
remote sensing  

Article

Fusion of Spectral and Structural Information from
Aerial Images for Improved Biomass Estimation

Bikram Pratap Banerjee 1 , German Spangenberg 2,3 and Surya Kant 1,4,*
1 Agriculture Victoria, Grains Innovation Park, 110 Natimuk Rd, Horsham, Victoria 3400, Australia;

bikram.banerjee@agriculture.vic.gov.au
2 Agriculture Victoria, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia;

german.spangenberg@agriculture.vic.gov.au
3 School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
4 Centre for Agricultural Innovation, School of Agriculture and Food, Faculty of Veterinary and Agricultural

Sciences, The University of Melbourne, Victoria 3010, Australia
* Correspondence: surya.kant@agriculture.vic.gov.au; Tel.: +61-3-4344-3179

Received: 23 August 2020; Accepted: 25 September 2020; Published: 26 September 2020
����������
�������

Abstract: Efficient, precise and timely measurement of plant traits is important in the assessment of a
breeding population. Estimating crop biomass in breeding trials using high-throughput technologies
is difficult, as reproductive and senescence stages do not relate to reflectance spectra, and multiple
growth stages occur concurrently in diverse genotypes. Additionally, vegetation indices (VIs) saturate
at high canopy coverage, and vertical growth profiles are difficult to capture using VIs. A novel
approach was implemented involving a fusion of complementary spectral and structural information,
to calculate intermediate metrics such as crop height model (CHM), crop coverage (CC) and crop
volume (CV), which were finally used to calculate dry (DW) and fresh (FW) weight of above-ground
biomass in wheat. The intermediate metrics, CHM (R2 = 0.81, SEE = 4.19 cm) and CC (OA = 99.2%,
K = 0.98) were found to be accurate against equivalent ground truth measurements. The metrics CV
and CV×VIs were used to develop an effective and accurate linear regression model relationship with
DW (R2 = 0.96 and SEE = 69.2 g/m2) and FW (R2 = 0.89 and SEE = 333.54 g/m2). The implemented
approach outperformed commonly used VIs for estimation of biomass at all growth stages in wheat.
The achieved results strongly support the applicability of the proposed approach for high-throughput
phenotyping of germplasm in wheat and other crop species.
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1. Introduction

Above-ground biomass (hereafter mentioned as biomass) of a crop is an important factor
in the study of plant functional biology and growth, being the basis of vigour and net primary
productivity [1–3]. The biomass is a measure of the total dry weight (DW) or fresh weight (FW) of
organic matter per unit area at a given time [1,4]. As biomass is directly related to yield, particularly
in later crop growth stages, it is crucial for monitoring biomass to estimate grain yield. For example,
grain yield is determined using biomass in the AquaCrop model [5]. The traditional method to
measure biomass is performed by destructively harvesting fresh plant material and weighing the
samples for FW, and oven drying the samples to get DW. The process performed on large experiments
is time-consuming and labour intensive. Therefore, a high-throughput imaging method using an
unmanned aerial vehicle (UAV) has been proposed to infer crop biomass accurately as a non-destructive
and fast alternative.

Near-earth remote sensing technologies from UAVs have evolved considerably for application in
high-throughput field phenotyping for plant trait measurement [6]. Collecting multispectral imagery
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from UAVs is simple and cost-effective [7], with UAVs helping to overcome limitations imposed by
traditional in-field trait scoring, and the destructive harvesting of samples for biochemical assays.
Crop canopy reflectance can be remotely sensed, providing information on the biochemical composition
(e.g., chlorophyll content, leaf water content, fresh or dry matter content), canopy structural parameters
(e.g., leaf-area index, leaf angle), and soil properties (e.g., soil optical properties, soil moisture) [8,9].

Several vegetation indices (VIs), such as normalized difference vegetation index (NDVI [10]),
the optimised soil-adjusted vegetation index (OSAVI [11,12]), and the modified soil-adjusted vegetation
index (MSAVI [13]), were developed utilizing the reflected visible and near-infrared radiation from the
crop canopy to simulate biophysical and biochemical traits, including biomass [14–19]. Both physical
models and empirical regression techniques are used to derive desired crop traits [20,21]. Physical
models are derived using physical principles, such as the PROSAIL model [8,9]. However, different
parameters for physical models are often not readily available, limiting the practical application in
estimating significant crop parameters [22,23]. Regression techniques are data-driven approaches which
are often used to relate spectral information with the desired traits, such as biomass [24,25]. Conventional
regression techniques (multiple linear regression, multiple stepwise regression techniques, partial
least squares regression) and machine learning (artificial neural networks, random forest regression,
support vector machine regression) are also often used when the spectral information does not relate
well with the desired trait. This can occur when suffering from low signal-to-noise ratios or there are
additional factors that influence the spectral information.

Typically, spectral VIs, which are widely used, strongly correlate with crop parameters, including
biomass, during the vegetative growth stages [21,26]. However, these traditional VIs lose their
sensitivity in reproductive growth stages, thereby making it difficult to establish an estimation
model that works over whole of the life cycle [21,27]. Furthermore, VIs computed using the red
and near-infrared spectral bands tend to saturate at high canopy coverage [28,29]. Several studies
have investigated different approaches for improving biomass estimation using (i) hyperspectral
narrow-bands for novel VI development [15,16,30–34], (ii) additional information from light detection
and ranging (LiDAR) [3,35–37], (iii) complementary information synthetic aperture radar (SAR) [38–41],
(iv) crop structure calculations, such as surface models from UAVs [42–44], and (v) ultra-high-resolution
image textures from UAVs [45].

In addition, the images from UAV surveys can be photogrammetrically restituted to produce
a digital surface model (DSM) during the creation of a multispectral ortho map, from which
crop height models (CHMs) can be developed [3,35,43,46]. Methods based on the use of UAV
photogrammetry-derived CHM for estimating biomass were found to be effective in different field
crops [47,48]. CHMs can provide complementary three-dimensional information, which opens new
opportunities for deriving biomass in field crops [42,49,50]. Using both spectral (VIs) and structural
(surface models) information obtained from UAVs could be a useful approach for not only estimating
biomass but also other crop traits such as leaf area index, chlorophyll and nitrogen content, plant lodging,
plant density, and counting head numbers. Though few studies have combined spectral (VIs) and
structural (CHMs) data in estimating biomass in barley [43], pastures [51], and shrubs-dominated
ecosystems [52]. However, the potential of combining spectral and structural information for the
estimation of dry and fresh biomass in the agronomically important food crop wheat is yet to be
investigated. Additionally, none of the previous studies successfully constructed a model using
UAV-derived information that highly correlates with biomass during reproductive and senescence
stages across breeding trials with diverse genotypes.

The objectives of this study are to evaluate the use of images collected from UAV multispectral
surveys in generating complementary multispectral orthomosaic and canopy surface information,
and subsequently fuse the two information layers to accurately model biomass in wheat. This study
presents biomass estimation in wheat (i) to calculate both DW and FW, (ii) based on the fusion of
spectral and structural information at different processing levels in the designed novel workflow, (iii) to
evaluate the developed approach against commonly used spectral VI-based approaches for modelling
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biomass using simple regression technique, (iv) to show the model was developed on a wide range of
genotypes with diversity in growth and development, and (v) to demonstrate the developed model
relationship is valid across different growth stages including during and post-reproductive periods.
Additionally, the study reports the generation of several intermediate traits including crop height
model (CHM), crop coverage (CC) and crop volume (CV); which by themselves are capable of inferring
important agronomic insights in high-throughput breeding research for screening genotypes.

2. Materials and Methods

In this study, three intermediate traits were mapped from multi-temporal UAV imagery, including
CHM, CC and CV for modelling DW and FW biomass. While not previously explored for deriving
DW and FW in breeding research, including in wheat using UAV data, these traits were selected for
being physically related. A fusion-based image analysis approach was used to assess these traits at the
individual plot level.

2.1. Field Experiment

The field experimental area was located at Agriculture Victoria’s Plant Breeding Centre, Horsham,
Victoria, Australia. This location has a mild temperate climate with an annual average rainfall of
448 mm and has predominantly self-mulching vertosol soil. The experiment comprised 20 wheat
genotypes with four replications, each planted in 5 m × 1 m plot, with a density of approximately
150 plants per m2. These genotypes were selected with diversity in growth patterns and biomass
accumulation. The seeds for wheat genotypes were obtained from the Plant Phenomics’ Grains
Accession Storage Facility at Grains Innovation Park, Horsham. The list of wheat genotypes is provided
in Supplementary Table S1.

2.2. Aerial Data Acquisition System and Field Data Collection

A custom data acquisition system was developed as one of the AgTech SmartSense products at
SmartSense iHub, Agriculture Victoria. A MicaSense RedEdge-M multispectral camera (MicaSense,
Seattle, WA, USA) was integrated with a DJI Matrice 100 quadcopter (DJI, Shenzhen, China) (Figure 1a).
The Matrice’s camera and gimbal operate on 12 V, so a switching mode power supply was used
to step-down the output to 5 V for the MicaSense RedEdge-M sensor system. The system consists
of a gravity-assisted 3D printed gimbal bracket and the original vibration dampeners. The system
records the position values, i.e., latitude, longitude and altitude on to the camera tags, using the
included 3DR uBlox global positioning system (GPS) module. Additionally, the multispectral camera
also logs dynamic changes in incident irradiance levels using a downwelling light sensor (DLS).
The sensor system was set to trigger and acquire images at the desired flying height of 30 m to achieve
a ground sampling distance (GSD) of 2 cm. Image acquisition was set to automated capture mode with
acquisition triggered via the GPS module at 85% forward and side overlap. The MicaSense RedEdge
camera has five spectral bands: blue (475 nm), green (560 nm), red (668 nm), red edge (717 nm),
and near-infrared (840 nm). A radiometric calibration panel with known radiometric coefficients for
individual multispectral bands was used. Radiometric calibration measurements were recorded with
the multispectral sensor before individual flight missions for image correction.

Five aerial imaging flight missions were undertaken at 30, 50, 90, 130 and 160 days after sowing
(DAS) (Figure 1b). A range of in situ data was collected concurrently to support the UAV-based
imagery, including ground control points (GCPs) for the geometric correction of the UAV and laying
out radiometric calibration panels. Five permanent GCPs were installed and the position was recorded
using a multi-band global navigation satellite system (GNSS) based real-time kinetic (RTK) positioning
receiver (Reach RS2, Emlid Ltd., Hong Kong) with centimetre level precision. The estimated accuracy
of the GNSS-RTK system was 0.02 m in planimetry and 0.03 m in altimetry. One GCP was placed in the
centre and others at the four corners of the experiment area. Several ground truth measurements were
undertaken. Plant height was manually measured by randomly selecting four wheat plants from each
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experimental plot and averaging four height measurements to one per plot. The field experiment had
80 plots (four replicated plots of 20 wheat genotypes) and plant height was measured at the two time
points on 130 DAS and 160 DAS, totalling 160 ground truth plant height observations. Plant height
was measured from the ground level to the highest point of the plant, with the average of the four
height measurements used as a representative ground truth measurement for the corresponding plot.
Manual harvesting of plots was performed at four time points (50, 90, 130 and 160 DAS) for measuring
biomass. The harvested samples were weighed upon harvest to measure FW and oven dried at 70 ◦C
for 5 days to measure DW.
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Figure 1. Field high-throughput phenotyping: (a) Unmanned aerial vehicle mounted with a RedEdge
MicaSense multispectral camera, a global positioning system and downwelling light sensor; (b) Aerial
mission on a field experiment at Plant Breeding Centre, Horsham, Victoria, Australia.

2.3. Reflectance Orthomosaic, Digital Surface Model and Digital Terrain Model

A processing pipeline was developed to process aerial multispectral images for modelling DW
and FW (Figure 2). After the acquisition of raw images from the UAV-based multispectral sensor,
the data were geometrically and radiometrically corrected using Pix4D Mapper (Pix4D SA, Lausanne,
Switzerland).

Multispectral imaging sensors measure at-sensor radiance or the radiant flux received by the
sensor. At-sensor radiance is a function of surface radiance (flux of radiation from the surface)
and atmospheric disturbance between surface and sensor [53], often assumed to be negligible for
UAV-based surveys [54]. However, surface radiance is highly influenced due to incident radiation.
The multispectral sensor records at-sensor radiance measurements for each band as dynamically scaled
digital numbers (DNs) at a determined bit depth. The conversion of the DNs into absolute surface
reflectance values, a component of the surface radiance independent of the incident radiation (ambient
illumination), is required if cross site, sensor, or time analysis is needed.

A common method for converting image DNs into absolute surface reflectance for UAV-based
surveys includes an empirical line approach, whereby standard reflectance panels are used to establish
a linear empirical relationship between DNs and surface reflectance under consistent illumination
conditions during the survey [42,55–58]. Under varying illumination conditions, an extension of the
empirical line approach is suited, whereby the logs from onboard DLS sensors are used to account
for changes in irradiation during the flight [59–61]. The latter approach was used in this study
to radiometrically correct the images with the inbuilt workflow in Pix4D Mapper, prior to further
processing. Additionally, corrections were performed to rectify optical (filters and lenses) aberrations
and vignetting effects to maintain a consistent spectral response [53,62].
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Figure 2. The processing workflow used for: Modelling—dry weight and fresh weight; Computing
intermediate traits—crop height model, crop coverage and crop volume; Using—vegetation index,
digital surface model (DSM) and digital terrain model (DTM).

Composite reflectance orthomosaic, digital surface models (DSM), and digital terrain model
(DTM) images were generated by stitching together hundreds of calibrated images captured from
individual flight missions in Pix4D Mapper. The software uses a popular structure-from-motion (SfM)
technique [63], suited to combine a large number of images from UAV missions [64]. The process
includes a scale-invariant feature transform (SIFT) [65] feature matching to create optimized resection
geometry for improving initial camera position accuracy obtained through recorded GPS tags. Camera
parameters are optimized based on matched triangulated target points between multiple images—in
this case, the number of matched points set at 10,000 points was found to be sufficient for seamless
optimisation as stitching. Bundle adjustment was then performed to generate a sparse model,
containing generalized keypoints used to connect the images. The SfM algorithm subsequently adds
fine-scale keypoints to the model during the reconstruction of a dense model, crucial in improving
geometric composition. Known GCPs collected during the aerial survey were also used in the process
to geometrically register the model. The entire SfM workflow inherently runs on a selected ‘reference’
band, with the selection of the correct ‘reference’ band being important in achieving better mosaicking
results [7,66]. In this case, the ‘green’ bands of the multispectral images were used as a ‘reference
band’ as the scene consisted primarily of vegetation features. Identical features in the overlapping
portion of the images are connected using the computed keypoints to produce a composite reflectance
orthomosaic, exported in rasterized (.tif) format. Bundle block adjustment was recomputed to optimize
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the orientation and positioning of the underlying densified point cloud. The process yields a DSM and
DTM of the study area, also exported in rasterized (.tif) format. The sigma of absolute geolocation
variance error was 0.13 m, 0.33 m, 0.21 m, respectively, in x, y and z directions. The sigma of relative
geolocation variance accuracy was 100%. Noise filtering was applied in the process of DSM and DTM
generation, and a sharp surface smoothening was used to retain crop surface boundaries. All the
exported layers, namely orthomosaic, DSM and DTM were resampled using an inverse distance
weighting [67] function to 2 GSD, for consistency in pixel dimensions.

2.4. Image Processing and Data Analysis

The spectral and structural (DSM and DTM) layers obtained from the multispectral sensor were
used to compute different intermediate layers which were fused at multiple processing levels (Figure 2).

2.4.1. Vegetation Indices (VIs)

The othomosaic spectral reflectance images were used to generate VIs, a spectral transformation
of two or more multispectral bands to highlight a property of plants. This permits a reliable spatial
and temporal inter-comparison of crop photosynthetic variations and canopy structural profiles.
VIs are immune from operator bias or assumptions regarding land cover class, soil type, or climatic
conditions, therefore suitable for high-throughput phenotyping. Additionally, seasonal, interannual,
and long-term changes in crop structure, phenology, and biophysical parameters can be efficiently
monitored. However, several multispectral VIs are prone to saturation issues which limit the extent
to which they are suitable to infer the crop traits [32,68,69]. Furthermore, this requires a good
understanding of the association of the multispectral bands with crop property for the selection of
proper band combinations, index formulation and type of fitting function [70]. In this study, a set of
12 traditional VIs related to physiology and canopy structure was computed using the equations listed
in Table 1.

Table 1. List of commonly used vegetation indices relating to physiology and canopy structure.

Indices Equation Reference

Normalized difference
vegetation index NDVI = NIR−RED

NIR+RED [10]

Enhanced vegetation index EVI = 2.5(NIR−RED)
(NIR+6×RED−7.5×BLUE)+1 [71]

Green normalized difference
vegetation index GNDVI = NIR−GREEN

NIR+GREEN [72]

Normalized difference
red-edge index NDRE = NIR−RE

NIR+RE [73]

Renormalized difference
vegetation index

RDVI = NIR−RED
√

NIR+RED [74]

Optimized soil adjusted
vegetation index OSAVI = 1.6

[
NIR−RED

NIR+RED+0.16

]
[12]

Modified simple ratio MSR =
(NIR/RED)−1
√
(NIR/RED)+1

[75]

Modified chlorophyll
absorption ratio index 1 MCARI1 = 1.2[2.5(NIR−GREEN) − 1.3(RED−GREEN)] [76]

Modified chlorophyll
absorption ratio index 2

MCARI2 =
3.75(NIR−RED)−1.95(NIR−GREEN)

(2×NIR+1)2
−(6×NIR−5

√
RED)−0.5

[76]

Modified triangular vegetation
index 1 MTVI1 = 1.2[1.2(NIR−GREEN) − 2.5(RED−GREEN)] [76]

Modified triangular vegetation
index 2

MTVI2 =
1.8(NIR−GREEN)−3.75(RED−GREEN)√

(2×NIR+1)2
−(6×NIR−5

√
RED)−0.5

[76]

Pigment specific simple ratio
for chlorophyll a PSSRA = NIR

RED [68]
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The selection of appropriate VIs is critical in high-throughput plant phenotyping studies aiming
for high performance. Studies need to integrally examine the suitability of the VIs for the intended
application and objective. Inappropriately selected VIs can produce inaccurate results burdened with
a number of uncertainties [77]. For estimating biomass, VIs in this study were selected from existing
literature, such as NDVI, enhanced vegetation index (EVI), green normalized difference vegetation
index (GNDVI), normalized difference red-edge index (NDRE), renormalized difference vegetation
index (RDVI), optimized soil adjusted vegetation index (OSAVI) and modified simple ratio (MSR).
A few VIs were also selected which correspond to biophysical and biochemical parameters, such as
modified chlorophyll absorption ratio index 1 (MCARI1), modified chlorophyll absorption ratio index
2 (MCARI2), modified triangular vegetation index 1 (MTVI1), modified triangular vegetation index 2
(MTVI2), and pigment specific simple ratio for chlorophyll a (PSSRA).

2.4.2. Crop Height Model (CHM)

A pixel-wise subtraction of the DTM altitudes from DSM altitudes was performed to generate a
CHM, representing the relief of the entire crop surface. The pixel-wise subtraction step essentially
means that the computation is performed between corresponding pixels of source DTM and DSM
layers. The accuracy of CHM computed using SfM approach, relies on interacting factors including the
complexity of the visible surface, resolution and radiometric depth, sun-object-sensor geometry and
type of sensor [78]. The canopy surface for wheat is very complex containing reflectance anisotropy
and micro-relief height variation. A 3 × 3 pixel local maximum moving filter was applied on the CHM
layer to enhance the highest peaks and reduce the micro-variation. The implemented filter moves the
pre-defined window over the CHM and replaces the centre pixels value with the maximum value in
the window, if the centre pixel is not the maximum [79,80].

2.4.3. Crop Coverage (CC)

Previous studies have used different VIs to classify CC or vegetation fraction, the vegetation
part of the research plots [81–83]. In this study, the optimized soil adjusted vegetation index (OSAVI)
was used for its ability to suppress background soil spectrum to improve the detection of vegetation.
Both OSAVI and CHM were used to create a CC layer to mask the extent of the vegetation for individual
plots across all time points. Firstly, individual segmentation layers were prepared for OSAVI and CHM
using a dynamically computed threshold using the Otsu method, an adaptive thresholding approach
for binarization in image processing [84]. This threshold is computed adaptively by minimizing
intra-class intensity (i.e., index values for OSAVI and height levels for CHM) variance, or equivalently,
by maximizing inter-class variance. In the simplest form, the algorithm returns a single threshold
that separates pixels into two classes, vegetation and background. The technique was suitable to
filter unwanted low-value OSAVI and CHM pixels, corresponding to minor unwanted plants such as
weeds or undulated ground profile, respectively. Finally, the pixel-wise product of segmented OASVI
and CHM pixels was used to prepare the CC mask corresponding to vegetation, in this case, wheat.
The rationale for the adopted approach is that (i) OSAVI utilized the ‘greenness’ of wheat to detect its
mask, ‘greenness’ drops during flowering and after maturity, and (ii) CHM utilizes the crop relief to
detect the corresponding mask, thereby it is immune to changes in ‘greenness’ so applicable during
flowering and post-emergence of maturity, but suffers when the plants are too small (less than 5 cm
approximately) as the crop canopy is very fragile at this stage for the photogrammetric SfM approach
to generate a dependable CHM. These independent issues were resolved through the fusion of OSAVI
segmentation and CHM, improving classification of the CC of wheat in research plots.

A rigorous approach to evaluate the achieved classification accuracy for the CC layer was
performed through a comparison of CC classified labels against ground truth across randomly selected
locations using a confusion or validation matrix. Over the five time points, a total of 1500 ground truth
points (i.e., 300 points in each time point) were generated between the two classes—wheat CC and
ground—using an equalized stratified random method, creating points that were randomly distributed
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within each class, where each class has the same number of points. The ground truth corresponding
to each point for validation was captured manually through expert geospatial image interpretation
training using high-resolution (2 cm) RGB composite orthomosaic images. Accuracy measures namely
producer’s accuracy, user’s accuracy, overall accuracy (OA) and kappa coefficient (K) were computed
using the confusion matrix. In traditional accuracy classification, the producer’s accuracy or ‘error
of omission’ refers to the conditional probability that a reference ground sample point is correctly
mapped; whereas the user’s accuracy or ‘error of commission’ refers to the conditional probability that
a pixel labelled as a class in the map belongs to that class [85]. Overall accuracy refers to the percentage
of a classified map that is correctly allocated, therefore is used as a combined accuracy parameter from
a user’s and producer’s perspective [85]. A kappa value ranges between 0 and 1, representing the
gradient of agreement between ‘no agreement’ and ‘perfect agreement’.

2.4.4. Crop Volume (CV) and Dry Weight (DW) Modelling

An intermediate metric, CV was computed by multiplying CHM and CC, followed by summing
the volume under the crop surface. The multiplication of CHM with the CC layer aids in mitigating
against ground surface undulations and edge-effects in surfaces reconstructed through SfM. Equation (1)
depicts the mathematical formulation of the CV metric:

CV =
i=m∑
i=1

j=n∑
j=n

CHMi, j ×CCi, j (1)

where i and j represent the row and column number of the image pixels for an m × n image, size of an
individual plot.

Classically, the mass (or generally called weight in applied sciences) (W) of a physical substance
is directly related to its density (D) and volume (V) according to Equation (2). The case of physical
modelling DW using CV is not as straightforward, as the measured volume parameter, CV is not
exactly the ‘volume of dry matter tissue’ (Vtissue); instead, CV is compounded with the fraction of
canopy fragility, i.e., the ‘volume of air’ (Vair) of empty space within a crop canopy grown in plots.
Accordingly, Equation (3) can be modified to account for both Vtissue and Vair. The equation could be
further expanded to identify the proportional dependence of DW on CV, as the other ‘unmeasured’
factors could be ignored – Dtissue being a constant for a selected crop type (i.e., wheat) and Vair

being a linearly scaled variable with CV for a given crop type in plots with constant sowing rate.
The proportionality could be refactored as a simple linear regression model Equation (4), whereby
the coefficients, slope (α) and bias (β), could be calculated parametrically using measured (ground
truth) DW values. This expression provides the modelled relationship to derive DW using CV, through
non-invasive and non-destructive means applicable for field high-throughput phenotyping.

W = D× V (2)

CV = Vtissue + Vair =
DW

Dtissue
+ Vair

=> DW = Dtissue(CV−Vair)

=> DW = C(CV−Vair), as Dtissue could be considered constant (C) for wheat
=> DW ∝ CV , by ignoring the constant C and Vair, being a linearly scaled variable with CV

(3)

DW = α·CV + β (4)

2.4.5. Crop Volume Multiplication with Vegetation Indices (CV×VIs) and Fresh Weight
(FW) Modelling

To model FW, the intermediate metric, CV was multiplied with the set of derived VIs. The rationale
for this approach is that, (i) CV is a canopy structural metric computed through SfM approach as such
is able to estimate the dry tissue content or DW, but is void of the ability to infer the fresh tissue water
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content or FW, (ii) VIs on the other hand, are reflectance derived biophysical parameters having the
ability to infer photosynthetic variations and related water content in vegetation. The mathematical
product of CV and VIs is deemed to resolve the limitations of individual parameters (Equation (5),
modified after Equation (4)). It is imperative to state that the linear regression model coefficient values
will vary corresponding to the different VIs.

FW = α·CV×VIs + β (5)

2.4.6. Plot Level Data Analytics

A shapefile (.shp) consisting of the individual field plot information was created in ArcMap
version 10.4.1 (Esri, Redlands, CA, United States). The image processing and analytics involved beyond
Pix4D processing and shapefile creation in ArcMap, i.e., generation of VIs, CHM, CC, CV, CV×VIs,
DW and FW, were all computed in Python 3.7.8 (Python Software Foundation. Python Language
Reference) using source packages including os, fnmatch, matplotlib, numpy, fiona, shapely, skimage,
opencv2, rasterio, and geopandas. The coded workflow involved the generation of the intermediate
geospatial layer corresponding to individual traits, clipping the layers to plot geometries, summarizing
the traits in individual plots, analyzing and validating the summarized traits.

3. Results

3.1. Crop Height Model

Plant height of wheat genotypes in the experiment ranged from 54 to 91 cm on 130 DAS and 62
to 98 cm on 160 DAS with a normal distribution. The mean plant heights were 71.8 and 78.9 cm on
130 DAS and 160 DAS, respectively. To evaluate SfM-derived CHM’s performance with respect to
ground truth plot height measurements, a correlation-based assessment was performed (Figure 3).
The assessment achieved a strong and statistically significant (p-value < 0.001) linear relationship
between CHM and ground truth plant height with a coefficient of determination (R2) of 0.81 and
a standard error estimate (SEE) of 4.19 cm. To minimize differences due to plant growth, the field
measurements were carried out on the same days of the aerial surveys. Unlike the highest points
measured during ground-based surveys, the CHM represents the entire relief of the crop surface;
therefore, the average CHM was found to be about 23.5 cm lower than the actual average canopy height.
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3.2. Crop Coverage

To validate the fusion-based algorithm, Figure 4 shows the classified CC and CC × VIs images
against RGB composite images generated using multispectral bands blue (475 nm), green (560 nm) and
red (668 nm). A section of the entire field trial was focused on to include three genotypes with different
fractional density, plant height and variable growth stage effects. The proposed algorithm performed
well throughout the vegetation portion of the plot with minor classification challenges around the
edges of vegetation. The characteristics of vegetation and ground are quite similar along the borders,
so it was difficult to achieve good results in these areas. Additionally, the fractional nature of wheat
canopy also affected the accuracy, due to the presence of noisy pixels comprising of mixed spectra
from both wheat and ground; and the limitation of the SfM approach to resolve the finer details along
high-gradient relief variations.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 24 
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Figure 4. A visual evaluation of the performance of the employed workflow for computing intermediate
metrics—crop coverage (CC) and crop volume (CV) at different growth stages (30, 50, 90, 130 and
160 DAS) on three genotypes. The classified CC and CC × VIs images are compared against RGB
composite images generated using multispectral bands blue (475 nm), green (560 nm) and red (668 nm).

The classification class CC achieved a user’s accuracy of 98.9%, a producer’s accuracy of 99.4%
and an OA of 99.2%. In addition to the traditional estimates, the classification achieved a K of 0.98,
which is an indicator of agreement between classified output and ground truth values.
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3.3. Dry Weight Modelling

The proposed approach, of modelling DW using CV, was compared against a traditional VI-based
approach. The linear regression demonstrated that the degree of correlation (in terms of R2) for the
VI-based approach in modelling DW become less accurate at progressive time points (>50 DAS);
while the accuracy of CV-based approach for modelling DW remained consistently high (Figure 5a).
For the interpretation of the results, correlations were considered hereafter as low (R2 < 0.70), moderate
(0.70 ≤ R2 < 0.85) and high (R2

≥ 0.85). These results were influenced by the fact that experimental plots
of diverse wheat genotypes typically have variable growth dynamics, common in crop phenotyping
research; therefore, exhibiting variation in reflectance responses which is limiting to the accuracy
of the linear model. The CV, on the other hand, is derived through structural means using SfM
and is immune to variation in the spectral properties of plants over different growth stages across
research plots. Of the four time points studied in our experiment for biomass estimation, the earliest
time point showed genotypes in different plots were in overall similar growth stages, as such the VI
derived model prediction was highly correlated. At later time points, genotypes attained different
growth stages influencing the spectral signatures and the VIs-derived correlation was low. When data
from all the time points in the experiments were combined, CV was still accurately predicting DW,
whereas traditional VIs exhibited low R2 values (Figure 5b). This observation was interesting as it
seems contradictory to previous studies which demonstrated the high prediction potential of VIs,
particularly related to structural characteristics of plants, i.e., NDVI, GNDVI, OSAVI, MTVI1 and
MTVI2 [11,86–88]. However, these previous studies had established a successful relationship with
biomass under restricted complexities, i.e., either on a single genotype in a field or in a single time
point. The experimental work conducted in this study indicates that CV derived using UAV-based
SfM information is consistent with genotypic variation and across different time points, as an accurate
predictor (R2 = 0.96 and SEE = 69.2 g/m2) of DW with statistical significance (p-value <0.001) (Figure 5c).

3.4. Fresh Weight Modelling

The approach of modelling FW using CV×VIs was evaluated using different CV and VI
combinations, and against independent VIs. For evaluating different CV×VIs combinations, a plot of
the corresponding R2 values obtained for predicted vs. observed FW values across different time points
was used (Figure 6a). The performance of three combinations, CV×GNDVI, CV×EVI and CV×NDRE
were found to be consistently higher across different time points, compared to the other CV×VI
combinations. The performance of CV×EVI was strongest amongst the three CV×VIs combinations for
FW estimation. When data from all four time points across the experiment for FW were combined,
the CV×EVI was again found to outperform other CV×VIs (Figure 6b). Therefore, CV×EVI was used
as an estimator to model FW computation (Figure 6c). The estimator achieved a strong (R2 = 0.89
and SEE = 333.54 g/m2) and statistically significant (p-value < 0.001) linear relationship with ground
truth measurements of FW. Additionally, the regression analysis demonstrates that the R2 for the
original VI-based approach in modelling FW increases significantly for all VIs when coupled with
CV (Figure 6b). The proposed fusion of CV×VIs takes advantage of both spectral and structural
information provided by VIs and CV, respectively, whereas VIs were unable to account for structural
variations between different genotypes.
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Figure 5. Estimation of dry biomass or dry weight (DW): Variability in the correlation of determination
(R2) for modelling performed using crop volume (CV) and standard vegetation indices (a) across
different time points and (b) at all the time points combined against observed DW; (c) Modelling results
for DW derived from CV against observed DW data.
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3.5. Genotypic Ranking Using Ground Measurements and UAV-Based Measurements

The objective of this study was primarily to develop an accurate, non-invasive, UAV-based,
analytical framework to derive DW and FW for wheat genotypes. DW and FW estimated across
the four time points showed expected and consistent growth trends for wheat genotypes (Figure 7).
Most genotypes showed a steady growth of DW until the third time point, followed by nearly
exponential growth between the third and fourth time point (Figure 7a). The FW, on the other hand,
followed a steady growth until the fourth time point (Figure 7b). Importantly, the derived multitemporal
biomass models were able to capture these trends in plant development. The two biomass models
were able to illustrate different growth dynamics seen between diverse wheat genotypes. Genotypes
Sunvale, Volcani DDI, Gladius, Ellison, Hartog, Ventura, Carnamah, EGA Gregory, Kennedy and Sunco
demonstrated an early vigour, producing comparatively more biomass during early to mid-vegetative
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growth. Overall, Carnamah produced the most biomass, while Derrimut produced the lowest DW
and FW.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 24 
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4. Discussion

Modern plant breeding strategies rely on high-throughput genotyping and phenotyping.
Conventional phenotyping relies on manual and/or destructive analysis of plant growth measures
such as biomass [89]. To investigate the growth rate of a diverse number of genotypes in field breeding
research, a large number of plants needs to be harvested regularly over different growth stages;
a method which is very time consuming and labour intensive. Moreover, as this method is destructive,
it is impossible to take multiple measurements on an entire plot at different time points. To some



Remote Sens. 2020, 12, 3164 15 of 22

extent, this is addressed by harvesting a subset number of plants or a section of field plot each time,
but might not be representative of the entire plot or suffer from selection bias. Accuracy improvements
can be made by adding replicated plots for individual genotypes for each time point harvest, although
this might not be economically or spatially feasible over large populations; whereas high-throughput
imaging technologies are non-destructive, allowing for repetitive measurements of the same plants,
and are cost effective and efficient compared to traditional phenotyping, making them important for
crop breeding programs [90].

Biomass measures of DW and FW are challenging under field conditions, especially when studying
a wide range of genotypes with diverse growth patterns, including during reproductive and senescence
stages [15,45,91]. In this study, the fusion of complementary spectral and structural information derived
using the same multispectral sensor was found to be a suitable and robust alternative to traditional
methods involving purely spectral VIs. The fusion-based workflow developed here describes research
utilizing the fundamental information generated through a UAV-multispectral sensor to generate
several intermediate metrics (i.e., VIs, CHM, CC, CV). The interaction between these intermediate
metrics was used at different levels to improve the accuracy at successive stages, thereby helping in
developing a model relationship for DW and FW. For example, the fusion was achieved through (i)
the logical ‘OR’ operation between OSAVI segment and CHM segment layer to derive CC, (ii) the
mathematical product between CC and CHM followed by summation over the plot area to calculate
the CV relating to DW, and (iii) the multiplication between CV and VIs to retrieve FW (Figure 2).

The intermediate metrics resulting from the processes of deriving biomass, namely CHM and CC,
are themselves beneficial. Traditionally, for short crops such as wheat, plant height is measured using a
ruler in the field by selecting a few representative plants to represent the canopy height. The method is
labour intensive, time-consuming and expensive for large breeding trials. Measuring variation in crop
height associated with growth at finer temporal rates remains largely impractical in widely distributed
field trials. High-throughput field imaging platforms have demonstrated usefulness in extracting crop
height in each plot [43,44,92]. The CHM layer derived herein achieved satisfactory model correlation
in estimating crop height in plots (Figure 3) and was found to be acceptable to measure the fine-level of
crop height in a genotypically variable population. However, the SfM’s matching accuracy for a crop
surface is likely to be limited due to little-to-no or analogous texture (pattern created by adjacent leaves),
surface discontinuities (gaps in canopies), repetitive objects (regularized plots), moving objects (such as
leaves and shadows), multi-layered or occlusions (overlapping leaves) and radiometric artifacts [93–95].
Nevertheless, the achieved high accuracy in estimation of height in wheat plots was characterized by
the low-oblique vantage of the images captured from UAVs, aiding in the accurate reconstruction of
depth models.

The CC or crop fractional cover is an important phenological trait of crops, which can be used
as an estimate of crop emergence in early growth stages, and an indicator of early vigour and crop
growth rates during the vegetative growth stages [96]. The computed CC layer has been found to be
more reliable and advantageous than subjective visual scores (Figure 4). The accuracy of the CHM
and CC depends on the precise extraction of the DTM layer or the ‘bare earth model’. The process of
extracting DTM using the SfM algorithm involves measuring the lowest terrain altitude points in the
scene, as seen by the sensor when the canopy is fragile or when there is a visible bare earth surface.
Herein, sufficient inter-plot spacing has been found to benefit extraction of DTM, which thereby is
advantageous for improving the accuracy of CHM and CC. Related factors such as the presence of
high surface soil moisture after heavy rain or irrigation events, and presence of vegetation in inter-plot
spacing, i.e., crop overgrowth or weeds, have been found to lower the accuracy of CHM. This is because
the presence of both high moisture and inter-plot weeds limit the bare-earth reflectance signature,
which in turn reduces the accuracy of DTM. Therefore, avoiding immediate UAV-flights for data
acquisition after a heavy rain or irrigation, and ensuring a clean field trial is maintained, has been
found to produce a reliable result.
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In this study, a simple linear regression model relationship was used to demonstrate the efficacy
of the presented CV and CV×VIs approach against other standard VIs based approaches. Multivariate
analysis, or conventional regression techniques (multiple linear regression, multiple stepwise regression
techniques and partial least squares regression) and machine learning (artificial neural networks,
random forest regression and support vector machine regression) are potential methods which can
combine multiple variables in model predictions. This aspect was beyond the scope of the presented
work; nevertheless, these approaches can be adopted as the future potential to extend this study.

The central idea for the presented work is unique in the aspect that DW could be estimated using
CV and FW using CV×VIs. The concept behind this approach could be understood by considering that
with a constant plant density for a crop, the density factor (Dtissue) and air space within the canopy
(Vair) could be assumed to be constant. Therefore, DW of the tissue should linearly correlate with
CV (R2 = 0.96 in Figure 5b,c). In the process, water is present inside the ‘plant tissue’, which does
not significantly influence CV, which as such could not be used robustly to measure FW (R2 = 0.62 in
Figure 6b). VIs, on the other hand, are influenced primarily by the chlorophyll content or greenness
of the plant, which in turn are influenced by photosynthetic potential and water uptake during the
growth. In other words, high FW can imply high water uptake in tissue, better photosynthetic ability,
and generally plants with more greenness corresponding to higher values of VIs. However, the amount
of plant matter or CV undergoing the photosynthesis process remains unaccounted for from this notion.
Therefore, multiplying CV with VIs fills the gap, increasing the simple linear model relationship in
measuring FW (R2 > 0.8 for all CV×VIs combinations in Figure 6b; with best R2 = 0.89 for CV×EVI in
Figure 5b,c).

For high-throughput phenotyping application in crop breeding research, it is important to have a
metric which could be used as a proxy to a certain agronomic trait. In this study, CV is a proxy to DW,
and CV×EVI a proxy to FW. Other studies similarly used VIs [21,26] or combination of structural and
spectral information [43,51,52] in modelling biomass, which is also a proxy-based approach. It could
not be claimed with the available data in the study that the reported simple linear model relationships
would hold exactly same every year, nevertheless the metrics CV and CV×EVI could certainly be used
as a proxy to screen crop genotypes with higher or lower biomass and monitor their growth patterns
over time.

Previous studies employing proximal remote sensing technologies have largely used spectrally
derived VIs to develop a model relationship with biomass [18,24,28,31]. During the reproductive
growth stage, wheat heads or spikes lower the fraction of vegetative green cover of the plot, thereby
influencing the spectral VI’s ability to estimate biomass reliably. Therefore, yield models relying on
estimated biomass using spectral VIs, are less or not effective during reproductive growth stages.
Additionally, different genotypes of wheat have variable growth patterns influenced by genetic and
environmental effects. Diverse genotypes exhibit different spectral profiles, correspondingly the
VIs do not correlate with plot biomass during multi-growth periods (Figure 5a,b and Figure 6a,b).
Previous studies have reported a similar observation, that methods based on visible and near-infrared
bands underestimate biomass in multi-growth periods [43,97]. In particular, a model to monitor
biomass and grain yield, that is valid only for a single growth stage, is of less importance in
high-throughput phenotyping [31,37,39,98]. Therefore, the development of new methods was needed
to improve the accuracy to estimate biomass across multiple growth stages [45], justifying the practical
applications of the presented work. Previous studies have suggested combining spectral VIs and crop
height [44,97], and have reported combining VIs and surface model [43] obtained from UAV images
to improve the accuracy of biomass estimates. Other studies have demonstrated that combining
spectral VIs with structural information derived from SAR and LiDAR to improve biomass and
leaf area index estimates [38,99]. Comparing information from SAR and LiDAR to complement VIs,
UAV-based structural (surface models) information are cost-effective for ranking of genotypes in field
breeding experiments.
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5. Conclusions

In this study, we examined the suitability of fusing spectral and structural information from UAV
images for the estimation of DW and FW in a wheat experiment. Intermediate metrics including CHM,
CC, CV were computed in the process of modelling DW and FW. The analysis showed that all the
intermediate metrics and modelled DW and FW values were accurate and highly correlated with
equivalent ground truth measurements. The results demonstrated that the proposed novel approach
was robust across different growth stages, maintaining a single model relationship. Additionally,
the approach outperformed widely used traditional methods of using multispectral VIs to estimate
biomass. Furthermore, the mentioned approach is time-efficient and cost-effective compared to other
methods employing secondary sensor systems such as SAR and LiDAR, in addition to multispectral
sensors, or a dedicated hyperspectral sensor to compute narrow band VIs. The approach is also
effective for ranking genotypes in breeding trials based on their biomass accumulation. This study
suggests that the proposed approach of using imaging tools and analytics provides an important and
reliable method of high-throughput phenotyping for faster breeding of better crop varieties.
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