 10c) expresses visible lineament offsets and a dense fracture
pattern in RGB data. We do not infer fenite as there are too few surface observations for reference,
but the magnetics indicate a contact between carbonatite–glimmerites and fenites.

We infer that the lithologies carbonatite–glimmerite, dolerite, and feldspar–pegmatite continue
their N–S trend and intersect with the surficial identified structures. A good example is the case for
dolerite and feldspar–pegmatite, which we can observe for trenches 1 and 2 (Figure 10a,b compare
observed vs. inferred lithologies). Additionally, we map the smaller carbonatite features based on HSI
classifications and show them as overlaying foliation (Figure 11). A 3D representation of the pit wall is
seen in Figure 12.

By applying the Cloud Compare compass tool [35], we could extract 21 contact planes between
feldspar–pegmatite and glimmerite, 10 dolerite contacts, and 6 glimmerite–fenite contact planes, all of
which were located in trench 3 (Figure 12). The largest dolerite dyke had a diameter of ~30 m. Trenches
1 and 2 expressed few topographic differences to extract meaningful contact planes.

https://skfb.ly/6U6Xo
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Figure 11. Enlarged maps of the interpreted geology from the three surveyed trenches. Gray background
shows a hillshaded representation of UAS-based DSM to add topographic contrast. (a) Trench 1.
(b) Trench 2. (c) Trench 3.

Figure 12. Enlarged view on an orthographically projected point cloud of trench 3 (see also Figures 1a
and 2g), showing the test pit wall with 3D best-fit planes for digital structural measurements. The white
box highlights the field photograph of Figure 3g. A 3D version is found online at https://skfb.ly/6U6Xo.

5.2. Mineralogic Validation and Additional Observation

We deployed optical microscopy (Appendix C) and X-ray diffraction (XRD) methods for
mineralogical analysis. The microscopy of carbonatite–glimmerite shows calcite, a homogeneous
distribution of magnetite grains ranging in size from microns to millimeters, and larger pyrite
crystals. We observed idiomorph magnetite in rock thin sections of carbonatite–glimmerite, glimmerite,
and dolerite. Magnetite seems to be in co-occurrence with pyrite. Combining microscopy and XRD,
we detect some presence of magnetite in several mapped carbonatite–glimmerite and glimmerite
units of this study. XRD of a bulk handheld specimen collected from carbonatite–glimmerite shows
1.8 wt.% of magnetite. Further evidence of magnetic minerals was only observed in one dolerite
sample (2.4 wt.%). We did not identify magnetic minerals in the remaining lithologies from microscopy
(fenitized syenite, feldspar–pegmatite). Moreover, XRD patterns detect calcite, apatite, biotite, pyrite,
quartz, albite, ankerite, and actinolite (Appendix D).

https://skfb.ly/6U6Xo
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5.3. Validation of Structural Observations

The results of the digitally extracted structural measurements are summarized (Figure 13) and
compared with the ground measurements. High image contrast and geometric expression were found
at the test pit of trench 3, and therefore used for extraction. Thirty-two contact points, 6 foliations,
and 2 dykes (carbonatite, dolerite) were measured in situ during the field campaign. Digital point
cloud measurements of apparent large units were extracted mainly on the test pit wall for dolerite,
carbonatite–glimmerite and fenite features. Twenty contacts between carbonatite–glimmerite and
feldspar–pegmatite, 10 dolerite dykes, and 6 glimmerite–syenite–fenite contacts were extracted digitally.
Our structural observations of the Jaakonlampi area show an N–S trend, which is consistent with the
formerly described N–S striking foliation trend of the host rock [25], and shearing along the contacts of
intrusions with host rocks [54]. Structural orientations of contacts, dykes and foliations are comparable
in their main trends (Figure 13a,b,d). Smaller feldspar–pegmatite units (Figure 13e,f) were measurable
along the carbonatite–glimmerite in trench 3. The rather flat surfaces, low topography and reduced
RGB image contrast of trenches 1 and 2 could not provide sufficient contrast for usable structural
measurements. NW–SE-oriented shearing affects structural expressions in our study area (Figure 13c).
Several shearing events were identified in the Jaakonlampi area (four deformation stages with D1 || D3
identified in [55]). At the shear zone of trench 3, we observed contacts of carbonatite–glimmerite with
granite–gneiss and an occasional absence of the fenite–syenite halo.

Figure 13. First row (a–c) shows a compilation of structural data from field work and point cloud
analysis. Second row (d–f) presents UAS-based RGB orthophoto zooms with exemplary structural
features. (a) Structural orientations obtained from field measurements. Triangle: foliation, circle:
contacts, box: dykes. (b) Structural orientations resulting from point cloud analysis using the Cloud
Compare Compass tool. Circle: contact FSP-GL, box: contact FSP-CGL; diamond: dolerite dykes.
Large circles in (b) are the mean planes derived from weighted contouring (Kamb contours [63]) for
the respective sub-groups. (c) Field photograph showing detail of the structures and relationship of
carbonatite and glimmerite from trench 2. Hammer for scale (length 33 cm). Notation is “Plunge→Trend”
for linear (L) and “Dip→Dip Direction” for planar (S) features. (d) Close-up of RGB UAS orthophoto
of trench 2, with a folded carbonatite–glimmerite section. (e–f) UAS-RGB close-ups of trench 3’s
southern shear zone, showing a larger block of dolerite, relocated. Feldspar–pegmatite (pinch and swell
and/or boudinage) dyke indicates horizontal displacement. Planar features measured with compass in
the field.
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6. Discussion

6.1. Assessing the General UAS Survey Workflow with Focus on Image Data

We tested a survey approach that is only limited by the external conditions for UAS operations,
such as weather and legislation. Our multi-sensor UAS toolkit aids geologic ground mapping,
i.e., at around 1 km2 [64]. Our combination of different UAS-based sensors fills spatial gaps during the
survey, and provides a wealth of interpretable data. Extracted spectroscopic and magnetic observations
complement each other to capture surface and subsurface information, which allows an integrated
geologic interpretation. Furthermore, we expand the coverage of the survey area by complementing
missing areas with data from other sensors.

As expected from our lithologies at hand, a full class distinction based solely on HSI and RGB data
was not feasible at first. Here, sensor integration substantially improved the UAS-based supervised
image classifications. Some lithological boundaries seen in spectral data are expressed in the DSM
topography. For example, classification accuracy for the feldspar–pegmatite intrusion and dolerite
contacts was improved by including the DSM layer in the OTVCA feature extraction of trench 3, because
those lithologies are more extruded. Particularly for trench 3, the occasional clay–soil patches smear
larger surfaces and the cloudy weather during this data acquisition made it worthwhile to include
additional information. OTVCA takes spatial relationships of multi-dimensional data (i.e., dozens
of image channels) into consideration. By optical inspection, the selection of 13–20 bands of each
extracted OTVCA data set of the three trenches (equaling 20–30% of the provided number of input
bands) for the SVM classifier was feasible. Optical inspection means here that OTVCA bands with
obvious noise content (stripes, artifacts, contrast gradients) are discarded. With a careful selection of
training samples, we obtained a classification in good agreement with geologic ground mapping.

The multicopter-based hyperspectral data could identify spatially small (~5 cm), spectrally
pronounced anomalies, i.e., fine carbonatite lenses and is effective at the given outcrop dimension.
The same lenses are visible in RGB, but cannot be distinguished spectrally, e.g., from feldspar–pegmatite
rubble. Some lithologies (feldspar–pegmatite, fenite–syenite, granite–gneiss) are hardly discernable
due to their lack of characteristic spectral features in the VNIR range. For example, average reflectance
of fenite–syenite was similar or higher than for feldspar–pegmatite and granite–gneiss. However, we
could still discriminate those rocks by using the machine learning-based spatially constrained feature
extraction. OTVCA allowed us to pass not only spectral information, but also slight spatial, textural,
or overall reflectance changes to the classifier. With a set of representative, well-defined training
points, the classifier is able to assign meaningful labels even to classes lacking any indicative spectral
features. While delivering a good classification performance, this approach is highly dependent on
good-quality training data. UAS short-wave infrared (SWIR) sensors would add more confidence to the
classification and allow a direct, spectroscopic analysis of a much wider range of mineralogical features,
however, their pricing and weight is still an obstacle. Light-weight VNIR sensors in combination with
advanced, open-source machine learning techniques, have been shown to offer a cheaper, but still
reliable, alternative for the discrimination of known lithological domains.

Furthermore, we see a high feasibility when UAS spectroscopy is used for, e.g., iron oxides and rare
earth element identification. Neodymium and dysprosium are promising targets for remote sensing
studies [57]. We observed specific rare earth element-related absorptions in VNIR regions of handheld
spectra in local apatite (Figure 5b). For mapping, we are particularly interested in spectral absorption of
Fe2+ bands in the range of 800–1200 nm as a target for the HSI camera. Further CO3 related absorption
around 2330 nm, indicative for carbonate mineralogy (i.e., carbonatite), is only detectable in the SWIR
range of handheld spectroscopy [65,66]. To assist with UAS magnetic mapping, first-order results from
UAS-based RGB orthophotos are available directly after each flight (Figure 6a). Orthomosaics could
be further used to optimize and refine magnetic flight plans in the field, if important anomalies are
identified. While atmospheric conditions influenced the data quality acquired from optical sensors,
the magnetics could be flown with a low cloudy ceiling or over wet surfaces without any disturbance.
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Line spacing, altitude, and sampling frequency of UAS magnetics define the features we can resolve
physically, and therefore the size of targets we can model and interpret. We consider that the fixed-wing
UAS probably created more valuable data for mapping with high surface coverage. Fixed-wing flight
endurance was not exhausted with the current target area. In this case study, the following surface
coverages were achieved per sensor:

• Magnetics: 0.695 km2 (interpolated grid surface from 39-line km);
• MSIs: 0.649 km2;
• RGB: 0.623 km2;
• HSIs: 0.047 km2 (sum of HSI flights).

The used UAS-fitted workflows are matured to a high user friendliness and could be flexibly
adapted to all mining and exploration scenarios, where high resolution and spatial coverage is required.
Safety concerns for detailed mapping along pit walls are mitigated by UAS mapping, when used for
vertical outcrop scanning along unstable wall sections [67].

Our UAS mapping could improve the planning of material extraction processes in the mine.
The volume of less profitable rock material can be reduced, which limits resource use and costs for
additional drilling and curtails waste rock. Production schedules and mine layout planning could
be improved. As example from UAS magnetics, we infer that the ore body cuts or continues below
a mine road in the west on the outcrops, which could require a geotechnical repositioning of said
infrastructure (Figures 2b and 9a, west of trench 1). Once regular UAS surveys become best practice
for open-pit drilling, drill locations could be predefined in detailed orthophotos and subsurface drill
orientations could be optimized by model-based interpretation of 3D data. In active mines, optical
imagery is already implemented for explosive energy distribution optimization [68].

6.2. Further Implications of UAS Magnetic Surveys and Added Understanding of the Local Geology

UAS-based magnetics revealed the subsurface extension and trend of the glimmerite–carbonatite
body between the trenches, and was validated on the trench surface. A high potential for ground-
or UAS-based magnetic surveys to study lateral extension of those ore bodies was noted before [27],
together with the recognition of the high magnetic susceptibility of Siilinjärvi carbonatite. The shape
and direction of magnetic anomalies directly correlate with the extension of the lithologies at hand.
For example, we interpret the pronounced trend (Figure 9a, eastern trench border) in the TMI-1VD as
contact of the magnetic carbonatite with an intruded dolerite dyke. Furthermore, we interpret the
TMI-AS as the estimated maximum width of glimmerite–carbonatite for this survey site. The two large
anomalies crossing the eastern survey border (Figure 8) are likely part of much deeper granite–gneiss
country rocks, however, neither hyperspectral data nor rock samples of those zones were acquired.
We conclude that the abundant magnetite in the targeted lithologies is mostly responsible for the
detected magnetic anomalies in UAS data, while fenite can be disregarded (Matias Carlsson, personal
communication). The average magnetite content in the deposit is 1 wt.% [25], and is a highly
abundant accessory mineral of both glimmerite and carbonatite [69]. Minor contents of pyrite,
pyrrhotite, and some chalcopyrite occurrence form sulfide minerals in locally high abundance [54].
Sövite, a carbonatite variety, can carry 1–2% of magnetite, often together with apatite, biotite, and
pyrochlore [70]. Although another source for high susceptibilities could be the mafic dykes, those are
smaller in dimension as compared to the carbonatite–glimmerite and local fenite.

In a rock thin section of a dolerite sample, pyrite and magnetite were observed and confirmed by
XRD measurements. For the glimmerite rocks, para- and ferrimagnetic effects can increase magnetic
susceptibility in phlogopite due to magnetite domains in significant fractions [71].

Two-dimensional structural interpretation of the shear zones suggests an increasing mixture of ore
and waste rocks in trench 3 (Figures 12 and 13e,f). Possibly, feldspar–pegmatites ascended near trench
3 and extruded laterally along the carbonatite–glimmerite contacts, following a path of least resistance.
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To magnetically detect and model smaller dolerite dykes, a denser flight line pattern is
recommended for higher spatial resolution. It was noted before [25] that aeromagnetic surveying cannot
resolve the carbonatite–glimmerite, however, this is now possible with UAS-based magnetic surveying.

7. Conclusions

This study introduced a cohesive multi-sensor survey approach using optical and geophysical
UAS sensors. We integrated UAS-based surface and sub-surface data to create a digital outcrop model
for precise geology mapping. Detailed surface information from high-resolution orthophotos and
structural trends from point clouds provided information to map geologic features at the centimeter
scale. We measured structural constraints of carbonatite–glimmerite, mafic dykes, and feldspar-rich
pegmatite on digital outcrop twins. Furthermore, we used a sensor fusion approach and machine
learning methods for a supervised classification of outcropping rocks, partially covered by soil and
captured during unfavorable atmospheric conditions. With hyperspectral data, we were able to identify
and distinguish apatite-bearing lithologies from waste rock, i.e., feldspar-rich pegmatite intrusions and
country rock. Based on UAS-borne magnetics, we created a surface-constrained forward model aided
by measured and adapted magnetic susceptibilities to extract subsurface information, which revealed
the extent of ore-bearing carbonatite-glimmerite. We observed this carbonatite structure at outcropping
trenches, visible along the test pit wall, plunging into the subsurface and traced further based on
magnetic data. The presumed high magnetic anomaly of carbonatite–glimmerite was measured in
detail by a UAS. The scale and resolution of the magnetics covered all trenches in one UAS flight.
Our survey lasted for two field work days, and included a spectral surface sampling campaign. All UAS
flights were conducted in parallel to the sampling with a combined flight time of <6 hours in total.

The principal conclusions and highlights of this study are:

1. Rapid, flexible and automatized UAS-based surveying of lithologic surface and subsurface
features, using light-weight multi-sensor technology, resulted in a 3D outcrop interpretation
and provided material and structural information as a valuable alternative to time-consuming
ground surveying.

2. Forward modeling of UAS-based magnetic data provided insight on orientation and depth of
lithologies concealed from surface observation, here, UASs provided a link between 2D and
3D mapping.

3. Challenges arose in the integration of high-resolution HSI data at smaller scales and missing
overlap between outcrops, together with spectrally inert rock types at the given spectral range.

4. Integration and fusion of topographic and spectral data using supervised surface classification of
spectrally non-distinct targets with a support vector machine on dimensionality-reduced feature
extraction data was successful in overcoming the challenges.

5. We recommend the use and combination of fixed-wing UASs for target-based surveying in the
RGB, multispectral, and magnetic domains for advanced geologic mapping and interpretation,
while using multicopter-borne HSI data for potential non-distinct lithology discrimination,
sub-decimeter feature mapping and to identify features of narrow spectral range.

From this study, we observe that photo-based geology is transformed by UAS imaging techniques
into automatic procedures, where magnetic and hyperspectral methods could become state of the
art. MSIs and HSIs would stand next to the already implemented photogrammetric methods, to add
potential for less invasive, data-driven mineral exploration and mining. UAS-based SWIR cameras will
extend the range of identification for target lithologies, and future geophysical UAS sensors such as
gravity, radiometric, and electromagnetic methods will extend the depth and resolution of observations.
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Appendix A

Table A1. Properties of test trenches, information for the UAS surveys, and further details of the
HSI mapping, as we only surveyed the exposed trench rocks by HSIs. Altitude in m above sea level.
The last column refers to the input layers used in the OTVCA for supervised image classification.
GSD = ground sampling distance.

Outcrop/
Method Coordinates Dimension

x-y
Survey

Condition

Used Bands/
Integration

Time

Flights/
Coverage GSD Altitude OTVCA

Layers

Method (Hyperspectral only)

Trench 1 63.147N,
27.738E 130 × 36 m sunny,

windless 50/10 ms 1/5500 m2 2.7 cm 40 m HSI

Trench 2 63.145N,
27.738E 200 × 40 m sunny,

windless 50/10 ms 1/3050 m2 2.3 cm 30 m HSI

Trench 3 63.141N,
27.738E 220 × 400 m low clouds,

breeze 50/30 ms 3/38,200 m2 3.4 cm 50 m HSI, MSI,
RGB

Multi-spectral 63.143N,
27.738E 450 × 1430 m sunny,

windless 4/automatic 1/0.649 km2 10.5 cm 100 m –

RGB 63.143N,
27.738E 540 × 1290 m low clouds,

breeze 3/automatic 2/0.623 km2 2.7 (1.5) cm 100 m/70 m –

Magnetic 63.143N,
27.738E 620 × 1100 m sunny,

windless – 1/0.695 km2 30 m * 40 m –

* 15 m after interpolation.

Technical details for the used multi- and hyperspectral cameras are provided in Table A2.

Table A2. Technical specifications of used cameras.

Sensor Senop Rikola Parrot Sequoia senseFly S.O.D.A.

Dynamic range 12 bits 10 bits –
Horizontal field of view 36.5◦ 70.6◦ 90◦

Vertical field of view 23.5◦ 52.6◦ 60◦

Focal length 9 mm 4 mm 2.8–11
Mass 720 g 135 g (with sunshine sensor) 111 g

Frame rate 30 Hz 1 Hz 0.3 Hz
Spectral resolution 8 nm 40 nm (10 nm) –

Training and validation samples used for the supervised image classification used a
cross-referencing support vector machine algorithm. The final classification maps are used to
approximate the geologic contacts which were indifferentiable in RGB orthophotos. Additionally,
the carbonatite classification is possible, mainly for trenches 1 and 2, represented by the higher amount
of training and validation pixels. The labels for the test and training points were determined with
the handheld spectrometer. Each spectral signal was measured with a Spectral Evolution PSR-3500.
A spectral resolution of 3.5 nm (1.5 nm sampling interval) in the visible and near-infrared (VNIR)
range and 7 nm (2.5 nm sampling interval) in the SWIR range is provided, using a contact probe.
Each spectral record consists of 10 individual measurements taken consecutively and averaged.
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To convert radiance to reflectance, we use a PTFE panel (Zenith Polymer with >99% reflectance VNIR;
>95% reflectance SWIR).
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Figure A1. Training and validation for support vector machine classification in column-wise order.
(a) Training samples trench 1. (b) Training samples trench 2. (c) Training samples trench 3. (d) Validation
samples trench 1. (e) Validation samples trench 2. (f) Validation samples trench 3. CRB = Carbonatite;
GL = Glimmerite; CGL = Carbonatite–glimmerite; FSP-PEG = Feldspar–pegmatite; NaN = Not a
number; DL = Dolerite; FEN-SYN = Fenite–syenite.

Table A3. Confusion matrix trench 1. Indef./NaN = black pixel.

Predicted
Truth Carbonatite Glimmerite Feldspar–Pegmatite Water Indef. Soil

Carbonatite 123 0 17 0 0 7
Glimmerite 0 120 0 0 0 0

Feldspar–Pegmatite 4 0 172 0 0 0
Water 0 0 0 63 0 0

Indef./Nan 0 0 0 0 42 0
Soil 0 0 2 0 0 87
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Table A4. Confusion matrix trench 2. We observe that the differentiation between the water and soil
pixels is ambiguous, however, both classes were rejected from the geological interpretation.

Predicted
Truth Dolerite Carbonatite Glimmerite Feldspar–Pegmatite Soil Indef./Nan Water

Dolerite 83 0 0 0 0 0 0
Carbonatite 0 147 0 6 0 0 0
Glimmerite 0 4 80 0 0 0 0

Feldspar–Pegmatite 0 8 0 124 0 0 0
Soil 0 0 1 0 50 0 0

Indef./Nan 0 0 0 0 0 32 0
Water 0 0 0 0 48 0 90

Table A5. Confusion matrix trench 2.

Predicted

Truth
Dolerite Glimmerite–

Carbonatite
Feldspar–
Pegmatite

Glimmerite Fenite–
Syenite

Water Soil Indef./Nan

Dolerite 649 0 0 15 0 0 0 0
Glimmerite–Carbonatite 0 34 11 0 0 0 0 0
Feldspar–Pegmatite 31 0 1141 0 80 0 0 0

Glimmerite 8 0 13 650 0 0 2 0
Fenite–Syenite 17 6 39 0 1296 0 0 0

Water 0 0 0 0 0 532 0 0
Soil 2 0 0 0 2 0 353 0

Indef./Nan 0 0 0 0 0 0 0 4

Appendix B

Profile plots across the DSM and the underlying modeled carbonatite–glimmerite bodies are
shown. Note the increasing length scale. Corresponding magnetic profiles are shown in Figure 8 in
the manuscript. Here, the calculated magnetic response per profile is plotted on the UAS-measured
TMI signal. Due to the ambiguous nature of geophysical forward models, all available constraints
were employed to create the model bodies. Starting parameters for each profile are given by the
user. We iterated 20 sessions with various starting parameters for magnetic susceptibility, as well
as position and depth of initial body geometry. We assumed tabular body shapes. Strike direction,
dip, and length of each body were estimated based on UAS-RGB, hyperspectral and structural data.
For example, the depth of the body for profile 4 (S4) seems to be overestimated, and constrained
possible susceptibility. This corresponds with the magnetic low of profile 4, directly above a shear
zone. Even with an apparent good model fit, an interpretation is complicated. As stated above, shear
stress could have decreased the amount of magnetic minerals. For profile S1, a gap between two
carbonatite bodies exists, caused by the absence of magnetic rock material, caused by an observed
feldspar–pegmatite intrusion. Data of a comprehensive exploration drill campaign would solidify
further interpretations.
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module) conducted for thin sections of representative samples; Cal = calcite; Phl = phlogopite; Apt = 

Figure A3. Optical microscopy (with the Zeiss Axio Imager M2m with Axiocam MRc 5 imaging
module) conducted for thin sections of representative samples; Cal = calcite; Phl = phlogopite;
Apt = apatite; Mag = magnetite; Py = pyrite. (a) Carbonatite–glimmerite, reflected light.
(b) Carbonatite–glimmerite, transmitted light, crossed nicols. (c) Magnetite (subhedral–euhedral),
reflected light. (d) Carbonatite–glimmerite, reflected light. (e) Carbonatite–glimmerite, transmitted
light, parallel nicols. (f) Feldspar–pegmatite, transmitted light, crossed nicols.

Appendix D

Magnetic susceptibility, detecting magnetite signature, among others, is measured with a
Bartington MS2 magnetic susceptibility system (Bartington Instruments, Witney, Oxon, United
Kingdom). A mass fraction of material per sample was crushed to a fine powder (<0.1 mm grain size),
weighed to 10.00 g and its susceptibility was measured with the sample tray holder of the MS2 system.
The values are augmented with additional susceptibility values taken from the literature for those
lithologies without available rock specimens.

XRD is conducted with the PANalytical Empyrean diffractometer with cobalt as the X-ray source
and equipped with a PIXcel 3D Medipix detector. The main targets are mineral content, including
detection and quantification of magnetic minerals. X-ray diffraction patterns for two selected samples
are shown in Figures A4 and A5.
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Table A6. Mineral abundance from a carbonatite–glimmerite zone (GU02) and a dolerite dyke (GU08a)
sample is listed below, with the mineral content in weight % (wt.%).

Mineral (wt.%) Carbonatite (and Glimmerite) Dolerite

Coordinates: UTM zone 35N 537156E, 7002020N 537124E, 7001475E
Calcite 59.6 16.6

Magnetite 1.8 2.4
Pyrite – 2.0

Actinolite 3.7 –
Ankerite 4.1 –

Albite – 37.4
Annite 9.8 –
Apatite 21.0 –
Biotite – 29.7

K-Feldspar – 4.8
Quartz – 7.2
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