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Abstract: The detection, quantification, diagnosis, and identification of plant diseases is particularly
crucial for precision agriculture. Recently, traditional visual assessment technology has not been
able to meet the needs of precision agricultural informatization development, and hyperspectral
technology, as a typical type of non-invasive technology, has received increasing attention. On the
basis of simply describing the types of pathogens and host–pathogen interaction processes,
this review expounds the great advantages of hyperspectral technologies in plant disease detection.
Then, in the process of describing the hyperspectral disease analysis steps, the articles, algorithms,
and methods from disease detection to qualitative and quantitative evaluation are mainly summarizing.
Additionally, according to the discussion of the current major problems in plant disease detection with
hyperspectral technologies, we propose that different pathogens’ identification, biotic and abiotic
stresses discrimination, plant disease early warning, and satellite-based hyperspectral technology are
the primary challenges and pave the way for a targeted response.
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1. Background

With the changes in world climate and the accelerated development of global trade,
the distributions, host ranges, and impacts of plant diseases have expanded continuously, and many of
these diseases can still spread or break out after having been under control. In Bangladesh in 2016,
the outbreak of wheat blast caused total crop failure with an impact range reaching nearly 15,000 ha [1].
In addition, the report of the Food and Agriculture Organization of United Nations (FAO) shows that
the occurrence of only Xylella fastidiosa could cost nearly $104 million a year in wine losses in California
alone [2]. Hence, plant diseases are now among the most basic, important, and noteworthy issues in
agriculture management.

Whilst the economic losses caused by plant diseases are on the one hand, on the other hand,
considering population and food imbalance, it is more serious that the diseases cause food losses.
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FAO statistics show that to fulfill the food requirements of 9.1 billion population by 2050, a 70%
steady increase in agricultural production is needed [3]. However, between 20% and 40% of global
crops have been lost annually to pests and diseases in the last 45 years. Furthermore, according to
Carvajal-Yepes et al. [4], the average worldwide yield losses caused by pests and diseases in wheat,
rich, maize, potatoes, and soybeans are estimated to be 21.5%, 30.0%, 22.6%, 17.2%, and 21.4%,
respectively. In addition, diseases spread to large areas upon infection and cause large-scale production
reduction, also resulting in a decrease in the quality of agricultural products or even endangering
life. Fusarium head blight (FHB) is a prominent example. From 1998 to 2000 alone, the cumulative
direct and secondary economic losses from FHB in primary food crops were estimated to be $2.67
billion [5]. In addition, once a plant disease breaks out on a large scale, the damage to the environment
is considerable. According to FAO statistics, the consumption of pesticides increased from 3.05 million
tonnes in 2000 to 4.09 million tonnes in 2016. Plant diseases are considered as risks because they
constantly contribute to significant yield, economic, and environment losses worldwide [6]. Therefore,
the early and accurate detection, monitoring, and assessment of plant diseases is important and
necessary for farmers, managers, and decision makers.

Artificial visible investigation, as the most basic direct method in practice, is still being used.
However, this approach requires professional knowledge of the relevant plant phenotype and plant
pathology. Another mainstream, direct plant disease detection technique can be called the biological
molecular method [7–9]. Biological molecular techniques require detailed sampling and have complex
processing methods. Compared with artificial investigation methods, these approaches are more
professional and cyclical. These two techniques are basic, significant, efficient and always involve
the use of manual plant disease monitoring and detection methods. The processes of all of these
manual methods are expensive, time-consuming, and labor-intensive [10]. These shortcomings limit
the development and application of artificial methods in large-scale farms. In particular, it is necessary
to note that these direct plant disease detection methods are usually performed in the middle to later
stages of the infection, of which visible symptoms are typically manifest [11]. In the environment
of modern facility agriculture and precision agriculture, the demand for real-time and large-scale
detection of plant diseases is becoming increasingly prominent. This time-lag is inevitable and not
conducive to early detection.

In the last decade, a number of non-invasive techniques have been developed, which are
sensitive, consistent, standard, high throughput, rapid, and cost-effective [11]. Spectroscopy-based,
imaging-based, and relevant remote sensing (RS) methods provide reliable and precise technical support
for real-time and large-scale plant disease detection and monitoring. There are some links among these
non-invasive approaches, which exist side by side and interact. The International Standards Committee
has formally accepted methods developed using spectroscopy [12]. The commonly used spectroscopy
techniques in plant diseases are mainly focused on visible–near infrared (VIS–NIR), electric impedance,
and fluorescence spectroscopy [12–15]. Thus, imaging-based and RS techniques have attracted
considerable attention because they can provide accurate geographic information [10]. Many different
imaging sensors, such as digital [16,17], fluorescence [18], thermal [19,20], and multispectral or
hyperspectral sensors [21–23] have been studied for the detection of symptomatic and asymptomatic
plant diseases [8]. The applications of these techniques have been steadily developing from sensor
development, image acquisition, and system construction to image segmentation and classification
algorithm analysis [24,25].

Hyperspectral technology can sometimes be considered as a part of spectroscopy.
The electromagnetic spectrum ranges of hyperspectral sensors mainly concentrate on VIS–NIR
(400–1000 nm) and sometimes contain a short wave infrared range (SWIR, 1000–2500 nm). These sensors
could acquire spectral information from hundreds of narrow spectral bands [26]. These narrow
wavebands have high sensitivity to the subtle plant changes caused by diseases and make it possible
to distinguish different disease types and perform early asymptomatic detection. Among many
non-invasive plant disease monitoring methods, including both hyperspectral non-imaging and
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imaging techniques, hyperspectral RS has developed rapidly and has outstanding effects in agriculture
research [27]. Except for the common advantages of non-invasive RS techniques, hyperspectral
imaging can be implemented in automated systems as an objective method, resulting in a considerably
reduced workload [24,28,29]. The applications have been classified from the level of satellite images
to the macroscopic or molecular level. It can be seen that hyperspectral technologies have exhibited
superiority in plant disease monitoring.

According to the Web of Science statistics, there are 651 relevant papers from 1990 to 2019
when “plant disease” and “hyperspectral” are used as the key words to search for in “all databases.”
After screening and statistical analysis, Figure 1 shows that the number of plant disease research
articles with hyperspectral techniques has risen sharply in the last 20 years (there were no articles
before 2002). However, there are only 35 reviews. Bock et al. [23] first provided a statistical overview
of the common disease severity assessment error sources and traditional visual assessment methods.
Then, the authors described in detail two non-invasive disease severity assessment techniques—digital
imaging and hyperspectral imaging—from their history, principles, and sensors to their data analysis
processes, algorithms, and application directions. Finally, the advantages and disadvantages of these
techniques were summarized. All of the analyses in this review are comprehensive. Unlike the
research of Bock et al. [30], the overview of Thomas et al. [28] is only aimed at hyperspectral imaging.
They overviewed the advantages and limitation of hyperspectral sensors from the laboratory to
field applications and discussed the possibilities and challenges of hyperspectral measurements at
different scales.

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 34 

to distinguish different disease types and perform early asymptomatic detection. Among many 
non-invasive plant disease monitoring methods, including both hyperspectral non-imaging and 
imaging techniques, hyperspectral RS has developed rapidly and has outstanding effects in 
agriculture research [27]. Except for the common advantages of non-invasive RS techniques, 
hyperspectral imaging can be implemented in automated systems as an objective method, resulting 
in a considerably reduced workload [24,28,29]. The applications have been classified from the level 
of satellite images to the macroscopic or molecular level. It can be seen that hyperspectral 
technologies have exhibited superiority in plant disease monitoring. 

According to the Web of Science statistics, there are 651 relevant papers from 1990 to 2019 when 
“plant disease” and “hyperspectral” are used as the key words to search for in “all databases.” After 
screening and statistical analysis, Figure 1 shows that the number of plant disease research articles 
with hyperspectral techniques has risen sharply in the last 20 years (there were no articles before 
2002). However, there are only 35 reviews. Bock et al. [23] first provided a statistical overview of the 
common disease severity assessment error sources and traditional visual assessment methods. Then, 
the authors described in detail two non-invasive disease severity assessment techniques—digital 
imaging and hyperspectral imaging—from their history, principles, and sensors to their data 
analysis processes, algorithms, and application directions. Finally, the advantages and 
disadvantages of these techniques were summarized. All of the analyses in this review are 
comprehensive. Unlike the research of Bock et al.[30], the overview of Thomas et al. [28] is only 
aimed at hyperspectral imaging. They overviewed the advantages and limitation of hyperspectral 
sensors from the laboratory to field applications and discussed the possibilities and challenges of 
hyperspectral measurements at different scales. 

 
Figure 1. Number of published articles by year on plant disease with hyperspectral data (Data source 
from Web of Science). 

According to the analysis of all 35 reviews, they mainly focus on the application and analysis of 
hyperspectral imaging, and only eight reviews involved non-imaging hyperspectral data analysis. 
In addition, most of these reviews are broadly generalized, at best focusing on foliar disease [31,32] 
or one specific disease [33]. Within this context, this review provides an overview of advanced 
hyperspectral technologies for plant disease detection. Firstly, the requirements of hyperspectral 
technology are discussed according to a simple introduction of plant disease pathogens and plant–
pathogen interaction processes. Secondly, following the hyperspectral disease analysis steps, we 
mainly overview the involved articles, algorithms, and methods from disease detection to qualitative 
and quantitative evaluation. Finally, the challenges and trends in hyperspectral disease detection are 
discussed. 

Figure 1. Number of published articles by year on plant disease with hyperspectral data (Data source
from Web of Science).

According to the analysis of all 35 reviews, they mainly focus on the application and analysis
of hyperspectral imaging, and only eight reviews involved non-imaging hyperspectral data analysis.
In addition, most of these reviews are broadly generalized, at best focusing on foliar disease [31,32] or one
specific disease [33]. Within this context, this review provides an overview of advanced hyperspectral
technologies for plant disease detection. Firstly, the requirements of hyperspectral technology are
discussed according to a simple introduction of plant disease pathogens and plant–pathogen interaction
processes. Secondly, following the hyperspectral disease analysis steps, we mainly overview the
involved articles, algorithms, and methods from disease detection to qualitative and quantitative
evaluation. Finally, the challenges and trends in hyperspectral disease detection are discussed.
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2. Complex Presence of Pathogens and Plant–Pathogen Interactions Make Hyperspectral
Technologies Indispensable

From sowing and growing to harvesting, plants may be simultaneously affected by multiple
disease-causing pathogens, reducing the yield and quality of the cultivated plants. Based on the
research on plant disease detection analysis, it is evident that many diseases produce similar symptoms
and signs but are caused by very different microorganisms or agents [34,35]. Therefore, it can be said
that pathogens themselves and the plant–pathogen interaction processes are complex, especially for
non-invasive assay methods. These make it difficult to discriminate specific pathogens using the naked
eye or simple computer vision.

2.1. Plant Diseases May Be Caused by More Than One Causal Agent and Different Agents May Have the
Same Symptoms

Based on the causal agents, the tens of thousands of plant diseases worldwide can be divided
into two categories: infectious and non-infectious diseases [36]. The detailed classification system
and disease examples are shown in Figure 2. Among them, non-infectious diseases are directly
or indirectly caused by inappropriate physical, chemical, and other abiotic environment factors.
The excess, deficiency, or improper balance of light; air circulation, water, or essential soil elements;
unfavorable soil moisture–oxygen relations; high or low temperatures; pesticide injury; and many
other external factors are the main disease-causing agents. The blossom-end rot of tomatoes and
pepper, which is caused by wide fluctuations in soil moisture and temperature levels, is a typical and
prevalent non-infectious disease.
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The infectious agents are called pathogens and can be grouped as follows: viruses, bacteria,
fungi, nematodes, and parasitic seed plants. Among them, the studies of parasitic seed plants are
mainly focused on mistletoe, dodder, and witchweed. However, it is not the major disease of concern
for non-destructive monitoring. Most studies have focused on viruses, bacteria, fungi, nematodes
which have been causing infectious diseases all along. They can range in severity from mild leaf or

https://www.baidu.com


Remote Sens. 2020, 12, 3188 5 of 34

fruit damage to death [36]. Specific pathogens affect their hosts differently, resulting in a suite of
damage symptoms. Bacterial diseases can be grouped into four broad categories based on the extent
of the damage to plant tissue and the symptoms that they cause, which may include vascular wilt,
necrosis, soft rot, and tumors. Differently, the symptoms of viral diseases are mainly manifested in color
changes, malformations, necrosis, and stunting or dwarfing. However, because of the fungal diseases
accounting for 80%~90% of diseases, the symptoms of the diseases are also changeable. Generally
speaking, it can be divided into three categories: necrosis, hyperplasia, and wilting. Furthermore,
the common symptoms of nematode injury include stunting, loss of green color, dieback, slow general
decline, wilting, and decay.

It can be seen that different plant pathogens would cause a variety of symptoms and damages,
which form the basis for hyperpectral-based plant disease monitoring. It should be noted that not
all plant diseases are suitable for hyperspectral-based detection as some of them lack identifiable
characteristics. If only from the perspective of hyperspectral detection, the disease symptoms are
mainly grouped into four categories: the reduction of biomass, decrease in leaf area index; lesions or
pustules due to infection; the destruction of pigment systems and wilting [37].

As can be seen from the pathogen symptoms labeled in Figure 2, all four categories of pathogens
can cause the necrosis of the host plant, which is the most conspicuous result of plant disease.
Furthermore, both viruses and nematodes often cause changes in color (yellowing, loss of green, and so
on), and stunting or dwarfing. Wilt is also a common symptom, and the symptoms generally focus
on two main parts: vascular wilt and twigs. Correspondingly, the reasons also focus on two aspects.
One is the invasion of bacteria into the vascular system of the plant and the other is that nematodes
can cause a lack of response to water and fertilizer. It can be found that although the symptoms and
signs of different pathogen categories are specific, they may concentrate in the same organ on the one
hand, and on the other hand, they are not unique [36].

The examples and analysis above obviously show that, once one symptom occurs, it is difficult to
say which pathogen is at play. Similarly, it also is not easy to judge whether the symptom is caused by
only one pathogen.

2.2. Host Plant–Pathogen Interaction Is a Complex Dynamic Process with Changes of Various Physiological
and Biochemical Parameters

The infection with a pathogen is a dynamic process. Toxins, enzymes, and extracellular
polysaccharides and other substances are all produced and changed in interacted process with
the host plant. Except for the pathogen and plant connection stage, Figure 3 shows the three fairly
distinct and significant stages of plant–pathogen interaction: inoculation (the pathogen invades the
host), incubation (the latency period, in which the pathogen is parasitic in the plant), and symptom
appearance (the plant shows disease symptoms and new pathogens may be produced). Each stage
often leads autonomously to the next, once pathogenesis has been triggered by the pathogen [38,39].
Not only do the physiology and biochemistry of the host plant change in this dynamic process, but some
pathogens change as well. Thus, the entire process is very complex.
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In the terms of the host plant, in order to resist the invasion of pathogens, except for relying
on the existing physical barriers, the complex immune system is also constantly functioning.
Pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity
occur one after another in the active plant defense process [38,40]. In this process, the concentration of
Ca2+ increases, the extracellular fluid is alkalized, the membrane potential is depolarized, and oxynitride
as well as the synthesis of reactive oxygen and hormonal readiness change significantly [41].

2.3. Hyperspectral Technology Has Its Specific Necessity in Plant Disease Detection

Although manual investigation by experts is still the most commonly used method for the
detection and diagnosis of plant diseases in field crops, the complex pathogen categories, disease
symptoms, and plant–pathogen interaction processes make it difficult to detect the exact plant
diseases in a timely and accurate manner. Most traditional invasive methods are time-consuming
and error-prone. The development of digital agriculture has provided a new means of disease
monitoring over the past few decades. With the development of optical remote sensing technology,
from visible–shortwave infrared (VIS–SWIR), fluorescence and thermal imaging to synthetic aperture
radar (SAR), light detection and ranging (LIDAR) systems, these technologies successfully expand
human perception and assessment capabilities [34,42]. These provide us with the possibility of another
direction in plant disease detection and monitoring. In particular, the application of hyperspectral
technology in disease monitoring is exciting because it can cover a spectral range of up to 350–2500 nm
and can yield a continuous spectral resolution less than 10 nm. These characteristics are not only
suitable for disease differentiation based on slight differences, but also for the monitoring and analysis
of dynamic disease processes, especially for detection during the latency period before symptoms are
visible to the human eye.

In short, healthy green plants have low reflectance at VIS wavelengths, high reflectance at NIR
wavelengths, and low reflectance in wide wavebands at SWIR wavelengths. These three characteristics
correspond to photoactive pigments; cell structures; and water, respectively. Generally, this specific
spectral reflectance phenomenon corresponds to the changes of the physiological and biochemical
parameters in the process of disease occurrence: due to the existence of the strong absorption of
chlorophyll and carotenoids, there are two absorption valleys in the blue and red spectrum, and a
strong reflection peak in the green light band; between 700 and 770 nm, the reflectance curve increased
sharply, showing an approximate straight line shape, and the slope of this part was related to the
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content of chlorophyll per unit area of vegetation; further, there are two absorption valleys near 1400
and 1900 nm of SWIR, which are mainly caused by the strong absorption of water [43].

Specifically, the changes of pathogens themselves and the plant–pathogen interaction process can
be indicated by the changes in tissue color, leaf shape, transpiration rate, canopy morphology, and plant
density, and this process of biochemical changes is bound to be reflected in a certain reflectance
waveband. The higher the spectral resolution, the more meticulously the changes and differences
it can react to. Furthermore, every individual host–pathogen interaction has specific spatial and
temporal dynamics, and the specific processes influence different electromagnetic spectrum ranges.
Oerke et al. [44] performed a detailed study of the spectral time-series changes of grapevine leaves
infected by Plasmopara viticola. They found that as the number of days post inoculation (dpi) increased,
the difference between the spectra of healthy and infected leaves increased, as did the spectral number
that can be used in disease identification. It can be seen that 400, 1400 and 1900 nm can be used in
early detection; red edge wavelengths can be used in disease detection after 8.5 dpi; and 500–700 nm
can also be used after 9.5 dpi. This phenomenon is closely related to the activities of pathogens and
host plants. Similarly, in the study of the spectral changes of winter wheat infected by yellow rust,
we measured the spectra of infected and healthy winter wheat plots at the canopy scale every nine
days from 2 dpi, respectively. After eliminating the abnormal interval, the spectral curves of the
infected and healthy canopy were drawn and shown in Figure 4, which displays the difference in
effect of the development of yellow rust on the spectral reflectance of winter wheat as the dpi increase.
Thus, the spectral dynamic changes are not only obvious at the leaf scale, but also at the canopy scale.
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The application of hyperspectral technologies makes it easy to assess disease information quickly,
non-destructively, and accurately, including disease type identification [43], disease detection [45,46],
disease mapping [47], as well as severity and loss assessment [48]. Table 1 lists a series of plant
diseases affecting major crops. This statistic is based on the research articles discussing hyperspectral
technologies. According to the statistics and comparison of relevant articles, fungal diseases affecting
the leaves of winter wheat and sugar beets have been the primary focus in recent years. According to
statistics and analysis, the sensors, platforms, and scales of studies of the same plant diseases are not
the same. Thus, the data acquired and data analysis methods are not identical.
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Table 1. Summary of crops and the corresponding plant diseases detected by spectroscopy or hyperspectral techniques.

Crop Types Crop Names Disease Names Disease Types Main Infected Sites Sensors/Platforms/Scales Analysis Approach References

Cereal Crops

Wheat

Wheat stripe rust Fungal diseases Leaves * Analytical spectral device
(ASD)/handheld/leaves and canopy

Partial least squares
discriminant analysis (PLSR),

support vector regression
(SVR), and Gaussian process

regression (GPR)

[49]

Wheat leaf rust Fungal diseases Leaves * ASD and digital
camera/handheld/leaves

Linear spectral mixture
analysis, Fisher function [50]

Wheat powdery
mildew Fungal diseases Leaves * ASD/handheld/canopy

Continuous wavelet analysis,
Fisher’s linear discrimination
analysis (FLDA) and support

vector machine (SVM)

[51]

Fusarium head blight Fungal diseases Ears * and stalks
ImSpector V10E and ImSpector

N25E/indoor measurement
platform/spikelets

Linear model fitting, spectral
vegetation indices (SVIs) [42]

Rice

Rice sheath blight Fungal diseases Leaves * ImSpector V10E/indoor measurement
platform/single plant

Linear discriminant analysis
(LDA) and SVM [52]

Rice blast Fungal diseases Leaves *, stems and ears ORCA-05G/darkroom/panicle
“Bag of spectra words” (BoSW)
model and chi-square support

vector machine (chi-SVM)
[53]

Maize

Grey leaf spot disease Fungal diseases Leaves *
ASD and three multi-spectral satellite
Resampled/handheld/satellite/leaves

and canopy
Random forest algorithm (RF) [54]

Leaf spot disease Fungal diseases Leaves * and bracks ASD/handheld/leaves Guided regularized random
forest (GRRF) and RF [55]

Ear rot Fungal diseases Ears and kernels * SisuChema/HgCdTe detector/fungal
isolates

Principal component analysis
(PCA) and PLSR [56]

Legume Crops Soybean
Soybean anthracnose Fungal diseases Stems *, pods and leaves * Pika XC/mounting tower/stems

Genetic algorithm as an
optimizer and SVM as a

classifier
[57]

Yellow mosaic virus Viral disease Leaves * ASD/handheld/leaves Spectral derivative and red
edge analysis [58]
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Table 1. Cont.

Crop Types Crop Names Disease Names Disease Types Main Infected Sites Sensors/Platforms/Scales Analysis Approach References

Tuber Crops Potato

Late blight disease Fungal diseases Leaves * and fruits Rikola/unmanned aerial vehicle
(UAV)/plots

Simplex volume maximization
(SiVM) and pixel-wise

log-likelihood ratio (LLR)
calculation

[59]

Potato virus Y Viral disease Leaves * Specim FX10/tractor/canopy Deep learning, fully
convolutional neural network [45]

Sugar Crops Sugar Beet

Cercospora leaf spot Fungal diseases Leaves * ASD/handheld/leaves Spectral signature analysis and
vegetation indices [60]

Beet rust Fungal diseases Leaves * ImSpector V10E/
microscope/tissue Spectral angle mapper (SAM) [61]

Beet powdery mildew Fungal diseases Leaves * ASD/leaf clip/leaves SVIs and SVM [62]

Root rot Fungal diseases Roots (leaves) 1 ASD/handheld/canopy SVIs and nonlinear regressions [63]

Vegetables Tomato

Gray mold Bacterial diseases Fruits, leaves * and stems ImSpector V10E/indoor measurement
platform/leaves

K-nearest neighbor (KNN),
C5.0 models and feature rank [64]

Tomato yellow leaf
curl virus Viral disease Leaves * Imspector V10E-QE/indoor

measurement platform/leaves
Grey level co-occurrence matrix

(GLCM) [65]

Fruits Citrus

Citrus canker Bacterial diseases Fruits * and leaves * Pika L 2.4/mounting tower and
UAV/leaves, fruits and single plant

Radial basis function (RBF) and
KNN [66]

Huanglongbing
(Citrus greening) Bacterial diseases Fruits *, leaves * and roots AISA Eagle/airborne/canopy SVM [67]

* indicates the main organs that hyperspectral-based studies focus on; 1 indicates sugar beet root rot which mainly infects the roots but the main organ that hyperspectral-based studies
focus on is leaves.
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2.4. Applicable Hyperspectral Sensors and Platforms Are Different for Different Pathogens with Different Symptoms

When a pathogen interacts with the host plant, color changes and necrosis symptoms lead the
reflectance in the VIS range to increase and the red edge position to shift to shorter wavelengths
(“blue-shift”). However, biomass reduction linked to senescence, stunting or dwarfing, and defoliation
decreases the canopy reflectance in the NIR band. For example, Wahabzada et al. [22] analyzed
the relevant spectral topics and corresponding biochemical labels of three classical foliar diseases
of barley (powdery mildew, net blotch, and brown rust) in the VIS and NIR range. Their research
results indicated that the best wavelengths for powdery mildew pigment causing degradation are
concentrated in the 500–650 nm range, while the best wavelengths for net blotch-caused chlorosis are
concentrated in the 500–580 nm range, particularly at 550 nm and 700 nm. It is thus clear that different
pathogens act in different ways, resulting in different host symptoms, so the suitable monitoring
wavelengths are different.

Furthermore, as can be seen from Table 1, most non-imaging sensors are handheld and do not
require sophisticated measurement systems. These sensors are widely used in laboratory, greenhouse,
and field conditions [68,69]. However, most imaging sensors generally need to be installed on platforms
to remain stable and form hyperspectral imaging systems (HSIs) for different scale applications.
Laboratory-based hyperspectral imaging systems, in a manner, can provide the pure pixels of pathogens,
tissues, organs, or plants because of its high spatial resolution. These pure pixels can provide the
precise spectra of the corresponding observation objects. Field- and low-altitude hyperspectral imaging
systems contain various mountable platforms and the flexibility of the platforms allow them to span
leaf, single-plant, canopy, and even plot and regional scales in disease detection. Furthermore, airborne
and satellite hyperspectral systems are more suitable for regional scales, but owing to a lack of flexibility,
attention to the canopy and plot scales by airborne and satellite hyperspectral systems has declined
slightly in recent years.

Different pathogens have their own unique interaction behavior with the host plant, and their
stressed tissues are also different at different stages. Thus, the sensitive spectral waveband and optimal
observation scales are going to be different. Applicable hyperspectral sensors and platform selection
are important for different pathogens with different symptoms.

3. Main Hyperspectral Technologies for Plant Disease Analysis: Choosing Suitable Methods to
Achieve Target Details

3.1. Choosing a Suitable Data Measurement System Is a Prerequisite for Obtaining Accurate Results

Preceding detailed data analysis, data acquisition is the first and important step in any
hyperspectral image-based plant disease analysis. Different platforms and their combinations with
different sensors can form different hyperspectral measurement systems. For the purpose of plant
disease research, choosing a suitable data measurement system is a prerequisite for obtaining accurate
results. Figure 5 shows platforms and their corresponding observation scales. From the cell and tissue
scale to the region and landscape scale, the corresponding HSIs of each scale have many choices.
Sensor performance and spatial resolution requirements need to be considered simultaneously when
constructing hyperspectral measurement systems.
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Figure 5. Commonly used platforms and scales in plant disease research by hyperspectral techniques.
Wheat FHB is cited as the example. (A–C) are the examples of indoor measurement platform at different
scales. They are scanning electron microscope, stereo microscope platform, and a typical indoor
measurement platform, (D) is a field vehicle platform of hyperspectral imaging, (E) is a unmanned
aerial vehicle platform, (F) is a photo of satellite platform; (a–g) are FHB-infected winter wheat
hyperspectral images at different scales. They indicated the disease mycelium, infected spikelets, ears,
plants, canopy, plots and region hyperspectral images, respectively.

Generally, a laboratory-based system includes a suitable platform, a hyperspectral sensor,
a computer, and light sources. Microscopes, mounting towers, and tripods are the commonly
used platforms in laboratory-based systems in darkrooms, laboratories, and greenhouses. These HSIs
focus on small-scale analysis, such as on the tissue and leaf scales, and the maximum scale is the
single plant scale. Scanning electron microscopy (SEM, Figure 5A) and stereoscopic microscopy
(Figure 5B) correspond to the smallest scale in plant disease analysis. However, SEM requires fairly
strong knowledge of biology, is typically used alone, and is not common in hyperspectral analysis.
Thus, disease analysis at the pathogen cell and tissue scales relies more on the stereoscopic microscope
platform with hyperspectral sensors (called hyperspectral microscope imaging, HMI). Nanometer-
and millimeter-level spatial resolution makes it possible to establish an accuracy relationship among
the hyperspectral information, plant phenotype, physiological parameters, and even genotypes [12,70].
In darkrooms, greenhouses, and laboratory environments, mounting tower- and tripod-based platforms
and other sensor mounting equipment are generally called indoor optical measurement platforms
(Figure 5C). Based on such platforms, the high-resolution and high-accuracy evaluation of processes
during pathogenesis can be achieved under highly controlled conditions [28]. It is worth noting that
analysis at the leaf scale, individual plant scale, and even at the canopy scale can be realized using
such platforms [44,71,72]. It is easier to monitor the changes of pathogens and spectra throughout
the disease development process via time-series analysis. These laboratory-based system platforms
are the most suitable for the basic analysis at the tissue and leaf scales. For single plant and canopy
scales, high spatial resolution and controlled conditions are the greatest advantages compared with
field-based platforms. Thus, these platforms are the best for basic research under laboratory conditions
such as crop breeding and resistance gene analysis. However, they are low throughput and not suitable
for the promotion of practical applications.

Compared with laboratory-based hyperspectral systems, field- and low-altitude-based
hyperspectral systems generally contain suitable platforms, hyperspectral sensors, and computers
or operating systems. Tripods, vehicles, robots, and stationary rail systems are the commonly
used field-based platforms (Figure 5D) in plant disease detection [73–75]. Although field-based and
laboratory-based hyperspectral platforms have a certain degree of overlap, each has its own advantages.
The field-based platform retains high spatial resolution and improves the measurement throughput
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to some extent. Low-altitude platforms are miniature RS platforms with high mobility and low cost.
They are less affected by weather factors and take-off site conditions and can simultaneously meet
the needs of high spatial resolution and high throughput. Manned aircraft, helicopters, unmanned
aerial vehicles (UAVs), and balloons have been used in agricultural RS applications. In particular,
UAV-based platforms have become the most prominent because they are light, flexible, and easy to
operate for plant disease detection [76,77]. Although they have both high spatial resolution and high
throughput, UAVs are more suitable for canopy-scale analysis than organ-scale. Field-based and
low-altitude platforms are the best for phenotyping and precision farming. The presence of mixed
spectra makes them unsuitable for basic research and resistance genes analysis, but their high spatial
resolution and high-throughput disease detection means that they cannot be ignored. Furthermore,
various mountable platforms and the flexibility of the platforms allow them to span leaf, single-plant,
canopy, and even plot and regional scales in disease detection. It can be expected that they will play
key roles in field phenotyping and plant disease detection in the near future [28].

For the large-scale assessment and forecasting of plant diseases, airborne and satellite platforms
have shown to be promising. The platform and sensor are relatively fixed. Airborne platforms have
also often been employed at the canopy scale [67,78,79]. The airborne and satellite systems have always
been used with handheld or non-imaging sensors to assist in improving the analysis accuracy [78].
Furthermore, although the spatial resolution of satellite platforms is the lowest, the single image
coverage is the widest. It can be said that it is the best choice for regional scale research and predicted
research based on environmental factors. Usually, considering the difficulty of data analysis and the
amount of data storage, satellite platforms equipped with multi-spectral sensors are more often applied
in plant disease mapping and loss assessment on regional scales [54,80].

3.2. Complete and Appropriate Pre-Processing Guarantees Accurate Results

The main objectives of data pre-processing are to improve contrast and eliminate noise to reduce
the difficulty of data analysis and ensure data accuracy. The sensor noise and error; stability of the
platform; environmental effects; shape, size, and quantity of samples; and light source and background
conditions all influence the hyperspectral data quality. Currently, the pre-processing of non-imaging
hyperspectral reflectance signals is relatively simple. The method of multiple measurements and
averaging is often used to eliminate human error in measurement. Many studies have utilized the
method of direct deletion to eliminate abnormal wavebands. Moreover, spectral smoothing and
filtering are employed in pre-processing (as will be introduced in the following section).

Regarding hyperspectral data imaging, atmospheric calibration, geometric correction, and spectral
calibration are the three main aspects of hyperspectral data pre-processing. Atmospheric calibration
is mainly aimed at the surface reflectivity error caused by atmospheric scattering and absorption
and is applied to satellite scale data analysis; geometric correction is mainly aimed at the geometric
distortion caused by terrain changes, platform tilt, etc. and is applied to field, low-altitude, airborne,
and satellite-scale data analysis. These two steps are mainly used for imaging hyperspectral data,
but spectral calibration is necessary in both the imaging and non-imaging cases. Spectral calibration
is crucial and can involve complex algorithms [39]. Many techniques can be used, such as spectral
normalization, spectral interpolation, and radiation transfer models [81–83]. In addition to the above
three main preprocessing steps, image masking, contrast improvement, and even edge detection
usually constitute the steps of image pre-processing. Image enhancement is the most important step in
some cases of plant disease detection and image vision analysis. Its central objectives are to remove
data noise and highlight the characteristics of the target features. To achieve these goals, various
techniques such as data filtering (Gaussian filtering, linear filtering, etc.), spectral smoothing (moving
average smoothing, minimum noise fraction rotation, Savitzky–Golay smoothing, etc.), and image
enhancement (histogram equalization, homomorphic filtering, etc.) can be used. Zhang et al. [83]
proposed one hyperspectral microscope image pre-processing framework for FHB-infected kernel
extraction. The framework based on image spectral calibration and performed normalization using
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white and dark reference images, covering the image to grayscale, image binarization, and the
application of threshold segmentation. We cannot conclude what pre-processing methods would be the
most effective. The quality and type of image are fundamental in selecting a pre-processing procedure.
In addition, the pre-processing method must be suitable for the actual application requirements.

3.3. Special Hyperspectral Technologies and Frameworks for Different Plant Disease Analysis Directions

Based on literature statistics, it is analyzed that the key points of plant diseases research mainly
contain resistance gene analysis, plant–pathogen interaction analysis, non-destructive detection and so
on. Among them, plant disease detection, disease severity assessment, and classification are three main
focal points which are based on hyperspectral techniques in remote sensing. For plant disease analysis,
large amounts of hyperspectral data are always gathered for monitoring plant physiological changes
under biotic stresses, which are present throughout the whole growth stage [37,55,76]. This is bound
to make hyperspectral-based plant disease analysis face a huge among of data. Thus, how to analyze
the hyperspectral data effectively and obtain effective spectral features quickly become the recently
emerging topics, which will form the most prominent characteristics of hyperspectral-based analysis
framework [28,37]. Based on this framework, each different analysis point has formed its special system.

3.3.1. Detection Is One of the Earliest, Basic but Important Applications in Hyperspectral-Based
Plant Disease

Plant disease detection includes identification, classification, and mapping, and is one of the
main purposes of hyperspectral plant disease analysis from the cellular to regional scale. In general,
there are two main situations involved in hyperspectral-based plant disease detection: (I) distinguishing
infected plants from healthy ones and (II) identifying a specific disease from others. The first situation
involves only one crop species and one pathogen and the second situation only focuses on one
pathogen, classifying all other possibilities as areas of non-interest. For non-imaging hyperspectral
data, the reflectance of healthy and infected organs must be acquired separately, and the research
generally spans the leaf, plant, and field scales. However, the methods and scales of data acquisition
are basically unlimited in hyperspectral imaging. Either way, the hyperspectral-based plant disease
detection has a relatively simple but mature framework.

Couture et al. [68] used non-imaging hyperspectral data to detected the Potato Y-virus infected
leaves. They conducted a partial least squares-discriminant analysis (PLS-DA) model to classify the
infected leaves from the healthy ones based on the original full range spectral data, and the mean
validation kappa was 0.73. Moshou et al. [84] developed a normalization method based on the
reflectance and light intensity adjustments and constructed four vegetation indices (VIs) as the input
data of multi-layer perceptron (MLP) neural network. Based on the constructed MLP, they successfully
detected the yellow rust infected winter wheat plants, for which the classification accuracy reached up
to 99.4%. In summary, the basic framework of hyperspectral-based plant disease detection contains
two main parts: classification parameters determination and classification algorithms selection.

The above examples showed that whether using non-imaging or imaging hyperspectral data,
the classification parameters selection of plant disease detection can be analyzed from two aspects:
classification based on full range spectral data and classification based on subset features [74]. The full
range spectrum information that is utilized in the detection or classification can be the original spectrum,
the spectrum pretreated by smoothing, or the first- or second-order derivative spectrum, along with
the logarithmic transformation of the reciprocal of the spectral reflectance [78]. Moreover, in the case
of using subset features, feature extraction and selection are essential. Some statistical classifiers
perform feature selection during operation, but additional feature selection is conducted before final
classification in most cases. The features can obtain spectral vegetation indices (SVIs), special disease
indices (SDIs), texture and spectral features based on feature extraction, optimal wavebands selected
by dimension reduction algorithms, derivative spectra, and other transformed spectra. The detailed
information will be discussed in Sections 3.3.2 and 3.3.3.
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For the classification algorithms selection, according to the previous studies on plant disease
detection by imaging hyperspectral systems, the simplest and most widely employed image
segmentation algorithm is threshold segmentation [85,86]. Lu et al. [65] used the Youden index
(Youden index = Sensitivity + Specificity − 1) as the threshold to classify yellow leaf curl-infected
and healthy tomato leaves. In total, 37 features (including the spectral reflectance, first derivative
spectra, band ratio, and texture features) were extracted and calculated, and then the receiver operator
characteristic curve analysis was employed to determine the sensitive features. The Youden indices
of the sensitive features were calculated, and thresholding was used to complete the infected leaf
detection. The authors found that when the Youden index of the mean correlation extracted from
the 720/840 nm ratio image was 1.0, the detection performance was the best. Jin et al. [46] applied a
deep neural network (DNN) classification algorithm to the pixels of hyperspectral image to accurately
discern the FHB disease area of wheat ear. The red edge position threshold method was also used
by Li et al. [67] to separate Huanglongbing (HLB) diseased and healthy samples from citrus groves
based on both field and indoor ground spectral data. The accuracy of the research was 90% in
this case. Furthermore, machine learning classification methods such as the maximum likelihood
classifier (MLC, [87]), support vector machine (SVM, [88]), neural network (NN, [82]), and even
deep learning [46] methods are commonly used to achieve the plant disease detection. In the study
of detecting the phaeosphaeria leaf spot infestations in maize crop by Adam et al. [55], the guided
regularized random forest (GRRF) and the traditional random forest (RF) classification algorithms
were compared. Under the same training and validation datasets, the infected plants’ classification
overall accuracy of GRRF reached 89.7% with six optimal wavebands, the RF only reached 81.6%.
Thus, choosing the suitable classification algorithm, which depends on the specific situation, can not
only decrease the data volume, but also improve the detection accuracy.

3.3.2. Diseases Classification Is the Attempt to Identify and Label the Pathogens Affecting the
Plant Simultaneously

Disease classification can be seen as an extension of disease detection, but instead of trying
to detect only one specific disease based on different conditions and symptoms, it is attempted to
identify and label the types of pathogens affecting the plant [17]. For non-imaging hyperspectral data,
plant disease classification is more concerned with sensitive wavelength selection and SDIs construction.
The main points of research in using imaging hyperspectral data for plant disease classification include
extracting the infected tissue and plant, analyzing the differences between pathogens, and determining
the final classifiers. Figure 6 shows the basic hyperspectral image classification workflow for plant
disease classification.
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Image segmentation is used as a pre-processing step and is typically performed before the formal
spectral analysis in order to extract the target objects from the background or form a mask for the
formation of the region of interests (ROIs) for further information extraction [89]. Pandey et al. [90]
used wavebands at 705 and 750 nm (I705 and I750) to produce a specific normalized different vegetation
index (NDVI) as (I750 − I705)/(I750 + I705). This specific NDVI index was used to segment plants
from the background by setting a universal threshold of 0.20. Then, the average spectral reflectance of
the plant pixels was extracted for the PLSR model fitting for chemical property prediction. A similar
process was developed to assess the disease severity of Fusarium-damaged oat kernels under a
benchtop hyperspectral system [91]. It consists of the transformation of the raw signal into percent
reflectance, threshold-based background segmentation, and normalized spectral transformation to
remove scattering effects. The watershed algorithm is also a popular image segmentation method,
which is often used for single tree crown delineation and kernel and leaf segmentation [92]. In addition,
some of the methods that have been applied effectively to gray-scale, color, and multispectral images
have been optimized purposefully and play key roles in hyperspectral image segmentation, such as
Grabcut [93], the method of Otsu [94], and edge detection [95,96].

Overall, image segmentation algorithms can run through almost all scales from the sub-cell
scale to the country scale. They can be applied based on the threshold, clustering, morphological
operations, edge or contour detection, and watershed transformation. The decrease in the data
volume substantially improves the data analysis efficiency. In image-based plant disease identification,
detection, and mapping research, image segmentation is a basic and important image processing step
for hyperspectral-based plant disease analysis.

Feature extraction constitutes one of the pillars of hyperspectral imaging-based object
identification and classification [97]. Different diseases have different symptoms in different plants.
Therefore, in hyperspectral image-based plant disease classification, the main basic features include not
only spectral features, but also spatial features, texture features, and other effective information that can
be obtained using image data. Thus, feature extraction can be considered as the most important step in
hyperspectral-based classification. Its target is extracting and forming the most relevant new feature
vectors for plant disease detection by combining and optimizing the spectral and spatial features,
then feeding them to a set of classifiers or machine learning algorithms.

Some data dimensionality reduction algorithms involve the elimination of autocorrelation
wavebands by constructing new variables, such as principal component analysis (PCA), successive
projections algorithm (SPA), and so on. These algorithms are also classical in feature extraction.
The minimum noise fraction algorithm (MNF), canonical correlation analysis (CCA), projection
pursuit, orthogonal subspace projection (OSP), and discrete wavelet transform (DWT) are also classical
hyperspectral data feature extraction algorithms. PCA is a typical example, and many extension
algorithms have been proven. In the research conducted by Xie and He [98], PCA was performed
to obtain the principal components (PCs) from the spectral and texture features of early blight
disease-infected eggplant from hyperspectral images; then, the PCs were utilized to construct K-nearest
neighbor (KNN) and AdaBoost classification models to detect the infected samples. Furthermore,
many improved methods based on traditional image feature extraction methods have been proposed
with the improvements in the spatial and spectral resolutions of images. Wei [99] analyzed the
disadvantages of traditional manifold learning and nonnegative matrix factorization (NMF) in
hyperspectral image feature extraction and proposed two improved algorithms: local embedding based
on spatial coherence (LESC) feature extraction and regularized NMF feature extraction. Furthermore,
considering the spectral and spatial features simultaneously, many spatial–spectral feature extraction
algorithms have been developed. Knauer et al. [100] proposed a random forest-based spatial–spectral
feature extraction algorithm to detect powdery mildew-infected grape bunches and compared the
findings with the traditional RF classifier results. This spatial–spectral feature extraction algorithm
contains linear discriminant analysis (LDA)-based spectral feature extraction and integral image-based
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texture feature extraction. These steps led to improved classification accuracies reaching 0.998 ± 0.003
for detached berries.

Feature extraction for hyperspectral data has been the crucial issue in hyperspectral data processing
to preserve the key spectral information and to perform dimension reduction. The essence of feature
extraction is to find a means of feature mapping, rather than to perform simple relevant analysis.
Feature extraction can improve the classification accuracy and effectiveness; however, it has been an
arduous and difficult task.

Image classification in hyperspectral image-based plant disease analysis includes techniques
that classify data into a healthy category and different pathogen or disease severity categories.
The aforementioned image segmentation and feature extraction methods are generally performed to
improve the efficiency of data analysis, which may not always be necessary in plant disease detection.
However, image classification is not a negligible step.

On the one hand, classical statistical classifiers are commonly used by building regression and
sometimes are also classified by using a covariance matrix, which compares the different classes [101].
Yeh et al. [102] used stepwise discriminant analysis (SDA) to diagnosis strawberry anthracnose.
The average accuracy of three-class classification (healthy, incubation, and symptomatic) was 80.7%.
The authors also provided two alternative classification methods: spectral angle mapper (SAM)
(machine learning using full spectral information) and simple slop measure (SSM, a statistical method
using red edge information). The average accuracy of SAM and SSM reached 82.0% and 72.7%,
respectively. On the other hand, SVM classification and its diffraction algorithms [42], SAM [79],
LDA [23], KNN [66], and other traditional RS machine learning classification methods, are also
commonly used in hyperspectral-based plant disease classification and detection. Furthermore,
NNs, such as single-layer perceptron (SLP), multi-layer perceptron (MLP), probabilistic NNs,
and deep learning methods are also available with a special emphasis on plant disease detection.
Moshou et al. [84] used MLP architecture to successfully detect yellow rust in wheat crop. Four optimal
spectral wavebands were selected by stepwise method from the hyperspectral images in wheat
field. According to compare the MLP and quadratic discriminant analysis (QDA) classification
results, the classification accuracy of MLP reached up to 98.9% and 99.4% for healthy and diseased
plants, respectively.

In the FHB-infected wheat kernel detection research by Shahin and Symons [86], threshold image
segmentation was used to separate the wheat kernels from the background and PCA was separately
employed to extract nine different features to classify sound kernels from Fusarium-damaged kernels
and then to classify the mildly and severely infected kernels. The overall accuracy can reach 92% by
using the LDA model classifier. Abdulridha et al. [72] used 10 nm and 40 nm resolution spectral image
indices (VIs) to detect the laurel wilt-affected trees. Both decision tree (DT) and MLP feature extraction
were used to select the optimal parameters in classification from the full spectrum and 23 SVIs.
The results obtained with MLP were better than those achieved with DT, with classification percentages
ranging from 98% to 100% in all datasets. To summarize the above arguments, hyperspectral image
classification is reliable in both multi-category-based plant pathogen detection and disease severity
identification. However, image segmentation and feature extraction, the first two steps shown in
Figure 6, are classified into data pre-processing sometimes for plant disease classification. Under this
condition, the main purpose of these pre-processing steps used in plant disease detection classification
is to improve the classification algorithm efficiency while ensuring accuracy. According to previous
research on the use of hyperspectral images in plant disease analysis, classification algorithms tend to
have a selection process based on correlation, although the classification utilizes the full spectrum,
which is characteristic of the hyperspectral classification of plant diseases. Table 2 shows the major
different methods of hyperspectral image classification for plant disease detection, identification,
and mapping.
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Table 2. List of major contributions according to different methods of hyperspectral image classification for plant disease detection, identification and mapping.

Plant and Diseases Targets * Scales Methods and Algorithms Classification Accuracy Reference

Sugar beet and Cercospora leaf
spot/powdery mildew/sugar

beet rust
Disease identification Leaf Spectral angle mapper

(SAM)

98.9% for Cercospora leaf spot at 8 dai;
97.23% for powdery mildew at 14 dai;
61.70% for sugar beet rust at 20 dai.

[61]

Wheat and Fusarium head blight Disease identification Spike

Support Vector Machine
(SVM) with reflectance
and spectral vegetation

indices (SVIs)

95.0% and 99.0% for two classes
classification using SVIs and reflectance;

76.0% and 77.0% for multiclass classification
using SVIs and reflectance;

[48]

Wheat and yellow rust
(Puccinia striiformis) Disease detection Leaf

Quadratic discriminant
analysis

(QDA)/self-organizing
map (SOM) NN

94.5% by using QDA;
Around 99% by using SOM NN [103]

Citrus and citrus bacterial canker
Disease severity classification
(asymptomatic, early, and late

symptoms)
Leaf/fruit/plant

Neural network radial
basis function (RBF);

KNN with SVIs.

94%, 96%, and 100% by RBF and 94%, 95%,
and 96% by KNN for three levels at leaf

scale; 92% canker detection at fruit scale and
100% and plant scale

[66]

Soybean and charcoal rot Disease identification Stem
Three dimensional

convolutional neural
network (3D CNN)

95.73% [88]

Wheat and stripe rust Disease identification and
mapping Canopy/plot Linear regression model —— [76]

* The targets of classification are divided into disease detection, disease identification, disease severity classification and disease mapping; —— The authors used SVIs fitting the linear
regression model and then mapped disease severity at the plot scale by model inversion, so there was one classification accuracy.
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3.3.3. Quantitative Diagnosis of Plant Disease Severity is the Main Direction of Hyperspectral
Disease Analysis

The evaluation criteria for plant disease severity are often the disease index (DI) and incidence,
which are clearly given in national or local standards [56,75]. In addition, according to the pathogens
and symptoms they caused, the pigment content, water content, and even structural parameters
are often regarded as indirect evaluation criteria, especially in non-plant protection and pathology
studies [104]. In summary, hyperspectral-based plant disease severity quantitative diagnosis also
have two main situations: (I) according to pigment, water content and other parameters’ changes to
choose effective spectral vegetation indices (SVIs) or constructing special disease indices (SDIs) and (II)
using direct model fitting and classification to achieve the disease severity inversion. In either of the
aforementioned situations, the detection of the organs infected with a specific pathogen is the first step.
Moreover, considering the huge data volume of hyperspectral datasets, the sensible and simple method
is to find only a small number of wavelengths and only consider their changes in the spectrum in the
severity quantification [101]. Figure 7 shows the two main directions of disease severity quantification.
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waveband and feature selection, there are two methods of constructing the final SDIs, one based on
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discriminant analysis; FLDA: fisher’s linear discrimination analysis.

SVI usage and SDI construction are the most optimal choices in hyperspectral plant disease
severity diagnosis. SVI can be used to detect the presence and relative abundance of pigments,
water, nitrogen, and carbon in plants as expressed in the solar-reflected optical spectrum [105,106].
All these physiological and biochemical indicators are dynamic changes throughout the whole growth
period of crops. The special growth period and special status have their special characteristics.
Thus, SVIs are considered to be the indices that reflect the growth stage of plants in remote sensing.
More than 150 SVIs have been reported in the scientific literature, and some have substantial biophysical
bases or have been systematically tested. According to the relevant wavebands and calculations of
similar properties, the SVIs can be grouped into broadband greenness VIs, narrowband greenness
VIs, light use efficiency VIs, canopy nitrogen VIs, dry or senescent carbon VIs, leaf pigments VIs,
and canopy water content VIs [107]. Table 3 lists some commonly used SVIs in plant remote sensing.
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These categories are all related to the quantitative diagnosis of plant diseases. The listed SVIs are
focused on the detection of pigments, water, nitrogen, and structure changes once diseases occur.
Among all SVIs, the NDVI is the most prominent. NDVI was confirmed to have good robustness in
many studies [78,105,108]. However, Devadas et al. [109] reported that a single SVI has some ability to
distinguish diseased plants (organs, leaves, and even plots scales) from healthy ones but is not ideal
for the separation of different diseases or disease grades. Sometimes, different SVIs have been utilized
together to perform the high-quality identification of different types of diseases [60,110], but this
process is somewhat tedious for practical application.

In the above situation, researchers have performed the targeted analysis of disease-specific
data and combined different wavelengths to constitute SDIs. In the FHB classification index (FCI)
construction research of Zhang et al. [83], the HMI of winter wheat spikelets was used as the data source.
The instability index (ISI) and spectral angle mapper (SAM) classifier (ISI–SAM) was used to extract
four sensitive single wavelengths firstly, and the correlation analysis was performed to determine
the most relevant difference in the spectral index at 668 and 417 nm. Then, an exhaustive searching
method was used to determine the weight of each feature and finally to construct the FCI. This SDI
construction process is almost completely consistent with the I-a direction in Figure 7. Furthermore,
Mahlein et al. [111] used this method to construct three separate SDIs to detect and monitor Cercospora
leaf spot, sugar beet rust, and powdery mildew of sugar beet plant. The RELIEF-F algorithm [112]
was used to select the key single spectral signatures and the normalized reflectance difference indices,
and also exhaustive searching was used to finish the construction of the four SDIs (the final SDIs are
shown in Table 4).

Direct model fitting and classification are the earliest and most intuitionistic approaches in
quantitative diagnosis. To diagnosis the disease severity by direct model fitting and classification,
statistical methods and machine learning algorithms are commonly used. Because statistical methods
are simple to understand theoretically and yield visible results, they are generally used in disease
severity quantification. Partial least squares regression (PLSR) is the most commonly used [43,113–115].
In the analysis of Zhang et al. [116] regarding Dendrolimus tabulaeformis disaster quantitative diagnosis,
PLSR was used to fit the piecewise model. They used both the full wavebands and optimal selected
wavebands as independent variables, respectively, and the coefficient of determination (R2) was
utilized to ensure the final diagnosis model. Four disease severity grades (healthy, mild, moderate,
and several) were divided based on the fitted defoliation percentage. This process is similar to
II in Figure 7. It is can be seen that in the entire process of disease severity inversion, the model
parameters and inversion method are two main aspects. The full spectrum, first and second derivative
spectra, spectrum after continuous wavelet analysis, red edge information (position, area, and so on),
and sometimes commonly used SVIs and SDIs can be used as parameters of model fitting. Fisher’s
linear discrimination analysis (FLDA), the SVM method, logistic regression, multiple linear regression,
Dirichlet aggregation regression, Bayes discrimination analysis, and some other model fitting methods
are also effective for hyperspectral information analysis. According to the statistical knowledge and
previous papers, the regression analysis methods are mainly used in plant disease monitoring and
severity assessment, like PLSR and SDA, while the discrimination analysis methods are mainly used in
plant disease detection and classification-based contexts such as linear discriminant analysis (LDA)
and quadratic discriminant analysis (QDA) [23,86,103,113,117].

It is not difficult to determine that no matter what the situation is, the optimal independent
variables’ determination is the most important step in the whole process. Thus, dimension reduction is
specific and significant for hyperspectral-based plant disease analysis. Optimal waveband selection has
always been a primary concern in hyperspectral data analysis. According to previous studies, principal
component analysis (PCA) is mainly used to remove information redundancy between original variables
and then reduce the variable dimension as much as possible [118]. This option is not always the best
but is the current standard method for this kind of application. Furthermore, the successive projections
algorithm (SPA) [119,120], ant colony optimization (ACO) [121], competitive adaptive reweighted
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sampling (CARS) [122], uninformative variable elimination (UVE) [123], genetic algorithms [25],
feature ranking [64], and many other methods have been used and validated in hyperspectral
waveband selection. Wang et al. [121] used CARS, ACO, and UVE algorithms simultaneously to
select key wavebands for the multi-parameter, non-destructive rapid detection of potato quality.
The algorithms of hyperspectral waveband selection are generally based on two principles: (1) the
selected band or band combination has the largest amount of information, and (2) the selected band or
band combination can facilitate the distinction between certain objects. Thus, it is necessary to determine
the best band selection method based on the two principles and algorithm operation rate. In addition,
the specific application requirements are considered in the premises of all analyses. It is noteworthy
that waveband selection, as the main method of hyperspectral dimensionality reduction, is used not
only in SVI or SDI construction, but also in image segmentation or classification and even in regression
and model fitting.
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Table 3. Some commonly used SVIs which relate to the changes in parameters (pigment, water, structure etc.) in plant disease diagnosis.

Index Formula Definition and Description Possible Symptoms Possible Diseases References

Normalized Difference
Vegetation Index (NDVI) NDVI = (NIR−Red)

(NIR+Red)
Used to analyze healthy and green vegetation.

It is robust over a wide range of conditions. All Almost all of green
plants’ disease * [124]

Green Chlorophyll Index
(GCI) GCI = NIR

Green − 1
Used to estimate the leaf chlorophyll content of

a plant.

Pigment

Myrtle rust
Powdery mildew

Stripe rust
Flavescence Dorée

Leaf spot

[125]

Transformed Chlorophyll
Absorption Reflectance Index

(TCARI)

TCARI =
3
[
(ρ700 − ρ670) − 0.2(ρ700 − ρ550)

( ρ700
ρ670

)] Indicates the relative abundance of chlorophyll. [126]

Photochemical Reflectance
Index (PRI) PRI = (ρ531−ρ570)

(ρ531+ρ570)

Sensitive to the changes in carotenoid pigments
(particularly xanthophyll pigments). [127]

Structure Insensitive Pigment
Index (SIPI) SIPI = (ρ800−ρ445)

(ρ800+ρ680)

Maximizes the sensitivity of the index to the
ratio of bulk carotenoids to chlorophyll. [128]

Red Green Ratio Index (RGRI) RGRI =
∑699

i=600 ρi∑599
j=500 ρ j

It is an indicator of leaf production and stress,
used to estimate the course of foliage

development in canopies.
[129]

Anthocyanin Reflectance
Index 1 (ARI1)

ARI1 = 1
ρ550
−

1
ρ700

Weakening vegetation contains higher
concentrations of anthocyanins, so this index is

one measure of stressed vegetation.
[130]

Carotenoid Reflectance Index
1 (CRI1)

CRI1 = 1
ρ510
−

1
ρ550

Weakening vegetation contains higher
concentrations of carotenoids, so this index is

one measure of stressed vegetation.
[131]

Red Edge Normalized
Difference Vegetation Index

(RENDVI)
RENDVI = (ρ750−ρ705)

(ρ750+ρ705)

Modification of the NDVI, using red edge
instead of the absorption and reflectance peaks
to enhance the sensitivity to small changes in

canopy foliage content, gap fraction, and
senescence.

Structure
Pigment

Apple scab

[132]

Modified Simple Ratio (MSR) MSR =
( NIR

Red )−1(√
NIR
Red

)
+1

Used to increase the sensitivity of vegetation
biophysical parameters. [133]

Moisture Stress Index (MSI) MSI = ρ1599
ρ819

A reflectance measurement that is sensitive to
increasing leaf water content.

Water Root rot
[134]

Normalized Difference
Infrared Index (NDII) NDII = (ρ819−ρ1649)

(ρ819+ρ1649)

A reflectance measurement that is sensitive to
changes in the water content of plant canopies. [135]

Normalized Difference
Nitrogen Index (NDNI) NDNI =

log
(

1
ρ1510

)
−log

(
1

ρ1680

)
log

(
1

ρ1510

)
+log

(
1

ρ1680

) Estimates the relative amounts of nitrogen
contained in vegetation canopies. Nutrient Yellow mosaic disease [136]

ρi indicate the reflectance at i nm; *: NDVI could be used for most diseases, but mostly concentrated on large-scale multispectral analysis.
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Table 4. Some special SDIs which were constructed based on hyperspectral data.

Plant and Disease Formula * Sensors Scales Methods and Algorithms Reference

Grapevine and
Flavescence Dorée SDI = −0.5× ρ1770 +

(ρ2208+ρ2019)

(ρ2208−ρ2019)
FieldSpec 3 ASD Leaf D.A.: Genetic algorithm (GA) for

feature selection [25]

Lemon Myrtle and
Myrtle Rust LMMR =

( ρ545
ρ555

) 5
3
×

( ρ1505
ρ2195

)
Spectral Evolution PSR+ 3500 Leaf D.A.: Random-forest-based for

feature selection [137]

Sugar Beet and Cercospora
Leaf Spot CLS =

(ρ698−ρ570 )
(ρ698+ρ570)

− ρ734 ImSpector V10E Leaf D.A.: RELIEF-F for
feature selection [111]

Sugar Beet and Sugar
Beet Rust SBRI = (ρ570−ρ513)

(ρ570+ρ513)
+ 0.5× ρ704 ImSpector V10E Leaf D.A.: RELIEF-F for

feature selection [111]

Sugar Beet and
Powdery Mildew PMI = (ρ520−ρ584)

(ρ520+ρ584)
+ ρ724 ImSpector V10E Leaf D.A.: RELIEF-F for

feature selection [111]

Winter Wheat and Fusarium
Head Blight ]FCI = 0.25× [2× (ρ668 − ρ417) − ρ539] UHD 185 Kernel

D.A.: Instability index-spectral
angle mapper (ISI-SAM) for

feature selection
[83]

Chinese Pine and Dendrolimus
tabulaeformis Tsai et Liu

P ={
43.8403− 31.8932× ρ522 + 29.8588× ρ710 − 28.5645× ρ738

271.0435− 583.3388× ρ522 + 163.2454× ρ710 − 824.7452ρ738

UHD 185 Plant

D.A. and D.B.: Instability index
between classes-successive

projection algorithm (ISIC-SPA)
for feature selection and PLSR for

model fitting

[116]

ρi indicate the reflectance at i nm; D.A. and D.B. indicate two SDIs’ construction methods shown in Figure 6 (direction A and B); * The names of SDIs are listed as the references showed,
and we used ‘SDI’ instead of when there is no specific name in the reflectance.



Remote Sens. 2020, 12, 3188 23 of 34

4. Discussion and Prospect

4.1. Identification of Different Pathogens and Discrimination of Biotic and Abiotic Stresses Are Always the
Primary Challenges in the Disease Research Field

As is well known, once a plant is in a diseased condition, it reacts with protection mechanisms.
This process leads to suboptimal growth, which can manifest as changes in variables such as leaf area
index, pigmentation, water content, surface visibility, and temperature. All the changes produce more
or less important effects on the plants’ (or canopy, leaves) spectral signature. However, as introduced in
Section 2, many pathogens and host plant–pathogen interaction processes can cause similar symptoms,
which may cause the problem of similar spectral signatures, appearing as the phenomenon of “different
bodies with the same spectrum”. Furthermore, the changes in spectral signature are not simply caused
by the aforementioned factors; rather, the effects of the measurement environment (solar condition,
light source, air humidity, etc.), the observation scales of the targets (canopies, leaves, tissues, etc.),
the carrying platform selection (satellite, airborne, laboratory, etc.), and the sensors differences also
cannot be ignored. Among many indirect factors, abiotic stresses can be seen as the greatest challenge,
because they have the same outbreak conditions as some pathogens and have a high probability of
causing non-infectious diseases. Under this condition, it is very difficult to identify the main factors
influencing the spectral signature changes if only using non-destructive methods.

The accurate identification of different pathogens and the discrimination of biotic and abiotic
stresses are always difficult and cause great challenges in disease research all the time. Even though
manual interpretation has been used until now and is often seen as the ground truth in various studies,
it is also difficult to obtain accurate results without incorporating biochemical analysis. Compared with
other non-destructive methods (RGB imaging, multi-spectral imaging, thermal imaging, fluorescence
imaging, etc.), there are more opportunities and possibilities to achieve pathogen identification and
abiotic discrimination using hyperspectral data because of the narrow bands. Susič et al. [115] used
hyperspectral imaging to detect root-knot nematodes (biotic stress) and the water deficiency (abiotic)
stress of tomato plants, respectively. The classification accuracy of machine learning classification
method can achieve up to 90%. The modern hyperspectral technologies that can meet these challenges
are focused in two main directions:

• Extension to smaller scales and higher spatial resolutions for pathogen identification.
Nowadays, the spectral resolution of hyperspectral technologies can reach 1 nm or higher,
which makes hyperspectral data more sensitive to the subtle differences caused by different
pathogens. However, the mixed pixel problems of lower spatial resolution data are more complex
with improved spectral resolution. The effects of the atmosphere, light source, background, etc.
are also relatively complex under lower spatial resolution. Thus, increasingly, many researchers
have extended the spatial resolution to the sub-cell level by microscopy. In the smallest scale case,
the characteristics of the spectral signature of each pathogen are exactly matched, which makes
it easy to accurately determine the spectral difference between pathogens on the same plant.
Furthermore, the development of UAV and other aviation facilities effectively improves the
flexibility of data acquisition. From another perspective, it is possible to rely upon the pathogen
changes in the plant–pathogen interaction process and the bioecological characteristics of different
pathogens to acquire hyperspectral data at different times to achieve effective pathogen division.

• Accounting for auxiliary data to realize discrimination of biotic and abiotic stresses. Almost
all infectious plant diseases (biotic stresses) only appear on individual plants in the early stage,
and they usually present point distributions before large-scale outbreaks. However, abiotic
stresses, including both nutrient stresses and meteorological disasters, occur across wide ranges,
and there is no extension process. Biotic stresses show the inhomogeneity of spectral characteristics,
correlation indices, and features in hyperspectral images, while abiotic stresses have relatively
even distributions. Thus, biotic and abiotic stresses can be discriminated based on their symptom
distributions. Nevertheless, the combination with meteorological, soil, and field management
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data in the early stage and at the field or relatively large scales is necessary for the implementation
of discrimination. Once an infectious disease breaks out, it is necessary to coordinate changes in
meteorological data in the process of disease development with spatial distribution analysis.

Based on the above analysis, although the identification of different pathogens and the
discrimination of biotic and abiotic stresses are always the primary challenges, the development
and improvement of RS and the effective adjustment of spectral, spatial, and time resolutions provide
opportunities to achieve these objectives.

4.2. Plant Disease Early Warning Is the Key Point of Applying RS Technologies to Field Work

Limited by various national policies and agricultural development situations, the application
of RS remains at the level of scientific and governmental research. Farmers have little knowledge of
RS technology, especially for the application for plant disease detection. In addition, RS applications
are mainly focused on disease loss assessment for management and have had relatively broad trends
in agricultural insurance in recent years. Generally, farmers apply pesticides before diseases occur
to prevent the occurrence of conventional diseases without considering the area or dosage. Once a
special disease occurs in the process of crop growth, the same wide-range pesticide application is
selected. However, the large-area and high-dose usage of pesticides and chemical reagents has effects
on both the environment and humans. Therefore, it can be seen that the early warning of plant disease,
especially image information-based forecasting, is particularly important. Although there have been
some studies about plant diseases’ early detection for a long time, especially based on hyperspectral
technologies, but it has not been implemented [138,139]. Similarly, there are two main prospective
directions for plant disease early warning research according to the research scale:

• Early-stage detection of plant diseases with multi-source data at the field scale. In recent years,
many websites and mobile applications related to agricultural consultation and assistance have
increasingly provided crop disease detection and pesticide application guidance. The detection
and identification of each pathogen are mainly based on image information recognition by big
data analysis; thus, these analyses are always performed after the symptoms have appeared.
However, starting from the actual situation of agricultural production, the most important and
useful detection should be in the incubation or sporadic occurrence period. Various RS systems are
available that could potentially be applied to detect and monitor plant diseases such as VIS-SWIR
spectral systems, fluorescence and thermal systems, synthetic aperture radar (SAR), light detection
and ranging (LIDAR) systems, and even gamma rays, X-rays, and ultraviolet rays. Each system
has its advantages and disadvantages in plant disease detection. Zhang et al. [37] reviewed the
characteristics and potential of each system in plant disease detection. The VIS-SWIR system
has stable performance with respect to pigment changes and is always used after symptom
occurrence but performs poorly in early stage detection. Fluorescence and thermal systems
have considerable potential to capture pre-symptom physiological changes but are not suitable
for large-scale analysis. The SAR and LIDAR systems are more suitable for structural change
analysis. It is not difficult to find that if these different RS systems can be used together, they can
achieve complementary advantages, then achieve a plant disease incubation period detection at
the field scale.

• Early warning of plant diseases on the regional or larger scale. The research conducted
by the National Center for Atmospheric Research (NCAR) of America has shown that the
land surface temperature exhibits a rising trend because of the increase in greenhouse gas
emissions and destruction of the ozone sphere, and this rising trend has intensified since the
1970s [140]. Globalization and human activities promote the rapid spread and distribution of plant
pathogens, and the globalization climate changes indirectly influence disease occurrence and plant
distributions. However, although there has been some research on plant disease warning under
climate changes, most studies are focused on niche simulations based on independent time points
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at small scales [141,142]. For instance, the Intergovernmental Panel on Climate Change provides
regular scientific assessments on climate change, implications, and potential future risks for
policymakers, as well as putting forward adaptation and mitigation options; hence, plant disease
early warning should also be developed in this direction. Therefore, long time-series climate
changes and plant disease parameters cannot be ignored. On this premise, the occurrence and
development regularities of each disease can be summarized and founded in more detailed and
accurate. With large-scale RS image data, expert or prognosis systems based on regional weather
data and epidemiological parameters of plant diseases can be utilized to forecast the temporal
and spatial spread of diseases in specific growing regions.

4.3. Spaceborne Hyperspectral Technology Requires Synchronous Development of Basic Research and Joint
Spaceborne–Airborne–Ground Applications

According to the above analysis, most hyperspectral-based plant disease detection is focused on
the laboratory, greenhouse, and field scales. Currently, the application of RS technologies in plant
disease analysis on regional, national, or larger scales is mainly based on multispectral data (airborne-
or satellite-based images). The main reasons why hyperspectral RS cannot be expanded to large scales
are the lack of satellite hyperspectral sensors and the imperfection of big data analysis algorithms
and abilities. However, regardless of the identification of different pathogens, discrimination of
biotic and abiotic stresses, and larger-scale plant disease early warning, large-scale hyperspectral data
are necessary.

• Joint application of existing mature technologies. The first airborne-based hyperspectral imaging
sensor AIS was developed in 1983 by JPL/NASA. Since then, numerous airborne hyperspectral
imaging technologies have been developed successively, including AVIRIS (JPL), the Fluorescence
Line Imager (Moniteq Ltd. and Itres Research Ltd. for Canadian Department of Fisheries and
Oceans), the Compact Airborne Spectrographic Imager (Itres Research Ltd. of Calgary, Alberta,
Canada), the Hyperspectral Mapper (Australian Integrated Spectronics Ltd.), and many others.
After the success of airborne hyperspectral technologies, satellite-based hyperspectral technology
was continuously developed in the late 1990s. Although the first HSI on the Lewis satellite of
NASA failed to work properly after it was put into orbit on 23 August 1997, it has also become
the beginning of satellite-based hyperspectral technology. Since then, the Fourier Transform
Hyperspectral Imager on MightiSat II, Hyperion on EO-1, HJ-1A/HSI on HJ-1A, and AHSI on
GF-5 have succeeded. All of these types of airborne and spaceborne hyperspectral images have
been widely but separately applied in plant RS monitoring, but they are rare in crop disease
detection. Nowadays, ground- and UAV-based hyperspectral images form the relevant perfect
systems for plant disease detection on small scales. However, these must be combined with
airborne or spaceborne hyperspectral technologies to extend the application range and scale.
Ground-based hyperspectral images have the advantages of unmixed pixels, flexible and high
spatial resolution. Thus, it greatly improves the accuracy of hyperspectral analysis of specific
diseases. These characteristics are complementary to those of airborne and spaceborne data,
which have lower spatial and time resolutions but higher widths. Thus, the joint application of
ground-, airborne-, and spaceborne-based hyperspectral technologies in plant disease analysis is
the development trend of hyperspectral technology practices.

• Establishment of a comprehensive spectrum library of plant diseases. Through the above
analysis of different pathogens, advantages and limitations of different scales, and hyperspectral
technologies for different plant disease analyses, it can easily be seen that the most significant aspect
of plant disease detection by RS is the accuracy of the hyperspectral signature of each pathogen.
JPL/NASA has established abundant spectrum datasets for plants, minerals, snow, ice, and other
objects. These spectrum libraries contain three sub-libraries: laboratory spectrum library,
ground spectrum library, and the hyperspectral remote sensing spectrum library. However, there is
no unified standard spectral library for crop diseases. Considering the actual application
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requirements, the establishment of a comprehensive spectrum library of the global main crop
disease is anticipated. To meet the needs of integrated spaceborne–airborne–ground analysis,
the spectrum library should include at least three scales: ground, airborne, and spaceborne.
Perfect spectrum libraries can provide significant references in practical applications and provide
the basis for new and targeted hyperspectral technology.

• Implementation of targeted spaceborne hyperspectral missions and expansion of its scope of
commercialization. Although there are some existing spaceborne hyperspectral sensors, and most
of them can be used to monitoring vegetation changes, fewer are clearly focused on vegetation.
The HyperSpectral Imager on the IMS-1 satellite of India, which operates in the VNIR spectral
range from 450 to 950 nm with a total of 64 spectral bands at a spectral resolution of 8 nm,
is specific to the vegetation type measurement and resource characterization. Meanwhile, the HSI
of HJ-1A in China is focused on environment and disaster monitoring with 115 bands from
450 to 950 nm. Even so, most spaceborne hyperspectral sensors are non-commercial, significantly
limiting their large-scale industrial applications. In recent years, facing the frequent global
climate change and disasters, increasingly more countries and organizations have proposed
the special hyperspectral RS missions and speed up these trends. The 5 m optical service
satellite (ZY-1 02D) equipped with one hyperspectral sensor and one multispectral sensor was
put into the predetermined orbit in 2019 and can effectively obtain nine-band multispectral
data of 115 km width and 166-band hyperspectral data of 60 km width. This is the first civil
hyperspectral service satellite in China and could provide services for precision agriculture
in the future. Furthermore, the European Space Agency selected the Fluorescence EXplorer
mission proposed for the global monitoring of steady-state chlorophyll fluorescence in terrestrial
vegetation, which will operate in a three-instrument array for measurement of the interrelated
features of fluorescence, hyperspectral reflectance, and canopy temperature. The HyspIRI mission,
which is being developed by JPL/NASA, USA, is planned to be launched in 2021. The equipped
VIR-SWIR and thermal infrared sensors will be utilized to study ecosystems worldwide; provide
critical information on natural disasters such as volcanoes, wildfires, and drought; and may be
useful for plant disease early warning. Furthermore, the successful launch of the Environmental
Mapping and Analysis Program (EnMAP) in Germany, Hyperspectral Imager Suite (HISUI) in
Japan, and Hyperspectral Precursor and Application Mission (PRISMA) of the Italian Space
Agency can be used for vegetation status detection, product development for agricultural areas,
and the management and monitoring of natural and induced hazards in the future.

5. Conclusions

Plant diseases contribute to significant economic and post-harvest losses in the agricultural
production sector worldwide, especially under the influences of the climate changes in recent
years. In the continuous research, many effective methods for plant disease detection, monitoring
and assessment have been accumulated. Professional visual interpretation, biochemical analysis,
and pathological analysis have been well developed. Non-invasive technologies have been paid
more attention in recent years, and hyperspectral technology is particularly prominent. This review
has summarized the principle, sensors, advanced technologies, challenges, and development trends
associated with the hyperspectral-based plant disease detection framework. The contents may be
summarized as follows:

• Hyperspectral technology-based plant disease detection is drawing increasing attention.
As shown in Figure 1, hyperspectral-based plant disease analysis technology emerged in 2002
and has been developing rapidly in the following 10 years. It has been developing continuously
with the maturity of related technologies in the past 10 years. These developments provide many
methods and ideas for future research and analysis, as well as reliable support for plant protection.

• The mainstream technologies are focused on small scales, and satellite payloads require further
development and attention. In the past three decades, almost 86% of hyperspectral imaging
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research has been focused on field and laboratory environments and more concern has been
placed on the leaf and canopy scales. However, large-scale accurate analysis is necessary for
practical applications. Thus, scale transformation methods for both the spatial and spectral scales
require more attention. Although the algorithms for hyperspectral data analysis on small scales
can provide technical support for regional or larger scales, it is difficult to achieve large-scale
monitoring without the assistance of satellite payload.

• Close attention should be paid to the information integration analysis of satellite scales.
After the implementation of targeted hyperspectral satellite missions, big data collection,
pre-processing, and analysis will be the priorities. The real-time dynamic monitoring of plant
disease at the regional, national, and global scales can be realized only if large-scale data integration
analysis is achieved. With the development of multi-source RS data, the fusion of multi-source
data may be a development trend in the future.
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