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Abstract: Snow surface spectral reflectance is very important in the Earth’s climate system.
Traditional land surface models with parameterized schemes can simulate broadband snow surface
albedo but cannot accurately simulate snow surface spectral reflectance with continuous and fine
spectral wavebands, which constitute the major observations of current satellite sensors; consequently,
there is an obvious gap between land surface model simulations and remote sensing observations.
Here, we suggest a new integrated scheme that couples a radiative transfer model with a land surface
model to simulate high spectral resolution snow surface reflectance information specifically targeting
multisource satellite remote sensing observations. Our results indicate that the new integrated model
can accurately simulate snow surface reflectance information over a large spatial scale and continuous
time series. The integrated model extends the range of snow spectral reflectance simulation to the
whole shortwave band and can predict snow spectral reflectance changes in the solar spectrum
region based on meteorological element data. The kappa coefficients (K) of both the narrowband
snow albedo targeting Moderate Resolution Imaging Spectroradiometer (MODIS) data simulated
by the new integrated model and the retrieved snow albedo based on MODIS reflectance data are
0.5, and both exhibit good spatial consistency. Our proposed narrowband snow albedo simulation
scheme targeting satellite remote sensing observations is consistent with remote sensing satellite
observations in time series and can predict narrowband snow albedo even during periods of missing
remote sensing observations. This new integrated model is a significant improvement over traditional
land surface models for the direct spectral observations of satellite remote sensing. The proposed
model could contribute to the effective combination of snow surface reflectance information from
multisource remote sensing observations with land surface models.
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1. Introduction

Snow surface albedo can significantly affect climate and hydrological cycles at different scales [1].
Climate change and snow albedo participate in a positive feedback cycle: when global warming causes a
decrease in the areas of snow cover and sea ice, the surface albedo decreases, the solar radiation absorbed
by the Earth-atmosphere system increases, and the temperature rises, thereby increasing the global
warming effect and causing further melting of snow cover and sea ice. Previous studies have shown
that this positive feedback between snow albedo and climate change has led to significant declines
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in the areas of snow cover and sea ice in the Northern Hemisphere since 1979 [2–5]. Furthermore,
snow albedo has profound impacts on snowmelt and land surface radiation balance processes [6–8].
Hence, the retrieval of snow albedo based on satellite remote sensing data or the simulation of
snow albedo utilizing land surface integrated models will become particularly important in future
research [9,10].

At present, the snow surface reflectance information observed by satellite remote sensing
is distributed mainly in discrete spectral bands, such as Moderate Resolution Spectroradiometer
(MODIS) [11], Thematic Mapper (TM)/Enhanced TM Plus (ETM+) [12] and Sentinel data [13].
Although the hyperspectral data acquired by Hyperion [14] have a high spectral resolution, the temporal
resolution is very low. Current remote sensing platforms can obtain snow surface reflectance in fixed
bands. For example, the traditional optical remote sensing satellites represented by TM/ETM+ (surface
reflectance in Band 1 (ultra-blue), Band 2 (blue), Band 3 (green), Band 4 (red), Band 5 (near-infrared),
Band 6 (shortwave infrared 1), and Band 7 (shortwave infrared 2)) and MODIS (surface reflectance
in Band 1 through Band 7) can obtain snow surface reflectance information in only 7 bands. To date,
many research methods, including empirical models and sophisticated physically based models,
have been developed to retrieve snow surface reflectance information based on satellite remote
sensing data [15–19]; for example, bidirectional reflectance distribution function (BRDF) angular
modeling [20] and the Algorithm for Modeling Bidirectional Reflectance Anisotropies of the Land
Surface (AMBRALS) have been applied to generate MODIS BRDF/albedo products by Schaaf et
al. [21], the daily surface broadband albedo product (MCD43A) [22] and the direct-estimation
top-of-atmosphere (TOA) algorithm [23], and to estimate the surface albedo from geostationary satellite
data [24]. Nevertheless, due to the limitations of satellite sensor spectral bands, remote sensing
observations can obtain snow albedo only in a fixed band and thus cannot acquire full-band snow
spectral albedo information. Moreover, there are large differences among the retrieved snow reflectance
information from different sensors [12].

Almost all land surface process models can simulate snow albedo only within a simplified band and
thus cannot directly simulate continuous snow surface spectral reflectance. For example, the Common
Land Model (CoLM) [25], Community Land Model (CLM) [26], Noah-Multiparameterization (MP)
model [27], Biosphere Atmosphere Transfer Scheme (BATS) model [28] and Geomorphology-Based
Ecohydrological Model (GBEHM) [29] can simulate only visible (VIS) and near-infrared (NIR) snow
albedo but cannot directly obtain continuous snow surface reflectance data (Appendix C, Table A1).
In contrast, in a forward simulation model, the input parameters are easy to adjust and optimize,
the physical process is considered more carefully than in land surface process models, and it is easy to
control the simulation direction when simulating the snow radiative transfer process. Because the input
parameters can be controlled so easily, snow radiative transfer forward models exhibit clear directivity
and can freely simulate continuous snow albedo time series [30–33]. Examples of these models
include the Wiscombe and Warren (WW) model [33], Discrete Ordinate Radiative Transfer (DISORT)
model [34], Two-Stream Radiative Transfer in Snow (TARTES) model [35], Snow, Ice, and Aerosol
Radiative (SNICAR) model [32], and the snow radiative transfer model proposed by Aoki et al. [36]
(Appendix C). However, obtaining spatiotemporally continuous snow reflectance information from
the results simulated by these models is impossible.

To simulate spatiotemporally continuous snow surface reflectance information, the most common
practice is to integrate snow radiative transfer models into climate models. For example, Niwano et
al. [37] developed a physical snowpack model, namely, the Snow Metamorphism and Albedo Process
(SMAP) model, which was coupled with a regional climate model, the Non-Hydrostatic Atmospheric
Model (NHM)-SMAP [38]. Aoki et al. [39] established the physically based snow albedo model
(PBSAM) for the SMAP model to simulate VIS, NIR, and broadband snow albedo. Dalum et al. [40]
coupled the TARTES model with the Regional Atmospheric Climate Model version 2 (RACMO2).
The most widely used combination is the CLM coupled with the SNICAR model [26], as the CLM
represents several aspects of the land surface, including land biogeophysics, the hydrological cycle,
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biogeochemistry, human dimensions, and ecosystem dynamics [26]. The SNICAR model, based on
the snow radiative transfer mechanism, was first introduced into CLM4.0 [41], greatly improving the
snow albedo simulation accuracy of the CLM. In the above studies, with the aim of simulating the
overall energy budget of snow radiation [25,26,42,43], most of the researchers considered snow albedo
in only the VIS and NIR bands under direct or scattering conditions when simulating the land surface
snow energy balance process [44] but lacked the ability to simulate the fine spectral reflectance of snow.
In addition, these studies did not combine modeling with satellite remote sensing observations because
their purpose was mainly to understand snow physical processes.

Based on the above analysis, there is an obvious gap; that is, the snow reflectance information
observed by satellite remote sensing is the discrete spectral reflectance, while the snow reflectance
information simulated by land surface models is mostly broadband albedo. To calibrate land surface
models and compare them with satellite observations, the albedo must be estimated through a series
of transformations of the satellite-observed discrete spectral reflectance and then compared with
the modeled albedo. In summary, the traditional integrated models used to obtain snow surface
reflectance information do not consider the role played by satellite remote sensing observations,
and utilizing satellite remote sensing observations to obtain snow surface reflectance information
rarely considers meteorological and snow evolution factors. Most of the studies on snow radiative
transfer isolate the remote sensing observation process and the land surface forward simulation
process; unfortunately, there are few effective combinations of remote sensing observations and land
surface forward simulations in the available research on snow radiative transfer. Thus, the key to
calibrating remote sensing data and comparing the data with land surface modeling results is in being
able to directly simulate snow reflectance by targeting satellite remote sensing observations based on
land surface models. Therefore, considering the spectral band observation range of different satellite
sensors, an effective means to couple remote sensing observations with forward simulations would be
to establish a set of high spectral resolution snow albedo simulation schemes targeting satellite remote
sensing observations based on land surface models. This new integrated scheme can not only realize
the simulation of satellite remote sensing observations with ground-driven data but also calibrate land
surface models with remote sensing observations.

The GBEHM is an ecohydrological model specifically developed for the environment of alpine
mountainous regions. This model proposes a new method for simulating the snow energy balance
process [29]. Compared with other snow hydrological models, the GBEHM can better simulate
snow hydrological processes in cold regions and achieves better accuracy when simulating the input
parameters (such as the snow cover area, snow depth and snow water equivalent) of the snow radiative
transfer process [29]. In addition, when simulating the snow radiative transfer process, the SNICAR
model not only considers the detailed dynamic evolution of the snow grain size but also simulates
the multiple scattering of multilayer snow cover, thereby yielding a better snow albedo simulation
accuracy [32]. Therefore, the integration of these two models can effectively avoid the limitations
of either model alone. In summary, the GBEHM can simulate snow energy balance and snow mass
balance processes and can obtain the basic input parameters of the snow radiative transfer process,
but it lacks the ability to simulate the snow grain size evolution and snow radiative transfer processes
in detail; conversely, the SNICAR model can simulate the dynamic evolution of the snow grain size
and the transfer process of solar radiation energy in snow, but it needs to calibrate and drive the snow
mass and energy balance processes and snow process parameters and cannot independently simulate
the spatiotemporal evolution of snow radiative transfer. Hence, the integration of these two models
can effectively solve the separation between snow mass-energy balance processes and snow radiative
transfer processes in snow albedo simulations. For the abovementioned reasons, we developed a
new integrated snow radiative transfer simulation model utilizing both a snow hydrological module
and a snow radiative transfer module together with ground-driven data, remote sensing data and
meteorological element data. In addition, based on the new integrated model, we developed a set of
snow spectral albedo simulation schemes with high spectral resolution in the solar spectrum region
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and realized a narrowband snow albedo simulation targeting satellite remote sensing observations.
Our research results are expected to provide a basis for research on cryosphere change and even global
climate change.

2. Methods

In the methodology section, we introduce the coupling principle of the integrated model. A new
model based on snow hydrological processes and snow radiative transfer processes in cold regions is
integrated to simulate the snow spectral albedo with high spectral resolution targeting satellite remote
sensing observations. In the new integrated model, we couple the snow radiative transfer process
based on the SNICAR model [32] with the snow hydrological process based on the GBEHM [29] and
carefully track the transfer paths of solar radiation energy in multilayer snow cover; as a consequence,
the simulation of the snow mass-energy balance process is more reasonable, and the limitations of
single-model simulations are avoided.

2.1. Integration of Snow Energy Balance and Snow Radiative Transfer Processes

In the new integrated model, we couple the snow energy balance process with the snow radiative
transfer process to track the transfer path of solar radiation energy in the snow layer. Assuming that
the energy input absorbed by the surface snow layer is Esur

↓, for the surface snow layer, the energy
balance equation can be written as:

Esur
↓ = Rsnow,net

↑ + Eh
↓ + Ee

↓ + Ep
↓ + Eg

↓ (1)

where Rsnow,net
↑ is the net radiation flux of snow, Eh

↓ is the sensible heat flux, Ee
↓ is the latent heat

flux, Ep
↓ is the rainfall heating, and Eg

↓ is the ground heat flow. The simulation of the equilibrium
radiation of snow in the integrated model is based on the equilibrium radiation principle. Based on the
equilibrium radiation equation, we can express the equilibrium radiation of snow as follows:

Rsnow,net
↑ =

(
Rsnow,direct + Rsnow,diffuse

)(
1−Asnow,albedo

)
− Esnow,effective (2)

Thus, the coupling between the snow energy balance process and the snow radiative transfer
process in the integrated model can be expressed as:

Esur
↓ =

(
Rsnow,direct + Rsnow,diffuse

)(
1−Asnow,albedo

)
− Esnow,effective + Eh + Ee + Ep + Eg (3)

where Rsnow,direct is the direct solar radiation received from the snow surface, Rsnow,diffuse is the diffuse
solar radiation received from the snow surface, Asnow,albedo is the snow albedo, and Esnow,effective is the
effective radiation of snow. In the original GBEHM [29], the calculations of Rsnow,direct, Rsnow,diffuse and
Asnow,albedo on the right side of the equation all adopt the parameterized scheme of the BATS model
without carefully considering the complex radiative transfer process inside the snow layer. In the new
integrated model, on the basis of retaining the GBEHM to simulate the snow energy balance process,
we introduce the SNICAR model with a more detailed description of the snow radiative transfer
process to calculate Rsnow,direct, Rsnow,diffuse and Asnow,albedo. The SNICAR model was initially established
by Flanner [32] based on the WW model [45] and utilizes the two-stream radiative transfer solution of
Toon [46].

2.2. Integration of the Snow Mass Balance and Snow Grain Size Evolution Processes

The snow grain size is the most important parameter when simulating snow albedo, and the snow
grain size evolution is caused mainly by the compaction, densification, melting and sublimation of
snow cover. In the new integrated model, the snow mass balance equation and the snow grain size
evolution equation are combined through a specific functional relationship. The snow grain size and
its growth rate are nontunable parameters, while the variations in the snow grain size and snow mass
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are partial derivatives with respect to time. The specific integration process is described below. In the
GBEHM, the snow mass balance equation is:

∂ρlθl

∂t
+
∂ρiθi

∂t
+
∂Ul
∂z

= 0 (4)

where θi is the fraction volume of ice, θl is the fraction volume of liquid, ρi is the ice density, ρl is the
liquid density, Ul is the liquid water flux, and z is the distance of a node from the ground surface.

In the new integrated model, we assume that the snow grain size evolution consists of four main
processes of snow grain size change: those caused by dry snow, by the liquid water content, by new
snowfall and by the recrystallization of liquid water. Assuming that the amount of snow grain size
change due to snow mass change is ∂d

∂t , the snow grain size evolution process can be expressed as:

∂d
∂t

= ∆ddry,snow + ∆dliquid,snow + ∆dnew f all,snow + ∆d f reeze,snow (5)

where d is the snow grain size, t denotes time, ∆ddry,snow is the snow grain size change caused by dry
snow, ∆dliquid,snow is the snow grain size change caused by the liquid water content, ∆dnew f all,snow is
the snow grain size change caused by new snowfall, and ∆d f reeze,snow is the snow grain size change
caused by the recrystallization of liquid water. The dry snow evolution, liquid water change, new
snowfall change and liquid water recrystallization are all simulated by the GBEHM in the snow grain
size evolution process. The snow variables (soil and snow temperature, number of snow layers, liquid
water content, ice content, snow fraction, snow depth, and snow density) that drive the evolution of
the snow grain size are calculated by the snow hydrological module of the GBEHM. The change in
snow grain size with temperature, precipitation and other microscopic parameters actually manifests
as changes in the snow particle shape and volume, and a change in snow particle volume will lead to a
change in snow mass. Therefore, snow grain growth is often closely related to the snow mass balance
process. If the functional relationship between the snow mass change and snow grain size evolution is
expressed by f (x), the integrated equation for the snow mass balance process and snow grain size
evolution process can be expressed as follows:

∂ρlθl

∂t
+
∂ρiθi

∂t
+
∂Ul
∂z

= f (x)
∂d
∂t

= f (x)
(
∆ddry,snow + ∆dliquid,snow + ∆dnew f all,snow + ∆d f reeze,snow

)
(6)

2.3. Narrowband Snow Albedo Simulation Method Targeting MODIS Data

In this study, the spectral distribution characteristics of the incident solar flux (Figure 1) suitable
for typical mid-latitude winter atmospheric conditions are introduced based on the calculation of
hyperspectral radiative transfer by Flanner et al. [32], and the snow spectral albedo, narrowband
snow albedo and shortwave broadband snow albedo are simulated based on the weight coefficients of
each band. To simulate the snow spectral albedo at each wavelength in the entire shortwave band in
more detail, we divide the solar spectrum region (0.3–5.0 µm) into 470 spectral bands at a wavelength
interval of 0.01 µm and simulate the snow spectral albedo based on the incident irradiance in each
spectrum band. The weight coefficients of each band suitable for the calculation of snow spectral
albedo in the integrated model are shown in Figure 1.
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Figure 1. Incident solar flux surface spectral distribution.

According to the spectral ranges of the seven bands of MOD09GA reflectance data, a forward
calculation method for narrowband snow albedo is proposed in this study for the MOD09GA reflectance
data band. The core of the method is to calculate the narrowband snow albedo in a fixed band by
utilizing both the wavelength-by-wavelength snow spectral albedo simulated by the integrated model
and the incident solar flux spectral distribution function. The principle of the simulation method is
as follows:

For any wavelength segment between λ1 and λ2, the equation for calculating the narrowband
snow albedo observed by satellite remote sensing can be expressed as follows:

Asnow,albedo =

∫ λ2

λ1
riI↓dλ∫ λ2

λ1
I↓dλ

(7)

where Asnow,albedo is the narrowband snow albedo, ri is the snow spectral albedo for band i, and I↓ is the
incident solar radiation flux. By introducing the incident solar flux spectral distribution coefficients,
when simulating the narrowband snow albedo targeting MODIS satellite remote sensing observations,
we can simplify Equation (7) to:

RN =

n∑
i=m

firi

n∑
i=m

fi
(N = 1, 2 . . . 7m, n ∈ [1, 470], m, n ∈ N∗) (8)

where RN is the narrowband snow albedo for band N simulated by the integrated model, fi represents
the weights of the first i band applied to the spectral bands, which are specific to direct and diffuse cases,
and m and n are the indexes corresponding to the starting and ending wavelengths of the narrowband
snow albedo, respectively.

2.4. Parameter Settings and Transfer Process of the Integrated Model

In the model integration process, the snow cover is divided into a maximum of 5 snow layers
according to the depth. For different snow layers, the multiple scattering of multilayer snow cover is
considered. In the new integrated model, the VIS broadband snow albedo is defined in the wavelength
range of 0.3–0.7 µm, the NIR broadband snow albedo is defined in the wavelength range of 0.7–3.0 µm,
and the shortwave broadband snow albedo is defined in the wavelength range of 0.3–5.0 µm. The time
step of the integrated model calculation is 1 h. The coupling framework of the integrated model is
illustrated in Figure 2.
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The parameter transfer process in the integrated model is as follows:

1. The beginning time loop initializes the snow status parameters, the atmospheric forcing data,
the input parameters of the Mie scattering model, and the input parameters of the GBEHM.
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2. The snow state and its spatiotemporal dynamic evolution process are simulated based on the
snow hydrological module of the integrated model. The Mie scattering model is utilized to
simulate the microscopic optical characteristics of snow.

3. Based on the snow mass balance and snow grain size evolution processes, the changes in snow
grain size and other snow parameters are simulated dynamically.

4. The snow grain size data simulated by the integrated model are combined with the snow
energy balance and snow radiative transfer processes to simulate the transfer process of solar
radiation energy in snow and track the energy changes caused by radiative scattering, absorption
and reflection.

5. Based on the simulation of the snow radiative transfer process by the integrated model, the snow
spectral albedo in the solar spectrum region is estimated with a wavelength interval of 0.1 µm
according to the incident solar flux spectral distribution.

6. Aiming at the spectral waveband range of remote sensing satellite sensors, the incident solar
flux spectral distribution and wavelength-by-wavelength snow spectral albedo are combined in
the solar spectrum region to simulate the narrowband snow albedo targeting satellite remote
sensing observations.

7. The spatial and temporal variabilities in snow spectral albedo and narrowband snow albedo
targeting MODIS observations are predicted based on the integrated model. The present loop is
ended, and the next loop is entered.

2.5. Conversion of MOD09GA Snow Reflectance into Broadband Snow Albedo

To verify the new integrated model and satellite remote sensing observations by using snow
albedo data from ground observations, we use the asymptotic radiative transfer (ART) model to
convert the MOD09GA snow reflectance into blue-sky snow albedo. The ART model, proposed in
2004 by Kokhanovsky [19], does not consider the effects of pollutants on snow albedo, but subsequent
researchers improved the ART model and proposed a new equation considering pollutant impacts [13].
The updated equation is as follows:

R = R0 exp

−4 f

√√(
Bαc + κλ̃−m

)
d

3(1− g)c

 (9)

where R is the snow reflectance, R0 is the snow reflectance at no absorption, f is the angular function,
g is the average cosine of the scattering angle, d is the snow grain size, λ is the wavelength, c is
the volumetric concentration of grains, α is the bulk ice absorption coefficient, B is the absorption
enhancement factor, κ is the absorption coefficient of polluted snow, and m is the absorption angstrom
parameter. In this study, based on previous studies, we set the concentration of black carbon (BC) at
41.77 ± 6.36 ng g−1 [47].

2.6. Model Accuracy Validation

In this paper, to evaluate the simulation accuracy of the integrated model for the snow radiative
transfer process, we compare the new model with the parameterized snow albedo scheme commonly
used in the CoLM and BATS models. This parameterized scheme was originally proposed by Dickinson
et al. [28] and considers two main variables, namely, the solar elevation angle and snow age, when
simulating snow albedo.

The mean bias error (MBE), mean absolute error (MAE), root mean square error (RMSE),
Pearson’s correlation coefficient (R), coefficient of determination (R2), and Nash–Sutcliffe efficiency
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coefficient (NSE) are used to assess the predictive power of the integrated model in simulating snow
albedo [48]. These terms are defined as follows:

MBE =
1
n

n∑
i=1

(Xi −Yi) (10)

MAE =
1
n

n∑
i=1

|Xi −Yi| (11)

RMSE =

√∑n
i=1(Xi −Yi)

2

n
(12)

R =
1

n− 1

n∑
i=1

(
Xi −X
σX

)(
Yi −Y
σY

)
(13)

NSE = 1−

∑n
i=1(Yi −Xi)

2∑n
i=1

(
Xi −X

)2 (14)

where Xi is the measured data, Yi is the modeled data, and X and Y are the average values of the
measured data and modeled data, respectively.σX and σY are the standard deviations of the measured
data and modeled data, respectively.

The kappa coefficient (K) is often used to check consistency and can also be used to measure
the classification accuracy. To verify the spatial consistency between the narrowband snow albedo
simulated by the integrated model targeting MODIS observations and the retrieved snow albedo (the
MOD09GA data), the kappa coefficient is selected to evaluate their spatial consistency:

K =

N
m∑

i=1
xii −

m∑
i=1

(xirxic)

N2 −
m∑

i=1
(xirxic)

(15)

where m is the total number of columns in the error matrix of remote sensing observations and the
integrated model, xii is the classification number of the confusion matrix composed of remote sensing
observations and the integrated model simulation, and xir and xic are the total classification numbers.
N is the total classification number used for the kappa coefficient accuracy evaluation.

3. Research Region and Data

3.1. Research Region

The Upstream Heihe River (UHR) basin is located on the Tibetan Plateau (Figure 3) [10] at
elevations in the range of 1637–5108 m [49]. The spatial extent of the study area is bounded by
98.57◦–101.17◦ longitude and 37.72◦–39.12◦ latitude. The distribution characteristics of snow cover in
the UHR basin are characterized by instantaneous snow below 2700 m, patchy snow at 2700–3400 m
and permanent snow above 3400 m [50]. Snowfall is more frequent in spring; spring and winter exhibit
higher average snow albedo, whereas summer and autumn are characterized by lower average snow
albedo [49]. The number of annual snow-covered days in most areas of the research region exceeds
60 days [51]. Thus, this area is an ideal place to study snow albedo. In addition, we have established
two automatic weather stations in the study area, which can conduct extended snow observations and
provide a large amount of observational data for snow radiative transfer process simulations over long
time series and at a large spatial scale for verifying the authenticity of the proposed model.
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Figure 3. Spatial locations of the observation stations in the Upstream Heihe River UHR basin (the green
circles represent the snow observation stations at Yakou (4146 m, 100◦14′, 38◦00′) and Jingyangling
(3790 m, 101◦06′, 37◦50′)). The upper part of the figure is a Digital Elevation Model (DEM) of the
Tibetan Plateau. The base map of the study area is composed of land surface reflectance data from
the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) (synthesized from four
images in November 2014). The two photographs on the right show flux towers with albedo meters
installed at the snow observation stations.

The observation data from Yakou and Jingyangling stations in areas characterized by long snow
days and large tracts of snow cover are selected in this research as the verification data for the integrated
model [52,53]. The elevations of Yakou and Jingyangling stations exceed 3700 m, annual snowfall is
abundant, and the underlying surface is meadow or grassland, although the surface type has little
effect on the snow radiative transfer simulation; thus, these stations can provide stable observation
data in the long term (Figure 3).

3.2. Data

Multiple forms of data are used to drive and validate the integrated model, including remote
sensing data, ground observation data, Weather Research and Forecasting (WRF) meteorological data,
snow optical characteristics data and other data. The specific data types, attributes and formats are
shown in Table 1.
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Table 1. Driving data and validation data required for the integrated model.

Data Type Name Product Data Source Temporal
Resolution

Spatial
Resolution

Remote Sensing
Data

Terra/Aqua MOD09GA NASA 1D 500 m
Terra/Aqua MOD10A1 NSIDC 1D 500 m

Data Type Name Measurement
Method

Measurement
Instrument

Temporal
Resolution

Flux Tower
Height

Ground
Observation Data

Upwelling shortwave radiation
flux (USRF)

Flux tower

China
Meteorological
Administration
(CMA) series
albedo meter

30 min 10 m

Downward shortwave radiation
flux (DSRF) Flux tower CMA series

albedo meter 30 min 10 m

Data Type Name Data
Sources

Acquisition
Method

Temporal
Resolution

Spatial
Resolution

Integrated Model
Driving Data

Meteorological
Data

Longwave/
shortwave
radiation

Atmospheric
forcing data
from 2000 to
2015 in the

Heihe River
basin

WRF

1 h 1 km

Wind speed 1 h 1 km

Temperature 1 h 1 km

Precipitation 1 h 1 km

Relative
humidity 1 h 1 km

Atmospheric
pressure 1 h 1 km

Other Data

Soil data

China Soil
Map Based

Harmonized
World Soil
Database

(v1.1)

Cold and Arid
Regions

Sciences Data
Center

(CARSDC)

– 1 km

DEM SRTM4 CARSDC – 90 m

Land use data
Land Cover
Products of

China
CARSDC – 1 km

Name Data
Sources

Acquisition
Method

Snow Grain
Size Range

Spectral
Band

Snow Optical
Characteristics

Data

Snow and
aerosol Mie
parameters

Community
Earth System

Model
(CESM)

input data

CESM 30–1500 µm 470

Snow grain size
evolution

lookup table
data

CESM input
data CESM – –

Light-absorbing
snow impurities

lookup table
data

CESM input
data CESM – –

3.2.1. Remote Sensing Data

In previous studies, we found that the accuracy of MOD10A1 snow albedo data and MCD43
snow albedo data is poor over the Tibetan Plateau [49]. Therefore, it is difficult to fully verify the
new integrated model simulation results when comparing MOD10A1 snow albedo data and MCD43
snow albedo data with the simulation results of the new integrated model. In contrast, we previously
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suggested that the snow albedo retrieved from MOD09GA reflectance data is highly accurate [49].
Hence, the MOD09GA reflectance product contains ideal snow albedo data because of its high temporal
resolution. In addition, the research region is located in the northeastern part of the Tibetan Plateau,
where the underlying surface is basically meadow and exhibits good land surface uniformity. Therefore,
in the research region, the MOD09GA snow reflectance is relatively uniform on the pixel scale and is less
affected by the presence of mixed pixels. For these reasons, we initially prefer MOD09GA reflectance
data for simulating the snow radiative transfer process targeting satellite remote sensing observations.

When selecting MOD09GA snow reflectance data, we refer to quality assurance (QA) information
and extract only high-quality MOD09GA snow reflectance data without cloud cover. However,
the MODIS QA data have a poor ability to recognize snow cover. Therefore, we combine MOD10A1
fractional snow cover (FSC) data with MOD10A1 normalized difference snow index (NDSI) data to
obtain the most ideal pure snow pixels as possible. The MOD10A1 dataset is from the National Snow
and Ice Data Center (NSIDC), and the MOD09GA reflectance dataset is from the National Aeronautics
and Space Administration (NASA). The MOD09GA reflectance products provide 500 m land surface
spectral reflectance values and 1 km angular grid values. The time-resolved MOD10A1 dataset and
MOD09GA reflectance dataset are daily, and the spatial resolution is 500 m.

3.2.2. Ground Observation Data

The ground observation data mainly include upwelling shortwave radiation flux (USRF) and
downward shortwave radiation flux (DSRF). In this study, the ground observation data are from Yakou
and Jingyangling snow stations. The site verification data mainly include snow radiation data and
snow characteristics, and the observation data employed herein are from days with snow cover at
the station. The observation interval of the site data is 30 min. Among these observations, the snow
reflectance data can be calculated from the albedo meter [49].

3.2.3. Meteorological Data

The meteorological data are produced by the WRF model [54]. The dataset is provided by the
CARSDC. This dataset includes hourly temperature, wind speed, precipitation, relative humidity,
atmospheric pressure, and longwave and shortwave radiation data [55]. To match the spatial resolution
of the new integrated model, we resample these data to 1 km.

We verify the DSRF data in the WRF-simulated atmospheric forcing data using DSRF observations
from Yakou station (Figure 4). The MBE, RMSE and R are 23 W/m2, 98 W/m2 and 0.90, respectively,
between the simulated and observed DSRF. Furthermore, to prove the effectiveness of the radiation
data driving the integrated model, we quote the verification results from the authors of the original
data at three automatic weather stations in the UHR basin. The Pan et al. [56] verification results
show that at Guantan station, the MBE, RMSE and R are 31.5 W/m2, 89.7 W/m2 and 0.92, respectively,
between the simulated and observed DSRF; at Huazhaizi station, the MBE, RMSE and R are 35.5 W/m2,
160.8 W/m2 and 0.88, respectively; and at Maliantan station, the MBE, RMSE and R are 47.8 W/m2,
174.0 W/m2 and 0.86, respectively. The above verification results all confirm that the WRF-simulated
DSRF data can reflect the DSRF changes in the UHR basin and can be used to drive the data of the
climate models.
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Figure 4. Comparison between the observed and Weather Research and Forecasting (WRF)-modeled
downward shortwave radiation flux (DSRF) (Yakou station).

3.2.4. Other Data

The other data mainly include soil data, Digital Elevation Model (DEM) data and land use
data. The other data are from the CARSDC. These data are a Chinese subset of global land cover
data supported by the International Geosphere-Biosphere Program Data and Information System
(IGBP-DIS) based on Advanced Very High Resolution Radiometer (AVHRR) remote sensing data;
the data are referred to as IGBP-DIS [57]. The IGBP-DIS data use the United States Geological Survey
(USGS) classification method, which adopts the IGBP classification system that divides the Earth into
17 categories with continental units. The soil dataset is provided by the CARSDC [58]. The soil data are
in a grid format, and the projection is WGS84. The DEM data are from the Shuttle Radar Topography
Mission (SRTM) with a 90 m resolution. The land use data, soil data and DEM data are all resampled
to 1 km.

3.2.5. Snow Optical Characteristics Data

The snow optical characteristics data mainly include snow and aerosol Mie parameter data,
snow grain size evolution lookup table data, and light-absorbing snow impurity lookup table
data. The snow optical characteristics data are from the CESM. The Mie parameter data contain the
single-scattering albedo at each wavelength, asymmetry factor, scattering efficiency, extinction efficiency,
absorption efficiency, scattering phase function and other Mie parameter data. The snow grain size
evolution lookup table data mainly include the lookup table data involving the snow grain size
parameterized scheme. The light-absorbing snow impurity lookup table data mainly include BC,
dust and other pollutant lookup table data.

4. Results

4.1. Accuracy Verification of the Integrated Model

Based on the simulation of the integrated model at a single point, we use the measured broadband
snow albedo from Yakou and Jingyangling stations in this study to verify and evaluate the simulation
results of the parameterized scheme and integrated model. Based on the verification results of the
measured data, we compare the simulation accuracy of the parameterized scheme with that of the
integrated model scheme.

At Yakou station, the MAE, RMSE, R, R2 and NSE are 0.10, 0.11, 0.27, 0.07 and −1.42, respectively,
between the parameterized blue-sky snow albedo and measured snow albedo, while those between
the blue-sky snow albedo simulated by the new integrated model and the measured snow albedo are
0.03, 0.04, 0.85, 0.73 and 0.72, respectively (Table 2). At Jingyangling station, the MAE, RMSE, R, R2 and
NSE are 0.14, 0.16, 0.27, 0.07 and −1.05, respectively, between the parameterized blue-sky snow albedo
and measured snow albedo and 0.04, 0.06, 0.80, 0.64 and 0.40, respectively, between the blue-sky snow
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albedo simulated by the new integrated model and the measured snow albedo (Table 2). At Yakou
station, the estimated deviation of the parameterized blue-sky snow albedo is 10%, while that of the
blue-sky snow albedo simulated by the new integrated model is only 3%. At Jingyangling station,
the estimated deviation of the parameterized blue-sky snow albedo is 14%, while that of the blue-sky
snow albedo simulated by the new integrated model is only 4%. In general, the new integrated model
based on physical mechanisms greatly reduces the error in traditional radiation simulations. Moreover,
the blue-sky snow albedo simulation in the new integrated model is more reasonable and closer to the
measured results than the parameterized blue-sky albedo (Figure 5). Consequently, the integrated
model is more reasonable for simulating the dynamic variation trends of blue-sky snow albedo both
spatially and temporally and provides the possibility of simulating fine snow spectral albedo.
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Table 2. Various error verification functions (including mean absolute error MAE, root mean square
error (RMSE), R, R2, and Nash–Sutcliffe efficiency (NSE)).

Snow Station
Parameterized Blue-Sky Snow Albedo Coupled Blue-Sky Snow Albedo

MAE RMSE R R2 NSE MAE RMSE R R2 NSE

Yakou 0.10 0.11 0.27 0.07 −1.42 0.03 0.04 0.85 0.73 0.72
Jingyangling 0.14 0.16 0.27 0.07 −1.05 0.04 0.06 0.80 0.64 0.40
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After validating the measured data from the snow stations, we find that the verification result
of Yakou station is higher than that of Jingyangling station. The main reason for this result is that
the snow observation stations are located on the Tibetan Plateau, and the scale of the plateau and
thus the spatial representativeness of site observations often lead to differences in the verification
results [49,59]. The estimation ability of the integrated model for snow surface reflectance information
is higher than that of the parameterized scheme, which poorly simulates (seriously underestimates)
the real snow albedo. Moreover, the integrated scheme, which combines multisource data and multiple
models, has a greater accuracy than the traditional parameterized scheme in simulating blue-sky
snow albedo; in other words, the integrated scheme effectively resolves the blue-sky snow albedo
underestimation problem and achieves a superior blue-sky snow albedo simulation accuracy. Finally,
the simulation accuracy of large-scale snow cover radiation is often poor, but with the new integrated
method, the simulation accuracy of large-scale snow radiative transfer processes is greatly improved.

4.2. Simulation of Spatiotemporally Distributed Snow Spectral Albedo

The new integrated model based on the snow hydrological and snow radiative transfer processes
in cold regions can simulate snow reflectance with a spectral resolution of 1 nm involving 470 bands
in the solar spectrum region (in this section, as an example, the snow spectral albedo values of 20
single wavelength bands are between 0.6 and 2.5 µm); snow spectral reflectance simulations of this
magnitude will undoubtedly enhance the monitoring of snow radiation characteristics. In addition,
the new integrated model achieves completely continuous time series.

The snow spectral albedo simulated by the integrated model exceeds 0.6 in the VIS band (Figure 6).
After entering the NIR band, the snow spectral albedo decreases sharply, shows a trough at a wavelength
of 1 µm and then continues to decline after a slight increase. The snow spectral albedo decreases to the
lowest level at wavelengths between 1.5 and 1.6 µm. When the wavelength is greater than 1.6 µm,
the snow spectral albedo increases slightly. Above 1.9–2.0 µm, the snow spectral albedo continues
to fluctuate and decrease. Comparing the snow spectral variation curves (Figure A1; details on the
variation characteristics of the snow spectrum albedo are listed in Appendix A) simulated by the
integrated model, the variation trends of the spatially distributed snow spectral albedo based on the
integrated model simulation and the snow spectral reflectance curve predicted by the snow radiative
transfer model are exactly the same in the shortwave band. Likewise, the variation trends of the
snow spectral variation curve simulated by the integrated model and the snow spectral albedo curve
measured indoors by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL)
are also completely consistent [60] (Figure A2; details on the variations in the snow spectral albedo
with wavelength simulated by CRREL are listed in Appendix B), and these trends respond to the
snow spectral albedo changes in the shortwave band. In contrast to many previous studies on snow
radiative transfer simulation, we simulate the spectral albedo for the whole solar spectrum region,
which greatly expands the spectral range in the forward simulation. The real-time characteristics of
land surface-driven data and site observation data are used to simulate the real-time changes in the
snow spectral signature.
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The integrated model is important not only for simulating changes in snow spectral albedo but
also for predicting the snow spectral albedo in solar spectrum regions based on meteorological forcing
data. In the new integrated model, we add a snow spectral albedo simulation to the output parameters
of the traditional snow radiative transfer process simulation and directly simulate the snow spectral
albedo from the ground. As shown in Figure 7, when the meteorological forcing data are known,
the new integrated model can predict the snow spectral albedo at any wavelength in any time period.
The integrated model successfully predicts the spatial and temporal evolution trends of the snow
spectral albedo at various wavelengths in the solar spectrum region. In addition, Figure 7 shows
that the snow spectral albedo change trend in the NIR band is more significant than that in the VIS
band, and these simulation results are supported by the fact that the snow spectral reflectance in
the NIR band with a wavelength of 0.7–1.4 µm has a large downward trend, as shown in Figure A1
(Appendix A). In contrast to the traditional snow spectral curve simulation, the spatiotemporally
distributed snow spectral albedo simulation greatly refines the spatial and temporal distributions and
changes the characteristics of the snow spectrum. Refinement of the snow spectral albedo simulation
process will greatly improve simulations of surface radiation balance and energy exchange processes
and thus significantly affect future simulations and predictions of climate change [61].
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4.3. Narrowband Snow Albedo Simulation Targeting MODIS Sensors

Based on the new integrated model, the narrowband snow albedo is simulated for the 7 reflectance
bands of MOD09GA data, and the results are compared with the narrowband snow albedo retrieved
from MOD09GA snow reflectance data (Figure 8). To maintain the spatiotemporal consistency between
the remote sensing observations and model simulations, we choose the simulation results from the
new integrated model at the same time as the remote sensing observation time. The overall accuracy
and kappa coefficient between the narrowband snow albedo targeting MOD09GA snow reflectance
data simulated by the integrated model and the narrowband snow albedo retrieved by utilizing the
MOD09GA snow reflectance data are 0.81 and 0.5, respectively. Thus, the narrowband snow albedo
simulated by the integrated model is basically consistent with the narrowband snow albedo retrieved
by satellite remote sensing in each band. In the VIS band, the modeled results based on the integrated
model are greater than the retrieved results based on satellite remote sensing, and both are more
consistent in the NIR band than in the VIS band. The simulation results of the integrated model show
that Band 1-Band 4 corresponding to the MOD09GA reflectance data are located in the VIS band with a
high narrowband albedo, while Band 5-Band 7 corresponding to the MOD09GA reflectance data are
located in the NIR band with a low narrowband albedo. Overall, these simulation results agree well
with the snow surface albedo retrieved by the MOD09GA reflectance products.
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Overall, the integrated model successfully simulates the spatial distribution characteristics of the
narrowband snow albedo targeting the MOD09GA reflectance data and the differences in narrowband
snow albedo among different spectral bands. More importantly, the integrated model simulation
process completely avoids the influence of clouds due to the controllability of the driving data and
can effectively simulate continuous changes in snow surface reflectance information both spatially
and temporally.

The integrated model can simulate and predict the spatially distributed narrowband snow albedo
with an arbitrary time series (Figure 9). In the new integrated model, radiation monitoring images at
satellite transit times can be simulated, while radiation monitoring images for periods without remote
sensing data can be predicted, which compensates for the deficiencies of snow albedo observations
from satellite remote sensing in the time series. As shown in Figure 9, we can utilize the new integrated
model to predict the narrowband snow albedo obtained from MOD09GA reflectance data at any time.
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Figure 9. Predicting the narrowband snow albedo targeting MOD09GA reflectance data based on the
integrated model (seven reflectance band ranges are simulated for the MOD09GA reflectance data,
and Julian days 305, 314, 324 and 334 in 2014 are taken as examples: the row direction is the Julian
day, and the column direction is the band order). The integrated model simulation results and remote
sensing observation results are compared at the same time.

By validating the results of the integrated model and remote sensing observations in the same
period (Figure 10, Table 3), we find that the average narrowband snow albedo in 7 bands simulated by
the integrated model is 0.584 and that the average narrowband snow albedo in 7 bands retrieved by
utilizing the MOD09GA reflectance data is 0.564. In addition, the average MAE and RMSE between
the narrowband snow albedo in 7 bands simulated by the integrated model and the narrowband
snow albedo in 7 bands retrieved by utilizing the MOD09GA reflectance data are 0.024 and 0.027,
respectively. The simulation errors in Band 1 and Band 7 are the smallest, and the MAE and RMSE in
these two bands are 0.011 and 0.014, respectively; in contrast, Band 4 has the largest simulation error
with an MAE of 0.053 and an RMSE of 0.054 between the modeled Band 4 and remotely sensed Band 4.
Overall, the average narrowband snow albedo in 7 bands simulated by the integrated model is slightly
larger than that retrieved by utilizing the MOD09GA reflectance data. However, the narrowband snow
albedo simulated by the integrated model has a small deviation in the time series from that retrieved
by using the MOD09GA reflectance data. Therefore, the integrated model is feasible for simulating
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the narrowband snow albedo targeting the MOD09GA reflectance data in the time series. Therefore,
to a certain extent, the integrated model successfully predicts the observation results in 7 bands of
MOD09GA reflectance data in continuous time series.
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Figure 10. Comparison between the average narrowband snow albedo in 7 bands simulated by the
integrated model and the average narrowband snow albedo in 7 bands retrieved by utilizing the
MOD09GA reflectance data in the time series. The markers represent the daily average snow albedo of
the whole study region.

Table 3. Errors of the integrated model and remote sensing observations in different bands (including
the average, MAE and RMSE).

Band Type

Average

MAE RMSEIntegrated
Model

Remote
Sensing

Band 1 0.915 0.905 0.011 0.014
Band 2 0.834 0.813 0.021 0.024
Band 3 0.926 0.901 0.025 0.027
Band 4 0.923 0.870 0.053 0.054
Band 5 0.384 0.369 0.031 0.035
Band 6 0.066 0.054 0.015 0.019
Band 7 0.043 0.033 0.011 0.014

Average 0.584 0.564 0.024 0.027

5. Discussion

In a traditional land surface model, the snow radiative transfer process is not strictly considered,
and even if this process is considered, the detailed transfer process of solar radiation energy in the snow
layer is still not explained in detail. In addition, traditional land surface models do not take into account
the variation in snow mass caused by changes in the snow grain size with meteorological factors.
In view of these characteristics, combined with the basic mass-energy balance principle, we introduce
a new method by which to integrate snow energy balance and snow radiative transfer processes as
well as snow mass balance and snow grain size evolution processes. In addition, we also propose
a simplified method for simulating narrowband snow albedo and snow spectral albedo targeting
mainstream satellite remote sensing observations. The first and most important improvement is that
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the new integrated model extends the simulation range of snow spectral albedo and can simulate
the spatiotemporal evolution characteristics of snow spectral albedo in the whole shortwave band,
effectively expanding the solar radiation energy simulation capacity for basin-scale snow radiation
balance processes. Second, the new integrated model can be calibrated using snow spectral signature
data from satellite remote sensing observations, expanding the scope of traditional hydrological and
meteorological observations. Third, the new integrated model fully utilizes ground data to simulate
satellite remote sensing observations and can simulate and predict narrowband snow albedo targeting
observations from specific satellite sensors according to their band ranges. Fourth, this new method is
a significant improvement over the direct simulation of satellite remote sensing observations based on
land surface models.

5.1. Improved Direct Simulation of Snow Spectral Albedo by the New Method

In the study of land surface processes and climate change, high spectral resolution snow radiation
information usually provides the following advantages. For different underlying surfaces, subtle ground
object features greatly influence the albedo of thin snow. However, due to the fixed bandwidth and
coarse spectral resolution of snow radiation information observed by traditional simulation methods
or mainstream remote sensing satellites, it is difficult to distinguish and characterize the variations in
the albedo of thin snow among different underlying surfaces, eventually resulting in incorrect snow
radiation estimates in research on land surface processes and climate change. In addition, pollutants
have a considerable impact on snow albedo; furthermore, different types of pollutants have remarkably
varying influences on the snow spectral signature, and the effect of the same pollutant on snow
radiation in different spectral ranges also varies notably. In conclusion, it is necessary to obtain snow
radiation information with a high spectral resolution. High spectral resolution snow spectral albedo
information can be used to not only distinguish the radiation conditions of thin snow among different
underlying surfaces but also effectively describe the influences of pollutants on the snow spectral
signature within a fine spectral band interval, thus improving the estimation accuracy of snow radiation
information in research on land surface processes and climate change.

For many studies on land surface processes and climate change, it is often necessary to obtain
snow reflectance and snow albedo data with a high spectral resolution and continuous spectral
band [4,62]. However, current optical remote sensing satellites are unable to satisfy these requirements;
nevertheless, they can perform snow radiation monitoring over the whole shortwave band. Additionally,
satellite remote sensing observations can provide snow reflectance and snow albedo data only in
the corresponding sensor bands and thus cannot obtain spectral information within a continuous
spectral band. Consequently, direct observations from satellite remote sensing are difficult to employ as
traditional meteorological and hydrological information (such as runoff, soil temperature and humidity,
and snow depth) in the testing and calibration of land surface models. As a result, the snow radiation
information observed by remote sensing is vastly wasted.

We solve this problem by coupling multiple models. That is, the new integrated model can directly
predict snow reflectance and snow albedo by targeting satellite remote sensing observations with a
high spectral resolution and a continuous spectral band while covering the whole shortwave band.
Furthermore, the new integrated model can simulate the snow spectral albedo within any wavelength
interval of the whole shortwave band (wavelength range: 300–5000 nm). In contrast, mainstream
remote sensing satellites (here, we take the optical remote sensing satellites MODIS and TM/ETM+ as
examples; in Figure 11, the blue band represents MODIS, while the purple band represents TM/ETM+)
can obtain snow spectral albedo only within a fixed bandwidth. In addition, the SNICAR model
obtains snow albedo only in the VIS and NIR bands (Figure 11).
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Figure 11. Comparison of the ranges of snow spectral albedo that can be obtained by the new integrated
model, the Snow, Ice, and Aerosol Radiative (SNICAR) model, and mainstream remote sensing
satellites (B1 (620–670 nm), B2 (841–876 nm), B3 (459–479 nm), B4 (545–565 nm), B5 (1230–1250 nm),
B6 (1628–1652 nm), and B7 (2105–2155 nm) are MODIS observation bands; b1 (430–450 nm),
b2 (450–510 nm), b3 (530–590 nm), b4 (640–670 nm), b5 (850–880 nm), b6 (1570–1650 nm),
and b7 (2110–2290 nm) are Landsat 8 observation bands). The new integrated model can simulate the
snow spectral albedo with a high spectral resolution, while the SNICAR model and mainstream optical
remote sensing satellites can simulate snow spectral albedo only in limited spectral bands.

Due to the limitations of traditional model simulations, there are considerable uncertainties in the
acquisition, simulation and calibration of snow albedo using traditional models to simulate remote
sensing satellite observations. In general, several transformations need to be applied to remote sensing
snow spectral albedo observations to yield the snow albedo simulated by a traditional model. However,
many intermediate transformations may correspond to a large number of linear transformations,
and the need for many intermediate steps generates the substantial accumulation of errors, introducing
remarkable uncertainty. For example, the traditional simulation method requires three steps to
transform the ground-observed snow reflectance into the remotely sensed snow reflectance. Step one
uses a radiative transfer model to simulate the land surface snow reflectance; step two transforms the
land surface snow reflectance into the land surface snow albedo; and step three transforms the land
surface snow albedo into the remotely sensed snow reflectance. Different from the traditional simulation
method, our new integrated model requires only one step to convert ground observations into remote
sensing observations, thereby reducing the conversion error (Figure 12). In other words, the new
method can directly simulate the snow reflectance of remote sensing observations. The proposed
model simulation process simplifies the intermediate transformation process and reduces the impact
of intermediate transformations on the simulation accuracy. Hence, the new method directly links
the ground-simulated albedo with remote sensing observations and expands the application of snow
radiation information from remote sensing observations in land surface models.
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5.2. Role of the Snow Spectral Albedo Simulation with a High Spectral Resolution

Generally, on the macroscopic scale, the accumulation, melting and refreezing of snow are all
reflected in snow spectral albedo changes [26]. On the microscopic scale, the snow grain shape,
snow effective grain size evolution, types of pollutants in snow, concentrations of pollutants in
snow, roughness of the snow surface, and water content of snow all affect the snow spectral albedo
changes [63–66]. Therefore, the simulation and prediction of snow spectral changes can help to better
understand the macroscopic and microscopic changes in snow cover. Moreover, spatiotemporally
distributed snow spectral albedo simulations can often indirectly reflect changes in snow accumulation,
melting and refreezing and can also indirectly reflect the spatiotemporal evolution characteristics of
snow cover.

In addition, high spectral resolution snow albedo information simulated by land surface models
targeting satellite remote sensing observations will contribute to better describing the radiation
conditions of thin snow on different underlying surfaces. Moreover, high spectral resolution snow
albedo information targeting satellite remote sensing observations can better reflect the snow spectral
signatures in different states, with different properties, of different kinds, and of polluted snow.
Providing detailed descriptions of snow spectral signatures will contribute to accurately estimating snow
radiation information in research on land surface processes and climate change. Finally, high spectral
resolution snow spectral albedo information simulated based on the new integrated model can
compensate for the shortcomings of satellite remote sensing observations in terms of time series and
spectral range.

5.3. Limitations and Uncertainties of the New Integrated Model

In Figure 5, in comparison with the blue-sky snow albedo data (integrated, measured and
parameterized), the measured albedo data show a tendency to decay beginning approximately on
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day 50. In contrast, the prediction results of the integrated model show an increasing trend. An analysis
holds that the main causes of this error can be attributed to a data problem and a model coupling
problem. The former is reflected mainly in the WRF datasets, which have certain errors (Figure 4) [67],
and thus, the data inevitably accumulate errors when driving the integrated model. The latter is
reflected primarily in the differences between the descriptions of the snow cover state by different
models, which inevitably lead to the accumulation of errors when integrating multiple models.
Furthermore, there are some errors in the simulation of the fractional snow cover, snow cover extent
and snow depth in land surface process models [68,69], which lead to deviations in the snow state and
snow distribution simulations and eventually deviations in the snow albedo simulation. In addition,
the scale difference between the snow station measurements and spatial resolution of the integrated
model data and the input parameter uncertainties of various models both result in an overestimation of
the simulation results. Generally, the above simulation errors are allowable in the simulation of snow
radiative transfer processes at large spatial scales and over long time series. Although our integrated
model refines most of the physical snow radiative transfer processes, the model still contains some
parameterization details that are not depicted by physical models, which is one of the reasons for error.

Many studies have shown that snow albedo simulations are affected not only by the snow age,
solar zenith angle, snow grain size, snow cover density, snow depth and snow water equivalent but
also by light-absorbing snow impurities [70–72], which can reduce snow albedo [70,73]. Due to the
limitations of observational data, light-absorbing snow impurities are only roughly considered in
this study, which is another main reason for the inconsistency between the variation trends of the
simulated and observed snow albedo. The topographic variables are an important factor affecting the
snow radiative transfer simulation process in complex environments. Unfortunately, we have not yet
found an effective way to solve this problem in the new integrated model. This is also a defect of the
new integrated model. In future studies, combined with DEM, slope, aspect and other topographic
variables to develop a snow radiative transfer model suitable for complex terrain is expected to solve
this problem.

Although the simulation accuracy of the new integrated model has been comprehensively verified,
due to the lack of effective observation data, the new integrated model remains unproven during the
spring snowmelt period and autumn snow cover onset period. A new universal method should be
tested using data from much more locations. However, in our new integrated model, driving the
whole integrated model requires high-precision atmospheric forcing datasets, remote sensing data and
other ground observation data. Therefore, the new integrated model lacks accuracy assessment in
the typical snow-covered regions such as Antarctica and Arctic. Hence, there is still some uncertainty
regarding the accuracy of the new integrated model. In future studies, we will further expand the
verification area of the new integrated model, and add simulations and verification experiments in the
typical snow-covered regions to prove the universality of the new integrated model.

6. Conclusions

In this study, a new integrated model scheme is introduced to simulate snow surface spectral
reflections and narrowband snow albedo targeting satellite remote sensing observations. In the new
integrated model, a snow radiative transfer module is coupled with a snow hydrological model and
a land surface process model to simulate snow radiative transfer processes at the basin scale and
to carefully track the transfer process of solar radiation energy in snow. Utilizing the new scheme,
the snow spectral albedo simulation in the solar spectrum region is refined, and the land surface
narrowband snow albedo simulation targeting satellite remote sensing observations is realized based
on meteorological forcing data and snow optical data. The broadband snow albedo simulated by the
integrated model agrees well with satellite remote sensing observations.

The variation trends of the spatiotemporally distributed snow spectral albedo simulated by the
new integrated model and the experimentally measured snow spectral albedo exhibit good consistency
in the solar spectrum region, and the simulation results can significantly reflect the temporal and
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spatial variation characteristics of land surface snow spectral albedo. Based on the new integrated
model, we extend the simulation of snow spectral albedo to the whole solar spectrum region and refine
the wavelength interval of the snow spectral albedo simulation to 1 µm. The narrowband snow albedo
targeting MOD09GA reflectance data simulated by the integrated model spatially agrees well with
the narrowband snow albedo retrieved by utilizing the MOD09GA reflectance data and has a smaller
deviation in the time series. The results of our research prove the feasibility of simulating the snow
radiation observed by satellite remote sensing while utilizing an integrated snow hydrological model
and snow radiative transfer model based on ground-driven data.

Our results suggest that if real-time meteorological forcing data and snow optical data can be
obtained, the new integrated model will be able to predict spatiotemporally continuous snow spectral
albedo and further predict narrowband snow albedo by targeting different optical remote sensing
satellite observations. We developed a new method representing an important attempt to simulate
snow reflectance information directly from land surface models and ground-driven data targeting
satellite remote sensing observations, effectively eliminating the impacts of multiple intermediate
transformations on the accuracy of directly simulated remote sensing observations. The results of
this study will be beneficial for the application of multisource remote sensing data to snow radiation
monitoring in land surface integrated models. Moreover, the new land surface integrated model can
compensate for the shortcomings of satellite remote sensing observations in time series.
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Appendix A. Variation Characteristics of Snow Spectrum Albedo

As indirect evidence for the spatial distribution of snow spectral albedo, we use the control
experiment method to simulate the change characteristics of the snow spectral signature under a
specific solar zenith angle and effective snow grain size based on the new integrated model.
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consistent with that measured by a SVC (Spectra Vista Company) HR-1024 ground-based spectral 

Figure A1. (A) Influence of different solar zenith angles on the snow spectral albedo (snow grain
size = 200 µm). (B) Influence of different effective snow grain sizes on snow spectral albedo (solar
zenith angle = 60◦). The red line is the auxiliary line at a wavelength of 0.7 µm, and the blue line is the
auxiliary line at a wavelength of 1.4 µm.

The snow spectral albedo variation curve simulated based on the integrated model is basically
consistent with that measured by a SVC (Spectra Vista Company) HR-1024 ground-based spectral
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radiometer in our practical observations [74]. Snow albedo is very sensitive to changes in the effective
snow grain size and solar zenith angle, and the most sensitive bands are concentrated mainly in the
VIS and NIR regions. Snow spectral albedo decreases with increasing effective snow grain size and
increases with increasing solar zenith angle (Figure A1). Our results show that the sharply decreasing
stage of snow spectral albedo is concentrated mainly in the NIR band. Under parameters with different
sensitivities, the change amplitude of snow albedo in the NIR band is also larger than that in the VIS
band and is concentrated predominantly in the wavelength range of 0.7–1.4 µm. The main reason for
this finding is that the variations in snow diffuse parameters in the NIR band with the snow grain size
are more sensitive than those in the VIS band [75].

Appendix B. Variation in Snow Spectral Albedo with the Wavelength Simulated by CRREL
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Figure A2. Typical spectral albedo curve for snow [60].

The variation in snow spectral albedo measured by CRREL is shown in Figure A2. The snow
spectral albedo is relatively high between 0.6 µm and 0.7 µm, and it continues to decrease in the
NIR band until a trough occurs at approximately 1.0 µm. A small peak appears at approximately
1.09–1.10 µm. Beyond 1.1–1.5 µm, the snow spectral albedo decreases rapidly, and between 1.25 µm
and 1.35 µm, the snow spectral albedo decreases gradually. Other crests appear again at 1.83 µm
and 2.24 µm. There is strong attenuation within 1.95–2.05 µm, and the reflection peaks at subsequent
wavelengths fluctuate less.



Remote Sens. 2020, 12, 3101 27 of 31

Appendix C. Descriptions of Snow Albedo Models

Table A1. Descriptions of snow albedo models.

Model
Classification Model Name Main Parameters

Snow Albedo
Output

Parameters
Author

Climate model

CoLM (Common Land
Model)

Atmospheric
forcing datasets,

soil data,
land use data,

DEM, etc.

Visible snow
albedo

Near-infrared
snow albedo

Dai et al., 2003
[25]

Noah-MP (Noah-Multi
Parameterization land

surface model)

Yang et al., 2011
[27]

BAT (Biosphere
Atmosphere Transfer

Scheme)

Dickinson et al.,
2006 [28]

GBEHM
(Geomorphology-Based
EcoHydrological Model)

Li et al., 2019
[29]

RACMO2 (Regional
Atmospheric Climate

Model version 2)

Dalum et al.,
2019 [40]

CLM(Community Land
Model)

Atmospheric
forcing datasets,

snow optical
characteristics data,

soil data, snow
impurities data,

land use data, etc.

Oleson et al.,
2010 [26]

Snow radiative
transfer model

WW (Warren and
Wiscombe model)

Snow optical
characteristics data,

snow attribute
data, snow

Impurities data, etc.

Snow spectral
albedo

Visible snow
albedo

Near-infrared
snow albedo

Broadband
snow albedo

Warren et al.,
1980 [45]

DISORT (Discrete
Ordinates Radiative

Transfer)

Stamnes et al.,
1988 [34]

TARTES(Two-streAm
Radiative TransfEr in

Snow model)

Libois et al.,
2013 [35]

SNICAR (Snow, Ice, and
Aerosol Radiative)

Flanner et al.,
2006 [32]

ART (Asymptotic
Radiative Transfer)

Kokhanovsky
et al., 2004 [19]

SMAP (Snow
Metamorphism and

Albedo Process) Snow optical
characteristics data,

snow attribute
data, etc.

Visible snow
albedo

Near-infrared
snow albedo

Broadband
snow albedo

Niwano et al.,
2012 [37]

PBSAM (A Physically
Based Snow Albedo

Model)

Aoki et al., 2011
[39]
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