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Abstract: We measure transient deformation at Coso geothermal field using interferometric synthetic
aperture radar (InSAR) data acquired between 2004 and 2016 and relative positions estimated
from global positioning system (GPS) to quantify relationships between deformation and pumping.
We parameterize the reservoir as a cuboidal sink and solve for best-fitting reservoir dimensions and
locations before and after 2010 in accordance with sustainability efforts implemented in late 2009
at the site. Time-series analysis is performed on volume changes estimated from pairs of synthetic
aperture radar (SAR) and daily GPS data. We identify decreasing pore-fluid pressure as the dominant
mechanism driving the subsidence observed at Coso geothermal field. We also find a significant
positive correlation between deformation and production rate.
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1. Introduction

The Coso geothermal field, located near China Lake, California, is the third largest geothermal
field in the United States with an installed capacity to generate ∼270 MW of electrical power. It lies
within an extensional step-over between dextral faults that hosts an actively developing metamorphic
core complex [1,2]. Directly beneath the field lies a partially molten magma body, located below the
relatively shallow (∼5 km depth) brittle–ductile transition, which heats water migrating deep into the
geothermal area following precipitation in the Sierra Nevada mountain range [3]. The buoyant hot
water eventually rises via faults and fractures associated with the transtensional tectonics of the region
into the reservoir comprised of highly fractured plutonic and metamorphic rocks of Mesozoic age [2,4].
Fluid temperatures within the reservoir reach∼350 ◦C at the relatively shallow depths of∼3 km tapped
by more than 80 production wells (Figure 1). Following generation of electricity and condensation,
the fluids are reinjected via more than 30 injection wells around the field. The average rates of
(fluid) production and reinjection between 2004 and 2016 have been (24.30± 0.27)× 108 kg/month
(924± 10 kg/s) and (11.72± 0.02)× 108 kg/month (446± 7 kg/s), respectively, which, neglecting
natural recharge, corresponds to a net extraction rate of ∼12.58× 108 kg/month (478 kg/s) [5]. In late
2009, the reservoir operators of the Coso Geothermal Plant implemented the Hay Ranch Water Project,
which uses a ∼15-km pipeline to recharge the existing reservoir at Coso with supplemental water,
thereby increasing geothermal energy production (e.g., [6,7]).

The Coso geothermal field is well known for being one of the most seismically active regions
in California. Previous studies at Coso have linked such seismicity to the motion of fluids within
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the geothermal system and changes in local tectonic stress (e.g., [8–13]). Geodetic studies have also
observed strong subsidence signals that occur in the production region near the Coso geothermal
plant (e.g., [8]), leading to the suggestion that geothermal fluids are driving both the deformation and
seismicity at the site.

Similar phenomena have been observed at other geothermal fields, as recently reviewed by
Majer et al. [14], Brodsky and Lajoie [15], Ellsworth [16], and Mazzoldi et al. [17]. One example is
Brady Hot Springs, a geothermal field in Nevada. There, Cardiff et al. [18] found evidence relating
increased microseismic activity to periods of brief cessations in pumping at the site. Such behavior is
explained by the adaptation of subsurface effective (normal) stress to long-term normal operations,
such that “extraction of fluids inhibits fault slip by increasing the effective [normal] stress on faults;
in contrast, brief pumping cessations represent times when effective stress is decreased below its
long-term average, increasing the likelihood of microseismicity” [18]. Similar phenomena have been
observed at the San Emidio geothermal field in Nevada as well [19].

In this study, we explore the temporal association between pumping and deformation at
Coso to determine whether there is a statistical relationship between them. We also test two
competing hypotheses for the geophysical processes observed at Coso: (1) Thermal contraction
and/or (2) a poroelastic response to pressure changes caused by pumping. We use an updated catalog
of microseismicity, pumping records from the site, as well as interferometric synthetic aperture radar
(InSAR) and global positioning system (GPS) data spanning from 2004 to 2016 for our analysis.

2. Data

2.1. Interferometric Synthetic Aperture Radar (InSAR)

We analyze 38 synthetic aperture radar (SAR) images acquired between 2004 and 2016 over Coso.
Of these, 34 SAR images were acquired in ascending track 349 between 2004 and 2010 by the C-band
ASAR sensor aboard the Envisat satellite [20]. An additional four SAR images were acquired after 2014
in ascending track 64 by the C-band sensor aboard the Sentinel-1A satellite [21]. We use the images
to create a set of interferometric pairs using an open-source InSAR processing software (GMTSAR),
which utilizes generic mapping tools (GMT) to create and visualize interferometric pairs [22,23].
The topographic contribution of each interferogram is removed using a digital elevation model with
1 arcsecond posting from the Shuttle Radar Topographic Mission [24]. Unwrapping is performed using
the “statistical-cost, network-flow phase-unwrapping algorithm” (Snaphu) developed by Chen and
Zebker [25] to calculate the range change rate ρ̇ in millimeters per year.

The pairs from Environmental Satellite (Envisat) are selected using a minimum spanning tree
(MST) algorithm according to orbital separation (e.g., [26]). The same data set was used in a previous
deformation modeling study at Coso [27]. To summarize individual interferometric pairs, we consider
the field of unwrapped range change rate ρ̇(E, N). The mean rate between 2005 and 2010 is derived
by averaging the range change rates from our 81 Envisat pairs (Figure 1), where E and N are the
position coordinates easting and northing, respectively in a Universal Transverse Mercator (UTM)
projection [28]. The kth pixel of the mean rate field ¯̇ρ(E, N) comprised of n pairs is computed as

¯̇ρk(E, N) =
1
n

n

∑
i=1

ρ̇
(i)
k (E, N). (1)

We use the same averaging procedure to form a second stack, spanning 2014 to 2016, from the
10 pairs in the Sentinel-1A data set. The resulting data set of pairs from both satellites is shown in
Figure 2 and is publicly available on the Geothermal Data Repository [29].

Subsidence (positive range change) as rapid as ∼30 mm/year is observed over a circular area
some 3 km in radius centered on the production wells (Figure 1). This signature is consistently observed
in all interferometric pairs spanning the production interval between 2004 and 2016, as shown in
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Figure 3. The rate and spatial extent of the deformation field are broadly consistent with InSAR data
spanning 1993 to 1999 [8].
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Figure 1. Geographical location of Coso geothermal field. The inset interferogram shows the field
of stacked unwrapped range change rate ¯̇ρ(E, N) from 81 Environmental Satellite (Envisat) pairs.
The pairs span from 2004 to 2010 and are selected using a minimum spanning tree algorithm according
to orbital separation. Production wells are shown as upright, red triangles and injection wells are
shown as inverted, blue triangles. Global positioning system (GPS) stations are labeled and denoted
with black stars. Coordinates are easting and northing (km) in the Universal Transverse Mercator
(UTM) projection zone 11N, WGS84 [28]. Faults from Jennings [30] and Jennings et al. [31] are shown as
thin black lines. The interferogram is overlaid on a 2017 Landsat/Copernicus image from Google Earth.
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Figure 2. Data set of interferometric pairs included in the analysis. Pairs shown in green are the
minimum spanning tree subset of 81 pairs from Envisat between 2004 and 2010 picked according to
orbital separation, plotted as the perpendicular component of the “baseline” vector separating the
satellite’s trajectories at the two times (“epochs”) of image acquisition. Pairs shown in red are the
10 pairs from the Sentinel-1A satellite between 2014 and 2016.
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Figure 3. Example interferograms from Envisat and Sentinel-1A satellites spanning the production
interval. For each pair (row), the left panel shows wrapped phase in cycles, the middle panel shows
range change rate in mm/year, and the right panel shows values of range change rate in mm/year
taken along the profile (thick black line in the middle panel). The incidence angle (denoted as the small
arrow in the northeast of the phase plot) is 21.1◦ and the azimuth (from North, denoted as the large
arrow in the northeast corner of the phase plot) is −11.0◦ for Envisat pairs. The incidence angle is 33.9◦

and the azimuth is −13.1◦ for Sentinel-1A pairs. One cycle of color in wrapped phase corresponds to
28 mm of range change. Plotting conventions as in Figure 1.

2.2. Global Positioning System (GPS)

Data acquired from continuous GPS station COSO lead to daily estimates of the three components
(eastward, northward, and upward) of relative position. The station is a part of the Southern California
Integrated GPS Network and is located within 5 km of the center of the identified subsidence bowl.
The GPS time-series data have been analyzed using methods outlined in Blewitt et al. [32] and are
publicly available [33]. We use a subset of the time series from station COSO that spans from 2004 to
2015 to analyze deformation within the deforming region. We also use data from COSO to verify the
accuracy of the InSAR range change rates.

Data are also available from the campaign GPS station COSJ, located to the northwest of the
deforming region. This station is a part of the MAGNET network with a publicly available time series
of relative position that have been analyzed using standard procedures outlined in Blewitt et al. [32,34].
We use data from COSJ to estimate far-field deformation when verifying the accuracy of the InSAR
range change rates.
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Time series of relative positions from stations COSO and COSJ are shown in
Figures 4 and 5, respectively.

2003 2004 2005 2006 2007 2008 2009 2010
year

-50

0

50

100
m
m

COSO Position Relative to January 1, 2003

north
vertical
east

m
m

Figure 4. Time series of relative position in three components for continuous GPS station COSO.
The northing component is shown in green, the easting component is shown in orange, and the vertical
component is shown in blue. Vertical error bars denote measurement uncertainty. Measurements are
shown with respect to 1 January 2003.
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Figure 5. Time series of relative position in three components for campaign GPS station COSJ.
Measurements are shown with respect to 5 August 2005. Plotting conventions are the same as Figure 4.
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2.3. Seismic Catalog

Local and regional seismicity near the Coso geothermal field is recorded by a local borehole
seismic network and analyzed by the Navy Geothermal Program Office. Kaven et al. [11] refined the
initial event locations by estimating a best-fitting, one-dimensional velocity model and relocating each
of the events. Resulting event hypocenters are found to have (relative) location uncertainties on the
order of 300 m horizontally and 600 m vertically.

The average values of seismic velocities in this region are 5.8 and 3.5 km/s for Vp and Vs,
respectively. We use these velocities to derive an average value of Poisson’s ratio ν = 0.21 for our
deformation analysis. Given the average Vp, we also estimate the density of the surrounding material
to be about 2.6 g/cm3 [35]. This is consistent with other density estimates at Coso (e.g., [2,36]).

2.4. Pumping Records

Pumping records for the monthly rates of gross injection and gross production in kilograms per
month for the Coso geothermal power plant from 2005 to 2016 (Figure 6) have been published by the
Division of Oil, Gas, and Geothermal Resources [5].
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Figure 6. Time series showing rate of gross geothermal injection (blue), gross production (red), and net
production (green) in kg/month. Data are from the Division of Oil, Gas, and Geothermal Resources [5].

3. Methods

3.1. Accuracy

We start with analyzing the accuracy of unwrapped InSAR range change rates by comparison
to GPS measurements. Starting with our Envisat pairs, we first convert the GPS estimates of vector
position u relative to stable North America from both stations to range change ∆ρ by taking the
negative scalar product with the unit vector ŝ(ENVI) = [−0.41;−0.08; 0.91] pointing from the pixel on
the ground to the radar sensor aboard the satellite.

∆ρ(GPS) = −ŝ(ENVI) · u(GPS). (2)
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We then linearly interpolate and extrapolate ∆ρ(GPS,COSO) and ∆ρ(GPS,COSJ) in time to find
estimates corresponding to the start and end dates of the Envisat pairs. The GPS range values at
individual points in time are then converted to pairs by first taking the difference between range
estimates from COSO and COSJ to remove the far-field deformation and then by time corresponding
to the time intervals of the Envisat pairs. The uncertainty for the range change estimated from GPS is
derived from measurement uncertainty at each station. Differenced range changes are then converted
to range change rates after dividing by the time interval for each pair. We find an estimated range
change rate of 3.8± 3.3 mm/year at COSO with respect to COSJ. We then difference the InSAR range
change measurements for pixels corresponding to COSO with measurements for pixels corresponding
to COSJ from the Envisat pairs. We use the standard error of the mean as an estimate of uncertainty
for the range changes observed using InSAR. The mean range change rate at COSO with respect to
COSJ as measured by Envisat is 5.8± 10.7 mm/year. We compare the difference between the GPS
and InSAR data sets for unwrapped range change rates estimated at COSO with far-field deformation
effects removed using a Student’s one-sample t-test (e.g., [37]). We test the null hypothesis that the
means of the two data sets are equal. We find Tcalc = −1.3, which is less in absolute value than the
critical value Tα/2 = 2.0 with 80 degrees of freedom. Thus, we conclude (with 95% confidence) that
there is no significant difference between mean range change rate estimated from GPS and measured
by Envisat.

We perform the same procedure for our Sentinel-1A (S1A) pairs. In this case, we use the
Sentinel-1A unit pointing vector ŝ(S1A) = [−0.63;−0.11; 0.77] to derive the corresponding range
change rates from GPS. The estimated range change rate at COSO with respect to COSJ from GPS over
the 2014–2016 time frame is 4.6± 2.3 mm/year. The mean range change rate at COSO with respect to
COSJ as measured by Sentinel-1A is 3.3± 2.2 mm/year. Repeating the same test at 95% confidence,
we find Tcalc = 2.1 to be less than the critical value Tα/2 = 2.3 with nine degrees of freedom. Thus,
we conclude that there is no significant difference between range change rate estimated from GPS and
measured by Sentinel-1A.

Figures 7 and 8 show histograms of the difference in range change rates between GPS and
individual InSAR pairs for both the Envisat and Sentinel-1A data sets.

Figure 7. Histogram of differences between range change rate at COSO with respect to COSJ estimated
from GPS using linear interpolation and extrapolation and range change rates at COSO with respect to
COSJ observed by Envisat pairs.
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Figure 8. Histogram of differences between range change rate at COSO with respect to COSJ estimated
from GPS using linear interpolation and extrapolation and range change rates at COSO with respect to
COSJ observed by Sentinel-1A pairs.

3.2. Estimating Volume Change of The Reservoir

A previous modeling study by Ali et al. [27] uses a poroelastic, homogeneous model to describe
the roughly circular pattern of surface deformation at Coso. Their best-fitting results are shown in
Table 1.

Table 1. Finite element modeling results from Ali et al. [27].

Parameter Name Best-Fitting Estimate Uncertainty

Easting in m 428,651.3 1000
Northing in m 3,987,538.4 1000
Reservoir depth in m 2366.6 250
Reservoir half thickness in m 2053.1 250
Reservoir half length in m 3027.2 500
Young’s Modulus in GPa 25 0
Poisson’s Ratio 0.25 0
Pressure Change in MPa −0.3 0
Biot’s Coefficient 1 0

To arrive at refined estimates of dimensional properties and volume change of the reservoir
in this study, we model the deformation in each of the 91 interferometric pairs using a “cuboid”
parameterization to include a single sink at a given depth in an elastic half space with uniform material
properties [38]. In this model, the cuboid represents a volume element with sides of width W, length L,
and height H, and an initial volume of V0 = LWH. The cuboid is sliced into eight equal-sized octants
by three rectangular patches that are mutually orthogonal. Each rectangular patch i is a dislocation
with a negative value of tensile opening and has a corresponding slip vector of U = [0, 0,−Ui,3].
The slip −Ui,3 on a singular patch is proportional to the ratio of its area to the total volume change:

∆V = −1× (UW,3LH + UL,3WH + UH,3LW). (3)
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We favor this parameterization over other analytical deformation models which may be used to
describe circular surface deformation patterns due to its flexibility in terms of model geometry and its
direct interpretability in terms of the geothermal reservoir. The model parameters, including the source
location, volume change, cuboid dimensions, and InSAR-related nuisance parameters (e.g., [39,40]),
along with their uncertainties, are estimated using simulated annealing methods employed by the
general inversion of phase technique (GIPhT) [39,41].

The temporal distribution of our InSAR data set separates our deformation modeling into
two distinct time intervals in accordance with the realization of the Hay Ranch project: 2004 to
mid-2010 (corresponding to Envisat pairs and the time up to the start of the project), and 2014 to
2016 (corresponding to Sentinel-1A pairs and the time after the project was initiated). Working with
the same stack of Envisat pairs as Ali et al. [27], we estimate all the model parameters starting
with initial estimates based on the best-fitting results from Ali et al. [27] (Table 1). We assume the
Poisson’s ratio to be ν = 0.21, consistent with the average values of seismic velocities used to locate the
seismicity. We then take the best-fitting estimates for the sink location and cuboid dimensions found
from the stack inversion to be fixed and estimate the volume change for each of the 81 individual
Envisat interferometric pairs. We repeat the same procedure for the Sentinel-1A pairs using their
corresponding stack.

3.3. Time Series

We are interested in the temporal trend of deformation at Coso in terms of volume change of
the geothermal reservoir. To analyze this trend, we perform time-series analysis using temporal
adjustment on the set of volume changes ∆Vi,j estimated from the individual InSAR pairs spanning the
time intervals from ti to tj. This procedure converts the pair-wise volume changes ∆Vi,j for individual
interferometric pairs into a cumulative value of volume change at each point ti and tj in time [26].
As described previously, this approach implicitly assumes that the temporal dependence and spatial
dependence of the deformation field are separable functions [26,39]. Accordingly, we write the vector
displacement field u as

u(t, x) = f (t)G(x), (4)

where f (t) is a function of time t only and G(x) is a function of spatial position coordinate x only.
In our case we consider G(x) to be the model of a cuboidal sink contracting in a half space with
uniform elastic properties. For the temporal function, we consider several parameterizations.

The first assumes a constant rate during the time interval between 2004 and 2010:

f1(ti) = a1(ti − t0), (5)

where the initial time t0 = 2003.87 is the start date of our data set in decimal years, and a (different)
constant rate a2 during the time interval between 2010 and 2016:

f2(ti) = a2(ti − t1), (6)

where the time t1 = 2010 refers to the date when pumping operations were altered at Coso
(e.g., [6,7,42]).

To model the full data set, we use a piecewise-linear parameterization with m breaks at times tm

that form (m− 1) segments:
f3(ti) = Σj=m

j=1 ajD(ti), (7)

where

D(ti) =


0 if ti < tj

(tj − ti) if tj ≤ ti < tj+1

(tj+1 − tj) if ti ≥ tj+1

. (8)
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We use this function with m = 2, m = 4, and m = 12.
We also consider an exponentially decaying rate parameterization

f4(ti) = ae

(
1− exp

(
− ti − t0

τ

))
, (9)

where τ is a characteristic time scale found through nonlinear optimization. This trend would be
consistent with drawdown as has been observed at Brady (e.g., [43,44]).

To increase the temporal sampling, we also analyze the volume change in the temporal dimension
using the daily displacements derived from GPS data. We difference each daily record of displacement
in our data set from station COSO with the previous day’s record, resulting in 3650 measurements of
differential position, i.e., displacement. We then convert these displacements to range change using
Equation (2) and divide by the time interval ∆t = tj − ti of the paired values to arrive at the range
change rate ρ̇. We estimate the volume change and reservoir depth in a similar manner to the InSAR
data set by taking the best-fitting estimates for the source location and cuboid dimensions found from
the stack inversion to be fixed. We then perform a similar time-series analysis on the resulting volume
change rates.

4. Results

4.1. Deformation Modeling

The results from applying the “cuboid” parameterization to mean range change rates from both
the Envisat and Sentinel-1A stacks are shown in Figures 9 and 10 as well as Tables 2 and 3, respectively.
We find an estimated depth of reservoir to be 2.4± 0.5 km for the time period covering 2004 to 2011,
consistent with the results from Ali et al. [27], while the estimated depth of the reservoir from 2014 to
2016 is 3.1± 0.2 km. We calculate the dimensionless misfit χ = 1.7 of the model to the Envisat data as
the square root of the reduced χ2-test statistic ([45], p. 334). Similarly, we find the misfit of the model
to the Sentinel-1A stack to be χ = 1.2.

Table 2. Results from nonlinear inversion with a “cuboid” parameterization on the stack of MST
Envisat pairs spanning 2004 to 2011.

Parameter Name Best-Fitting Estimate Uncertainty

Easting gradient δρ/δx 6.78 × 10−8 2.19 × 10−7

Northing gradient δρ/δy −9.93 × 10−9 1.86 × 10−7

Upwards gradient δρ/δz −9.97 × 10−7 9.67 × 10−7

Offset in cycles −0.5 0.8
Poisson ratio ν 0.21 0
Volume change rate V̇ [m3/year] −2.02 × 105 2.81 × 104

Centroid Easting E in m 428,580.4 531.3
Centroid Northing N in m 3,987,509.0 250.0
Centroid Depth in m 2418.2 531.3
Cuboid L in m 3.07 × 103 3.23 × 102

Cuboid W in m 2.28 × 103 2.25 × 102

Cuboid H in m 1.95 × 103 2.42 × 102
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Figure 9. Deformation fields in terms of (unwrapped) range change rates from the minimum spanning
tree (MST) Envisat stack spanning November 14, 2003 to September 3, 2010 analyzed using nonlinear
inversion methods outlined in Feigl and Thurber [39]. The estimate of the parameter vector was based
on finite element models by Ali et al. [27]. Inversion was performed using unwrapped range change
rates. Results are shown in terms of unwrapped range change rate: (a) Observed range change rate,
(b) modeled range change rate, (c) residual between observed and modeled, and (d) absolute value of
residuals. We use the Universe Transverse Mercator (UTM) coordinate system as in Figure 1.
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Figure 10. Deformation fields in terms of (unwrapped) range change rate from the Sentinel-1A stack
spanning November 3, 2014 to April 26, 2016 analyzed using nonlinear inversion methods outlined in
Feigl and Thurber [39]. The estimate of the parameter vector was based on finite element models by
Ali et al. [27]. Inversion was performed using unwrapped range change rates. Results are shown in
terms of unwrapped range change rate: (a) Observed range change rate, (b) modeled range change
rate, (c) residual between observed and modeled, (d) and absolute value of residuals. We use the UTM
coordinate system as in Figure 1.
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Table 3. Results from nonlinear inversion with a “cuboid” parameterization on the stack of Sentinel-1A
pairs spanning 2014 to 2016.

Parameter Name Best-Fitting Estimate Uncertainty

Easting gradient δρ/δx 1.64 × 10−9 6.25 × 10−8

Northing gradient δρ/δy −1.39 × 10−7 9.38 × 10−8

Upwards gradient δρ/δz 6.73 × 10−7 2.19 × 10−6

Offset in cycles −0.5 0.6
Poisson ratio ν 0.21 0
Volume change rate V̇ [m3/year] −1.07 × 106 2.25 × 105

Centroid Easting E in m 428,870.4 48.4
Centroid Northing N in m 3,986,482.0 46.9
Centroid Depth in m 3098.7 195.3
Cuboid L in m 3.12 × 103 4.84 × 101

Cuboid W in m 2.34 × 103 4.84 × 101

Cuboid H in m 1.93 × 103 4.84 × 101

We similarly estimate the reservoir depth before and after 2010 using the GPS data and source
location estimates from the InSAR stacks. We find that the best-fitting estimated reservoir depth
for observations before 2010 is 2.6± 0.5 km, whereas the best-fitting estimated reservoir depth for
observations after 2010 is 3.1± 0.6 km. For these solutions, the misfit χ is 1.4 and 1.6, respectively.

4.2. Time-Series Analysis

We start by parameterizing the volume change estimates before and after 2010 by separate,
single-rate temporal functions corresponding to when well operations were varied at the site
(e.g., [6,7,42]). Due to a lack of data between 2011 and 2014, we also include a break at the end
of the Envisat data set (3 September 2010). Interferometric pairs included in the analysis are shown in
Figure 2. For the InSAR data, we parameterize all the Envisat estimates between 2004 and 2010 using
a single rate, and then similarly parameterize all the Sentinel-1A estimates between 2014 and 2016
using a single rate function. We cannot estimate any volume change for the time between 2011 and
2014, when we have no InSAR coverage. The results for this parameterization (Equation (7), m = 4)
are shown in Figure 11. We calculate the dimensionless misfit to be χ = 0.5. We perform a two-tailed
Student’s t-test to test the null hypothesis that these two estimated rates are equal (e.g., [37]). We find a
significant difference between the estimated rate before 2010 and the estimated rate after 2014 with
95% confidence (Table 4).

We also use a piecewise-linear temporal function with breaks on 1 June and 1 December of
each year from 2005 to 2010 (Equation (7), m = 12) to further examine if any seasonal trends
we see in the pumping records (Figure 6) are reflected in the InSAR data before changes in well
operations. We perform an F-test for model complexity to decide whether the increased complexity of
the piecewise-linear model is justified (e.g., [37], pp. 536 and 627). We test the null hypothesis that the
single rate parameterization and the piecewise-linear parameterization fit the data equally well at 95%
confidence. We find Fcalc = 0.94, which is less than the critical value Fα=0.05 = 1.43 with degrees of
freedom do f1 = 90 and do f2 = 79. We conclude that the complexity of the piecewise-linear model is
not justified with 95% confidence and continue with the single rate parameterization.
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Figure 11. Time series at Coso, showing cumulative volume change in the cuboidal source over time
from temporal adjustment of volume change rates estimated from InSAR data spanning 2004 to 2016.
Black lines show the modeled volume change with 68% confidence intervals (dashed lines) as estimated
by temporal adjustment with a piecewise-linear temporal function [26]. Breaks in the parameterization
are shown as green, vertically dashed lines. Red segments indicate measurements of observed volume
change derived from individual interferometric pairs, with black circles indicating individual epochs
in each pair. For each pair, the volume change at the mid-point of each time interval is plotted to fall on
the modeled curve and the vertical blue bars denote 1σ measurement uncertainty, after scaling by the
square root of the variance scale factor.

Table 4. Results from two-tailed Student’s t-test with degrees of freedom do f at the 95% confidence
level (e.g., [37], p. 524) for volume change rates estimated from interferometric synthetic aperture radar
(InSAR) data. H0: equal rates; H1: rates differ.

Start of Start of Rate 1 Rate 2 dof Test Critical Result
Break 1 Break 2 ×106 [m3/year] ×106 [m3/year] Value Value

20031114 20100101 (−1.2± 0.04) (−1.3± 0.29) 78 3.95 1.99 reject H0
20031114 20141102 (−1.2± 0.04) (−0.80± 0.05) 76 −25.16 1.99 reject H0
20100101 20141102 (−1.3± 0.29) (−0.80± 0.05) 16 −4.67 2.12 reject H0

We use the same single-rate temporal functions for analyzing volume change estimated from GPS,
treating the data before 2010 and after 2010 separately, as shown in Figure 12 (Equations (5) and (6)).
We calculate the dimensionless misfit for the pre-2010 interval to be χ = 2.3. The dimensionless misfit
for the post-2010 interval is χ = 1.5. We perform a two-tailed Student’s t-test to test the null hypothesis
that the rates in the two intervals are equal (e.g., [37], p. 524). The null hypothesis is rejected with 95%
confidence (Table 5) We find that the rate for the post-2010 interval is significantly smaller (slower)
than the pre-2010 rate.
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Table 5. Results from two-tailed Student’s t-test with degrees of freedom do f at the 95% confidence
level (e.g., [37], p. 524) for volume change rates estimated from GPS data pre-2010 and post-2010.
H0: no significant difference in rates; H1: signficant difference in rates.

Pre-2010 Rate Post-2010 Rate dof Test Value Critical Value Result×106 m3/year ×105 m3/year

(−1.2± 0.02) (−8.10± 0.09) 3638 −843.22 1.96 reject H0
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Figure 12. Time series at Coso, showing cumulative volume change over time from temporal
adjustment of volume change rates estimated from GPS data spanning 2004 to 2016. Data before
2010 is shown above. Data after 2010 is shown below. Plotting conventions as in Figure 11.



Remote Sens. 2020, 12, 225 15 of 23

Table 6 compares several estimates of the subsurface volume change rate V̇. Rates are derived
from pumping records using a range for the produced brine density of ρprod ∈ [990, 1250] kg/m3.
The injected brine density is calculated using the thermal expansion coefficient for water, a production
temperature of 350 ◦C, and an injection temperature of 160 ◦C [46]. Results shown in Table 6 assume a
density of 1000 kg/m3 for the produced brine and 1043 kg/m3 for the injected brine. Net production
is calculated as the difference between the rates derived from gross injection and gross production.

Table 6. Estimates of subsurface volume change from multiple data sets.

Data Source V̇ [L/s]

Gross injection [5] 427± 105
Gross production [5] −924± 202
Net production [5] −497± 228
Cuboid sink estimated from InSAR data from 2005 to 2010 −38± 1
Cuboid sink from InSAR data from 2014 to 2016 −25± 2
Cuboid sink estimated from GPS data from 2005 to 2010 −38± 1
Cuboid sink from GPS data from 2014 to 2016 −26± 3
Average recharge [47,48] 130

4.3. Correlation Test

We quantify the relationship between pumping and deformation by performing correlation
tests. Using the modeled values of volume change derived from temporal adjustment, we estimate
the volume change at the start of each month and compare it to the monthly gross production rate.
We normalize the values using a statistical Z-transform, defined as

x̂ =
x− x̄

σx
(10)

(e.g., [37], p. 181). The results are summarized in Figure 13. We first consider the monotonic relationship
between volume change and gross production rate using Spearman’s test (e.g., [37], p. 786). We find
a Spearman’s correlation coefficient rs = 0.75 with a corresponding p-value of p = 2.14× 10−16,
indicating the probability of rejecting the null hypothesis of no correlation when it is actually true.
This result suggests a strong monotonic relationship between volume change and gross production.
We further explore the linearity of this relationship using Pearson’s test. We find a high correlation
between the volume change and gross production rate, with a (Pearson’s) correlation coefficient of
R = 0.75 (e.g., [37], p. 599). We test the null hypothesis of no correlation against the alternative of
non-zero correlation using a Student’s t-test (e.g., [37], p. 599). We find a p-value of p = 2.2× 10−16

Thus, we conclude that the positive correlation between the volume change each month and gross
production rate is significant. Consequently, this result supports our hypothesis that deformation is
causally associated with pumping at Coso. Performing the same tests with the rates of gross injection
and net production yields p-values of 5.3× 10−7 and 8.0× 10−7, respectively.
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Figure 13. Scatter plot showing the monthly volume change estimated from temporal adjustment of
InSAR data and monthly gross production rates.

4.4. Identifying a Driving Mechanism for the Observed Subsidence

We convert our estimates of volume change from modeling the interferometric pairs with a
“cuboid” parameterization to volumetric strain rates by dividing by the initial volume V0 of the single
cuboid and the time span ∆t. The modeling results indicate that the cuboidal sink is shrinking
with an average volumetric strain rate of ¯̇ε = ∆V/(V0∆t) of the order of 90 microstrain/year or
3 picostrain/second in absolute value.

We consider two possible mechanisms: (1) Decreasing pore-fluid pressure and (2) thermal
contraction of the rock matrix. Accordingly, we interpret our estimates of volumetric strain derived
from our estimates of volume change as a result of temperature change and/or pressure change.
Considering a decrease in pore fluid pressure as the cause of volume change, the observed volume
change rate V̇ in the cuboidal reservoir is related to a pressure change rate Ṗ [Pa/year] by:

V̇(P) =

(
1
H

Ṗ
)

V0 (11)

= ε̇(P)V0, (12)

where 1/H [Pa−1] is the poroelastic expansion coefficient [49] and ε̇(P) [year−1] is a poroelastic
volumetric strain rate.
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Alternatively, if we consider the volume change to be caused by thermal contraction, then the
estimated rate of volume change rate in the cuboid is related to the rate of temperature change
Ṫ [K/year] by

V̇(T) = (αT Ṫ)V0 (13)

= ε̇(T)V0, (14)

where αT [K−1] is the thermal expansion coefficient and ε̇(T) [year−1] is a thermal volumetric
strain rate.

We can also consider a combination of these two processes through a linear combination of
Equations (12) and (14).

Following the procedure in Reinisch et al. [40], we define a priori confidence intervals for
reasonable values of strain rate under each interpretation. Using results from well logs [50], we define
the mean values for the rates of change in pressure Ṗ and temperature Ṫ with confidence intervals
defined such that a rate of zero is two standard deviations away from the mean value.

Ṗ ∈ (−9.4± 4.7)× 105 Pa/year, (15)

Ṫ ∈ (−2.6± 1.3) K/year. (16)

We similarly define confidence intervals for αT ∈ (1.0± 0.5)× 10−5 1/K and 1/H ∈ (5.0 ± 2.5)×
10−10 1/Pa (e.g., [8,27,49,51–54]). This leads to confidence intervals for volumetric strain rate
interpreted in terms of decreasing pore-fluid pressure alone, thermal contraction alone, or a
combination of thermal contraction and decreasing pore-fluid pressure:

ε̇(P) ∈ (−5.6± 4.2)× 10−5 year−1, (17)

ε̇(T) ∈ (−2.6± 2.0)× 10−5 year−1, (18)

ε̇(P+T) ∈ (−8.2± 4.6)× 10−5 year−1. (19)

We then compare the realized a posteriori 68% confidence interval for our estimates to the a
priori 68% confidence intervals defined in Equation (17) to determine if any of the interpretations are
unreasonable. Figure 14 shows the resulting comparisons for Envisat and Sentinel-1A pairs. In each
case, we see no overlap between the realized 68% confidence interval for the volumetric strain rates
and the 68% confidence interval for reasonable values of ε̇(T) defined a priori. We infer that the
estimated values of volumetric strain rates are too high to be attributed to thermal contraction of the
rock matrix alone. In contrast, we see clear overlap between the realized 68% confidence interval
for volumetric strain rates and the 68% confidence interval for reasonable values of ε̇(P) and ε̇(P+T)

defined a priori, with the most apparent overlap with the ε̇(P) interpretation. We infer that decreasing
pore-fluid pressure is the dominant driving mechanism causing the subsidence observed at Coso.
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Figure 14. Histograms of best-fitting estimates of volumetric strain rates interpreted in terms of thermal
contraction of the rock matrix (first row), a decrease in pore-fluid pressure (second row), and a linear
combination of the two (third row) for Envisat pairs corresponding to the time interval from 2004 to
mid-2010 (first column) and Sentinel-1A pairs corresponding to the time interval between 2014 and
2016 (second column). Overlain are 68% confidence intervals for reasonable values defined a priori
(red) and realized values from deformation modeling (green). Also shown is the best fitting estimate of
mean strain rate (black) found from temporal adjustment with a single rate temporal function.
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5. Discussion

We find that the volumetric strain is most reasonably attributed to decreasing pore-fluid pressure
during both time intervals. We also find a significant difference between the volume change rates
estimated before 2010, between 2010 and 2011, and after 2014 from our InSAR data set.

The significant increase in volume change rate during the first six months following completion of
the Hay Ranch project could be explained by the increased pumping activity at the site, as suggested
by Eneva et al. ([42], their Figure 4) and apparent in Figure 6. The strong correlation between the
amount of volume change and pumping rates (Figure 13) corroborates such an explanation.

For observations before 2010, we find the best-fitting cuboidal model for the reservoir to have a
centroid depth of 2.4± 0.5 km, consistent with previous studies (e.g., [27,42]). The results using the
Sentinel-1A stack for the time interval between 2014 and 2016, however, show that the best-fitting
depth for the reservoir between 2014 and 2016 is 3.1± 0.2 km. The reservoir depths estimated from
GPS data during both the pre-2010 and post-2010 intervals are similar to the results estimated from
InSAR data. To test whether this change in depth is significant, we use a two-tailed Student’s t-test at
95% confidence. We test the null hypothesis that there is no significant difference between the centroid
depth estimated for pairs before 2011 and the centroid depth estimated for pairs after 2014. We find a
test statistic of |Tcalc = 4.367| which is greater than the critical value Tα/2 = 1.99 with 89 degrees of
freedom. Thus, we infer a significant difference in centroid depths before 2011 and after 2014 with
95% confidence.

The results from this geodetic modeling suggest that the depth to the center of the reservoir
increased after 2010. A change in reservoir depth could be explained by reservoir depletion after 2010,
when the pumping rate was increased (e.g., [42]). If the fluid level in the reservoir drops, then faults
that were previously saturated by fluids within the reservoir would no longer be filled with such
pressurized fluids. This Coulomb effect provides one explanation for the correlation between the
monthly seismicity rates and pumping rates at Coso before 2010 and the lack of correlation thereafter
as observed by Reinisch [55]. An increase in reservoir depth after 2010 could also explain the decrease
in maximum deformation rates observed by InSAR after 2010 (e.g., Sentinel-1A pairs), as shown in
Figure 3) and found in previous studies (e.g., [42]). The magnitude of displacement at the surface
decreases as the depth of the sink increases (e.g., [38]). This reasoning explains the decrease in estimated
volume change rate between pairs before 2011 and pairs after 2014.

Comparing the volume change rates in Table 6, we find that the estimates of volume change
rate of the reservoir from deformation modeling are an order of magnitude less than those predicted
through standard density calculations using the pumping records. Under the simple assumptions of a
nearly incompressible fluid in a poroelastic half space, Segall [56] interprets Skempton’s coefficient B
as the “ratio of solid volume change to change in pore fluid volume. . . . Thus, for example, if water is
uniformly withdrawn from a rock with B = 0.8 the volumetric contraction of the rock is 80% of the
volume of the extracted water.” Deng et al. [57] give the range of Skempton’s coefficient for crustal rock
to be between 0.5 and 0.9. Given the metamorphic setting of Coso with basalt and rhyolites present
(e.g., [2,7]), values for B could fall below this range as well (e.g., [58]). Considering the recharge to the
system, a value of B around 0.65 would explain the discrepancy between volume change rate estimates
in Table 6.

Eneva et al. [42] have also suggested poroelastic effects to explain the subsidence at Coso.
The model presented by Segall [56] for depleting a reservoir at constant rate and source location has
been used to describe changes in subsidence at other geothermal fields (e.g., [59]). According to this
model, if the rate of production (or net extraction) is constant, then the response in terms of subsidence
would vary as a smooth function of time. To test this possibility, we perform temporal adjustment
using a temporal function with exponentially decaying rate (Equation (9)) with a characteristic time
scale of τ = 18 year found through nonlinear optimization. Our cuboidal models estimated from
the InSAR and GPS data sets show different reservoir depths before and after 2010, which violates
the model assumptions from Segall [56]. We use the differential (day-to-day) measurements of
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vertical displacement corresponding to the pairs in the GPS data set. We find a misfit of χ = 2.0.
For comparison, we perform temporal adjustment on the pair-wise vertical displacements using a
piece-wise linear parameterization with a break on January 1, 2010 (Equation (7), m = 2), after the
well operations were altered. We find a misfit of χ = 1.8, indicating a better fit than the smooth model
corresponding to a reservoir depleting at constant rate. Using an F-test, we reject the null hypothesis
that the two models provide equally good fit with 95% confidence. We infer that the changes in
subsidence rate, reservoir contraction, and sink depth are due to the change in injection protocol in
late 2009. Apparently, the geothermal system at Coso is too complex to be explained by a model of a
simple sink with constant rate of depletion and constant location.

6. Conclusions

Using methods outlined previously [40], we have advanced the characterization of the subsidence
observed by InSAR at Coso geothermal field by estimating the volume change rate for each
interferometric pair using a “cuboid” parameterization. Using temporal adjustment, we find a
significant difference between volume change rates estimated before and after 2010 with 95%
confidence. We also identify decreasing pore-fluid pressure as the dominant mechanism driving
the observed deformation. We confirm a significant positive correlation between deformation and
production rate.
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