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Abstract: Floods caused by heavy rainfall events associated with landfalling tropical cyclones
(TCs) represent a major risk for the Yangtze River Delta (YRD) region of China. Accurate extreme
precipitation forecasting, at long lead times, is crucial for the improvement of flood prevention and
warning. However, accurate prediction of timing, location, and intensity of the heavy rainfall events
is a major challenge for the Numerical Weather Prediction (NWP). In this study, high-resolution
satellite precipitation products like Global Precipitation Measurement (GPM) are evaluated at the
hourly timescale, and the optimal Integrated Multi-satellite Retrievals for GPM (IMERG) precipitation
product is selected and applied to directly assimilate into the Weather Research and Forecasting
(WRF) model via the four-dimensional variational (4D-Var) method. The TC Jondari and Rumbia
events of August 2018 are evaluated to analyze the performance of the WRF model with the 4D-Var
method assimilated IMERG precipitation product (DA-IMERG) and the conventional observation
(DA-CONV) for real-time heavy rainfall forecasting. The results indicate that (1) IMERG precipitation
products were larger and wetter than the observed precipitation values over YRD. By comparison,
the performance of “late” run precipitation product (IMERG-L) was the closest to the observation
data with lower deviation and higher detection capability; (2) DA-IMERG experiment substantially
affected the magnitude of the WRF model primary variables, which changed the precipitation pattern
of the TC heavy rain. (3) DA-IMERG experiment further improved the forecast of heavy rainbands
and relatively reduced erroneous detection rate than CTL and DA-CONV experiments at the grid
scale. Meanwhile, the DA-IMERG experiment has a better fractions skill score (FSS) value (especially
in the threshold of 10 mm/h) than DA-CONV for TC Jondari and Rumbia at the spatial scale, while it
shows a lower performance than CTL and DA-CONV experiments when the threshold is lower than
the 5 mm/h for the TC Rumbia.

Keywords: TC Jondari and Rumbia; GPM IMERG; four-dimensional variational (4D-Var) method

1. Introduction

Flooding is considered one of the most devastating natural disasters, causing extensive damage to
human society. According to the report of the Centre for Research on the Epidemiology of Disasters
(CRED), there were 315 natural disaster events that caused a total of 11,804 people deaths, over 68
million people affected, and economic losses of up to $131.7 billion in 2018 [1]. Among these disasters,
flood affects more people than any other type of disasters, accounting for 50% of the total affected.
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Floods are often caused by short-term heavy rainfall associated with tropical cyclones (TCs) and
extratropical systems playing central roles [2]. Heavy typhoon rainfall often causes flood inundation
and strongly influences human lives. For instance, the super-typhoon Haiyan (2013) took at least 6300
lives and caused approximately $2 billion in damage in the Philippines [3]. Therefore, accurate typhoon
rainfall forecasting is imperative for flood warning and emergency response during typhoon landfall.

Currently, our state-of-the-art General Circulation Models (GCM) use Numerical Weather
Prediction (NWP) to predict TCs and study their formation, development, and dissipation [4]. However,
most GCM simulations present coarse horizontal resolutions (~0.1◦). Coarse GCM resolutions heavily
smooth and inaccurately represent the complex topographic patterns that inevitably affect the finer
resolution climate simulations [5]. To obtain accurate climatic information, several regional climate
models (RCMs) have been used to simulate the regional atmospheric and land processes, including
WRF (Weather Research and Forecasting), RSM (Regional Spectrum Model), PNNLRCM (Pacific
Northwest National Laboratory Regional Climate Model), PRECIS (Providing Regional Climates for
Impacts Studies), RIEMS (Regional Integrated Environment Modeling System), RegCM (Regional
Climate Model), and so on; these have evolved from mesoscale and weather forecast models or as
regional configurations of global models [5]. Until now, the RCMs models have been widely used in
the diverse community for regional process and sensitivity studies. Among the various NWP models,
WRF, as one of the most popular mesoscale numerical weather predictions models, has been widely
used to forecast and study TCs due to a flexible and computationally efficient platform for operational
forecasting [6,7]. Nevertheless, TC’s intense rainfall is time-dependent and spatially complex, therefore,
the accuracy of TC precipitation prediction remains a challenge [4]. Additionally, uncertainty remains
in optimal microphysics schemes and initializations, which contribute to inaccurate simulations.

High-resolution precipitation data assimilation (DA) offers an opportunity to improve the
numerical prediction of TC by providing accurate initial conditions for the subsequent weather
forecast [8]. In the last several decades, various DA techniques have been developed and successfully
applied in NWP [9]. The three-dimensional variational DA (3D-Var) [10] and four-dimensional
variational DA (4D-Var) are commonly used DA methods in the WRF model to restructure the
moisture and temperature fields for improving the quality of model analyses and forecasts [11,12].
Huang et al. [13] investigated that 4D-Var had a significant positive impact on the rainfall forecasts
compared to the 3D-Var owing to the fact that 4D-Var used physical and dynamical constraints to
improve analysis field initial conditions. Another advantage of 4D-Var is that it can assimilate
precipitation data directly and adjust the model variables towards observed precipitation [14].
Koizumi et al. [15] demonstrated that the rainfall assimilation using 4D-Var could improve the forecast
of synoptic-scale atmospheric flow and sub-synoptic-scale precipitation distributions. However, the
accuracy of precipitation simulated by WRF with 4D-Var depends on the assimilation data. Yi et al. [16]
reported that WRF precipitation assimilated with GPM IMERG outperformed that with TRMM-3B42.

Satellite precipitation products with wide coverage and high spatiotemporal resolution have been
used in landfalling TC research [17,18]. At present, satellite precipitation products such as CMORPH (the
Climate Precipitation Center morphing method), PERSIAN (the Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Network), TMPA (Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis), IMERG (Integrated Multi-Satellite Retrievals for Global
Precipitation Measurement (GPM) mission), have been made available to the public [19]. The GPM as
the successor of the TRMM provided three IMERG precipitation products (the near-real-time “early”
run (IMERG-E), “late” run (IMERG-L), and the post-real-time “final” run (IMERG-F)). According to
existing research, scholars mainly evaluate and compare IMERG-L with rain gauge observations and
several prevailing satellite precipitation products in varying climate zones and spatial-temporal scales
for capturing key features of rainfall [20–29]. Predominantly, the aforementioned studies find that
IMERG products show promising potential in rainfall spatial-temporal distribution, but they pay little
attention to assessing the performance of the satellite precipitation of typhoon-specific precipitation
over the Yangtze River Delta (YRD).
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YRD lies in one of the main typhoon paths and often suffers from flooding caused by heavy TC
rainfall. [30]. This study will focus on the comparative performance of IMERG precipitation products
on capturing the space-time organization of precipitation associated with TC Jondari and Rumbia at
hourly timescales over YRD. Furthermore, we analyze the impact of the optimal IMERG precipitation
product and conventional observation data assimilated into WRF with 4D-Var for simulating heavy
rainfall events that occurred over YRD. Results of this study can provide reference for improving the
numerical simulations of TC rainfall for timely flood forecasting and warning.

2. Materials and Methods

2.1. Study Area

YRD is located on the east coast of China with latitude of 29◦12′ N–33◦19′ N and longitude of
118◦19′ E–122◦19′ E and has a basin area of 9.54 × 104 km2. The plain area accounts for 85.3% of
the watershed located in north and east of the YRD, while mountains and hills lie on the southwest
of YRD. The YRD region is dominated by the East Asian monsoon (Figure 1). The average annual
precipitation of this area ranges from 729.7 to 1526.2 mm, with an average temperature of 16 ◦C [31].
The precipitation shows a distinct seasonal distribution, and mainly occurs in May to October. During
this period, the YRD often suffers from yearly severe flooding because of the short-term heavy rainfall
caused by TCs from the east Pacific. For instance, four TCs (e.g., Ampil, Jondari, Yagi, and Rumbia)
impacted the YRD from July 2018 to August 2018. The area affected by TC Rumbia covered 37,489
km2 in the Jiangsu province. The water level of Taihu lagoon rose to 3.72 m and exceeded the water
warning level by 0.26 m. Additionally, several observation gauges in the plain river area exceed the
warning level during the period of TC Rumbia [30]. Thus, the TC heavy rainfall increased the potential
danger of the flood risk in the study area.

Figure 1. The location of the Yangtze River Delta region and rain gauges. Black dots represent the
locations of the gauge stations. Black squares in the right figure represent the IMERG products gridboxs
nearest gauge station. The blue and black lines represent the best track of Jondari and Rumbia with 6h
interval, respectively. Track data is obtained from IBTrACS (ftp://eclipse.ncdc.noaa.gov/pub/ibtracs/
v04r00/provisional/csv/).

2.2. Datasets

The hourly rain gauge precipitation data are employed as ground truth to evaluate satellite
products. Hourly precipitation data of rain gauge stations in August 2018 are obtained from the
National Meteorological Information Center of China Meteorological Administration (CMA). There
are 82 rain gauge stations located in the YRD (Figure 1). All data have undergone strict quality control
by CMA, including checking extreme values, internal consistency, and spatial consistency [19].

ftp://eclipse.ncdc.noaa.gov/pub/ibtracs/v04r00/provisional/csv/
ftp://eclipse.ncdc.noaa.gov/pub/ibtracs/v04r00/provisional/csv/
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Global Precipitation Measurement (GPM) is a successor of TRMM, which began to provide
next-generation global precipitation products since April 2014. The GPM sensors carry the Ku/Ka-band
(13.6 GHz/35.5 GHz) dual-frequency precipitation radar (DPR) and a multi-channel GPM Microwave
Imager (GMI) ranging from 10–183 GHz with a swath width of 885 km, similar to TRMM [32]. DPR
improved sensitively of Ku and Ka bands and combined with radar observation technology provides
more detail physical information of cloud precipitation particles, thereby improving the detection
of micro precipitation (<0.5 mm/h) and solid precipitation [22,25]. The Integrated Multi-satellite
Retrievals for GPM (IMERG) is the Level 3 precipitation estimation algorithm of GPM, which provides
three types of precipitation products (including the IMERG-E (near real-time, with a latency of 4 h),
IMERG-L (near real-time, with a latency of 18 h), and IMERG-F (with a latency of four months)) which
has a finer spatial-temporal resolution (0.1◦ and 30 min) and greater coverage (60◦ S–60◦ N) than
TRMM products. The IMERG-E and IMERG-L products are only calibrated using “satellite source”
data while the IMERG-F product is adjusted by monthly Global Precipitation Climatology Centre
(GPCC) gauge data [32]. IMERG precipitation products within 23◦ N–39◦ N and 110◦ E–130◦ E are
obtained from NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
website. Before using the IMERG precipitation products, the time of local time and UTC (+8) was
united in the study period.

2.3. Method Used

2.3.1. WRF Model Configuration

The numerical simulation of intense precipitation events by the TCs are investigated by Advanced
Research WRF ARW version 3.9.1. This full compressible non-hydrostatic model is widely used in the
research fields of meteorology and hydrometeorology due to its flexibility regarding the implementation
of a large number of physical parameterizations and its ability to simulate atmosphere dynamics
at a variety of horizontal and vertical scales [33]. In this work, two nested domains are utilized.
The horizontal grid domain 1 (D1) is 90 × 90 and domain 2 (D2) is 76 × 76 in the east-west and
south-north directions (Table 1), with horizontal grid spacing 27 km and 9 km respectively. D1 is
centered at (120◦ E, 31◦ N) and covers most of East China and its surrounding areas, while the nested
inner domain (D2) is centered over YRD. The vertical grids contain 38 sigma levels from the surface to
50hPa. The initial and boundary conditions are obtained from the National Center for Environmental
Prediction (NCEP) FNL global reanalysis data (https://rda.ucar.edu/datasets/ds083.3/) on 0.25◦ × 0.25◦

grids at 6 h interval. The model time step is 60 s and 30 s respectively, and the output interval is 60 s
for each domain (Table 1).

Table 1. Overview of the WRF model configuration.

Configuration Outer Domain Inner Domain

Model Version Version 3.9.1
Horizontal grid 90 × 90 76 × 76

Grid spacing (km) 27 9
Vertical grids 38 layer/Top 50hPa
Time step (s) 60 30
Microphysics Morrison two-moment scheme

Longwave radiation
RRTMG schemeShortwave radiation

Surface layer Monin–Obukhov scheme
Land-surface process Noah land-surface model

Planetary boundary layer process Mellor–Yamada–Jajic TKE scheme
Cumulus scheme Kain–Fritsch (KF)

Parameterization is the method of replacing process that are too small-scale or complex to be
physically represented in the model by simplified process. WRF commonly parameterizes microphysical

https://rda.ucar.edu/datasets/ds083.3/
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processes, cumulus physics, land surface processes, planetary boundary layer (PBL) processes, surface
layer processes, and radiation physics [7]. The model performance is highly dependent on the choice of
parameterization schemes. Several physics schemes were widely utilized in previous studies [34–36],
including Morrison two-moment microphysics scheme, RRTMG radiation scheme, Monin–Obukhov
surface layer schemem, Noah land-surface process, Mellor–Yamada–Jajic TKE planetary boundary
layer process, and Kain–Fritsch cumulus scheme, were identical for the two nested domains.

2.3.2. Experiments Design

In this study, we conducted three sets of WRF experiments over YRD outlined in Table 2. For the
control experiment (CTL), we run the WRF model without assimilating observation data. The simulated
period was set from 0000 UTC 02 to 1800 UTC 03 August for TC Jondari and from 1800 UTC 15 to 0000
UTC 18 August 2018 for TC Rumbia. The purpose of the WRF experiment was to investigate the accuracy
of simulated precipitation in the WRF model. To ensure an equilibrium between the boundary conditions
and the model dynamics [37], we sited the first 6h of the simulations as spin up. The 4D-Var (4D-Var
details are contained in Appendix A) assimilation experiments included the WRF model assimilated
optimal IMERG precipitation product (DA-IMERG) and conventional observations (DA-CONV). Two
assimilation experiments, the analysis time of the assimilation experiment was valid at 0600 UTC 02
to 1800 UTC 03 August for TC Jondari and 0000 UTC 16 August to 0000 UTC 18 August 2018 for TC
Rumbia. DA-IMERG experiment was directly assimilated IMERG precipitation products utilizing
4D-Var. The IMERG precipitation product was applied as observation operators, which was collected
and accumulated every 6h for assimilating into the DA-IMERG experiment [16]. For comparison
purposes, The DA-CONV was based on the assimilation of conventional observations (surface
observational weather data (ds461.0) and upper air observational weather data (ds351.0)) from the
Research Data Archive at the National Center for Atmospheric Research (https://rda.ucar.edu/datasets/).
For each case, we used 6 h analysis cycle, and the first 6 h period of the CTL experiment as the first-guess
field of the 4D-Var assimilation experiment. The 4D-Var model provided the initial and boundary
conditions for the subsequent WRF model with a cycling forecast. The assimilations were carried
out in both outer and inner domains (27 km and 9 km resolutions, respectively). For all assimilation
experiments, the background error covariance matrices were statistics by computing the differences
between 24 h and 12 h forecasts for the one-month ensemble forecasts from 21 July to 21 August 2018.

Table 2. Brief description of experiment design.

Experiment
Analysis Time

Assimliation Data
Jongdari Rumbia

CTL 0000 UTC 02 to 1800
UTC 03 August

1800 UTC 15 to 0000
UTC 18 August No

DA-CONV 0600 UTC 02 to 1800
UTC 03 August

0000 UTC 16 to 0000
UTC 18 August

Surface and upper air
observations

DA-IMERG 0600 UTC 02 to 1800
UTC 03 August

0000 UTC 16 to 0000
UTC 18 August IMERG-L

2.3.3. Evaluation Metrics

To evaluate the performance of the GPM satellite precipitation products and the precipitation
results simulated by the WRF model and assimilation experiments, we extracted the precipitation
series of IMERG precipitation products and simulated precipitation at the satellite gridboxes where at
least one rain gauge was located over YRD. Several widely-used evaluation metrics were selected to
quantify the deviations and the precipitation event detection capability of the IMERG precipitation
products, CTL, DA-CONV, and DA-IMERG (Table 3). The correlation coefficient (CC), the relative
bias (Bias), and root-mean-square error (RMSE) were used to quantitatively assess the correlations,
errors, and deviation between the estimated precipitation and the gauge precipitation at the point

https://rda.ucar.edu/datasets/
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scale. To evaluate the precipitation detection capability of the GPM, CTL, DA-CONV, and DA-IMERG,
three contingency statistic descriptions are adopted in meteorological studies, including probability
of detection (POD), false alarm ratio (FAR), and critical success index (CSI). POD denotes the ratio
of precipitation events correctly detected to the total number of observed events. FAR indicates
the fraction of spurious precipitation events among all the events the satellite/simulated detected.
CSI captures the ratio of satellite/simulated events that are correctly detected to total number of
observed or detected events (Table 3). Besides, the fractions skill score (FSS) was used for assessing
the spatial agreement between simulated precipitation and optimal IMERG product precipitation for
several rainfall thresholds (i.e., 1.0 mm/h, 2.5 mm/h, 5 mm/h, and 10 mm/h). FSS value range from
0 to 1, 0 meaning there is no overlap between the forecasted and observed precipitation, 1 meaning
complete overlap.

Table 3. Statistical indices for evaluating IMERG and WRF precipitation.

Statistical Indices Unit Equation Target Value

Correlation coefficient
(CC) None CC =

[
n∑

i=1
(Si−S)·(Gi−G)

]2

n∑
i=1
(Si−S)

2 n∑
i=1
(Gi−G)

2
1

Relative bias (Bias) None Bias =

n∑
i=1

(Si−Gi)

n∑
i=1

Gi

0

Root-mean-square error
(RMSE) mm RMSE =

√
1
n

n∑
i=1

(Si −Gi)
2 0

Probability of detection
(POD) None POD = a

a+c 1

False alarm ratio (FAR) None FAR = b
a+b 0

Critical success index
(CSI) None CSI = a

a+b+c 1

Fractions skill score (FSS) None

FSS = 1−
MSE(n)

MSE(n)re f

MSE(n) =
1

NxNy

Nx∑
i=1

Ny∑
j=1

[
O(n)i, j −M(n)i, j

]2

MSE(n)re f =

1
NxNy

 Nx∑
i=1

Ny∑
j=1

O2
(n)i, j

+
Nx∑
i=1

Ny∑
j=1

M2
(n)i, j


1

Where n is the total number of gauge, satellite or WRF precipitation data. i is the index of gauge, satellite or WRF
precipitation number. Gi, Si are gauge observation precipitation and the satellite or WRF precipitation. G, S are the
mean precipitation of observation precipitation and the satellite or WRF precipitation. a denoted the precipitation
events that ware detected by satellite and gauge. b represents the precipitation events that were captured by satellite
but missed by observed. c indicated the precipitation events missed by satellite but captured by the gauge. Nx
and Ny are the number of columns and rows in the verification domain respectively. O and M are observed and
simulated are fractions within verification domain that contains values exceeding a threshold respectively.

3. Results

3.1. Evaluation of IMERG Precipitation Products

3.1.1. Temporal and Spatial Distribution of IMERG Precipitation

Figure 2 shows the spatial distribution of accumulated precipitation of the TC Jondari and Rumbia
retrieved from IMERG and gauge observation during TC landfalling period. The structure of the
landfalling TC in Figure 2 is consistent with similar results presented by Rios Gaona et al. [17]. It is
clear in Figure 2, that although the IMERG precipitation products show similar spatial variations; the
rainbands of the IMERG-F is obviously wider than IMERG-E and IMERG-L. Compared to the observed
precipitation, IMERG products exhibit good capacity in capturing the spatial characteristics of total
precipitation. However, IMERG precipitation products seem to overestimate precipitation. The spatial
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distributions and the amounts of the IMERG-E (Figure 2a,d) and IMERG-F (Figure 2c,f) precipitation
products are larger than observed precipitation. In contrast, IMERG-L precipitation product presents a
more reasonable distribution and shows the best match with the observed precipitation (Figure 2b,e).

Figure 2. Spatial distribution of accumulated precipitation from IMERG: (a–c) for TC Jondari during
0600 UTC 02 to 1800 UTC 03 August 2018; (d–f) for TC Rumbia during 0400 UTC to 1400 UTC
17 August 2018. Each dot represents an observed accumulation precipitation during TC landfalling.

The temporal distribution of the hourly rain rate over YRD is shown in Figure 3. The hourly
rain rate was calculated by averaging precipitation amount of 82 rain gauge and 128 selected grid
boxes nearest each gauge within YRD (Figure 1). The IMERG precipitation products exhibit similar
distribution patterns with observed precipitation in terms of hourly rain rate, but there are some
differences in the temporal distribution curves. For TC Jondari, the performance of all three IMERG
products comparatively poor CC values during TC landfalling, while the systematic error has a good
performance, with average Bias value of 4.38% and average RMSE value of 2.85 mm (Figure 3a). By
comparison, although the distribution of the IMERG products for TC Rumbia presents a higher CC
value, the Bias and RMSE values are large, indicating IMERG products have obvious overestimation
for the hourly rain rate. As shown in Figure 3b, IMERG-E and IMERG-F evidently overestimated the
hourly rain rate from 1200 UTC 16 to 0800 UTC 17 August 2018. IMERG-L product shows a relatively
slight overestimation and has the best fitting with the observed precipitation for two landfalling TC
over YRD, in terms of the slightly better CC, Bias, and RMSE value than IMERG-E and IMERG-F.

Figure 3. Temporal distribution of hourly rain rate over Yangtze River Delta (YRD).
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We further examine the frequency of the hourly rain rate at different precipitation intensity
levels over YRD. We use thresholds of 2.5 mm and 8 mm hourly rain rate to divide mean hourly
precipitation into three levels (e.g., light rain (0.1 ≤ R < 2.5 mm), moderate rain (2.5 ≤ R < 8 mm), and
heavy rain (R ≥ 8 mm)) (Table 4 and Figure 4). Results indicate that IMERG-E and IMERG-L products
underestimated the incidence of light rain, while the IMERG-F products overestimated the incidence
of light rain with a Bias value of 13.91% during Jondari landfalling (Figure 4a,c). For moderate rain,
although IMERG produces provide a relatively higher estimate during Jondari landfalling, it tends to
provide a good estimate during Rumbia with a higher CC value (ranging from 0.80 to 0.89) (Figure 4e).
In the case of heavy rain, IMERG-F products obviously overestimated the occurrence frequency
(especially the Bias of IMERG-F up to 138.55% for Rumbia) (Table 4). Comparing the statistical results
of occurrence frequency in Table 4, IMERG-L was much closer to observed precipitation with the
smallest biases and higher CC values for light rain and moderate rain. In contrast, although IMERG-F
shows the highest CC value for heavy rain (with the largest CC value of 0.85 and 0.90 for Jongdari and
Rumbia, respectively), it presents significant biases (with the largest Bias value of 49.20% and 138.55%
for Jongdari and Rumbia, respectively) (Table 4). Therefore, the frequency of the hourly rain rate for
IMERG-L is relatively closer to that of the observations than IMERG-F and IMERG-E.

Table 4. Statistical metrics of satellite rainfall products for frequency at different intensities within
the YRD. Bias, RMSE, and CC represent mean bias, root mean square error, and correlation
coefficient, respectively.

Jongdari Rumbia

IMERG-E IMERG-L IMERG-F IMERG-E IMERG-L IMERG-F

CC
R < 2.5 0.56 0.59 0.52 0.41 0.83 0.81

2.5 ≤ R < 8 0.75 0.68 0.79 0.55 0.89 0.89
R ≥ 8 0.78 0.83 0.85 0.18 0.80 0.90

Bias(%)
R < 2.5 −27.82 −25.97 13.91 −13.37 14.45 62.55

2.5 ≤ R < 8 11.06 21.28 22.55 −8.40 21.58 29.45
R ≥ 8 −18.18 −16.58 49.20 12.03 17.82 138.55

RMSE(mm)
R < 2.5 10.27 9.90 11.23 13.24 5.71 7.39

2.5 ≤ R < 8 4.25 4.82 4.07 11.78 5.86 4.32
R ≥ 8 3.30 3.06 5.79 15.78 6.05 12.2

3.1.2. Evaluated the Deviation and Detection Capability in Hourly Scale at the Gauge Stations

Rainfall evaluates at IMERG products grid boxes with at least one observation gauge are compared
with the observed precipitation value within the grid boxes. Figure 5 and Table 5 show CC, Bias, RMSE,
POD, FAR, and CSI between grid boxes and observation over the YRD at hourly timescale. Among the
IMERG precipitation products, IMERG-F precipitation exhibits the best performance with the highest
CC of 0.42 and 0.45, the IMERG-L shows middle performance with CC of 0.35 and 0.43 for Jondari
and Rmbia, respectively, while the IMERG-E presents the lowest performance with CC value of 0.35
and 0.40 for Jondari and Rmbia, respectively. This means that all IMERG precipitation products show
better agreement with the observation at hourly timescale for TC heavy rainfall. However, IMERG-E
and IMERG-F exhibit a higher Bias and RMSE value than the IMERG-L (Figure 5b,c). This finding
indicates that the IMERG-E and IMERG-F tend to overestimate rainfall, while the opposite is true for
the IMERG-L product. Therefore, we calculate that IMERG-L product with lower Bias (17.17% for
Jongdari and 49.85% for Rumbia) and RMSE (4.08 mm for Jongdari and 5.20 mm for Rumbia) exhibits
relatively better performance among the three IMERG products.
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Figure 4. Temporal distribution of hourly frequency accumulation for: (a,d) light rain (0.1 ≤ R < 2.5 mm)
(b,e) moderate rain (2.5 ≤ R < 8 mm), and (c,f) heavy rain (R ≥ 8 mm) over YRD.

Figure 5. Box plots of the statistical indices of IMERG at an hourly scale versus the gauge observations
over YRD.

Table 5. Statistical indices of mean hourly precipitation from IMERG over YRD.

CC Bias (%) RMSE (mm) POD FAR CSI

Jondari
IMERG-E 0.35 7.12 3.93 0.56 0.41 0.38
IMERG-L 0.35 17.17 4.08 0.60 0.45 0.40
IMERG-F 0.42 46.43 4.32 0.73 0.50 0.41

Rumbia
IMERG-E 0.40 82.38 6.65 0.78 0.31 0.58
IMERG-L 0.43 49.85 5.20 0.83 0.30 0.61
IMERG-F 0.45 135.11 7.52 0.92 0.39 0.58
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For the detection capability of the IMERG products, the statistical indices (POD, FAR, and CSI)
for the point scale are shown in Figure 5. Among three IMERG products, IMERG-F shows better
POD than IMERG-E and IMERG-L, which reveals that IMERG-F precipitation product performs
better for detecting rainfall events. However, Higher FAR value at the IMERG-F can be found in
Figure 5. This phenomenon reveals that IMERG-F product tends to overestimate the occurrence
probability of rain events, whereas many of them are false alarm events (average FAR = 0.50 and 0.39
for Jondari and Rumbia, respectively). This may explain IMERG-F overestimation of accumulated
precipitation compared with IMERG-E and IMERG-L in Figure 2, which is consistent with the findings
of Tan et al. [23]. With respect to the IMERG-F, IMERG-L presents relatively higher POD (0.60 for
Jondari and 0.83 for Rumbia) and lower FAR (0.45 for Jondari and 0.30 for Rumbia), indicating IMERG-L
has a better capability of the rainfall detection with a CSI value of 0.40 for Jondari and 0.61 for Rumbia.
Thus, IMERG-L is the optimal choice of precipitation products for rainfall event detection.

3.2. Evaluation of WRF Model with 4D-Var

3.2.1. Brief Analyzed the Assimilation Increment

In this section, IMERG-L has been utilized as data source for the assimilation experiment in the
WRF model with 4D-Var. To identify the possible effect of 4D-Var assimilated IMERG-L precipitation
the analysis increments (i.e., analysis minus the first guess) of zonal wind, meridional wind, surface
pressure, potential temperature, surface dry air mass pressure, and specific humidity at the lowest
model level are compared (Figure 6). The zonal wind maximum analysis increments are larger than
±10 m/s. The meridional wind maximum analysis increments are larger than ±20 m/s, the surface
pressure and surface dry air mass pressure are larger than±500 Pa. The potential temperature maximum
analysis increments show obvious land-sea difference, while the specific humidity maximum analysis
increments are small. Similarly, Lin et al. [38] investigated that a small precipitation assimilated by the
WRFDA system did not substantially affect the magnitude of the WRF primary state variables, but
significantly influenced the analysis rainfall. Thus, the 4D-Var algorithm was sensitive to assimilated
rainfall observations. In this study, the 4D-Var assimilated IMERG-L precipitation substantially affects
the magnitude of WRF model primary state variables. It can be concluded that the pattern of rainfall
simulated by WRF is bound to change due to assimilated IMERG-L.

Figure 6. The increments of several variables at the lowest model level from 4D-Var assimilated 6h
accumulated precipitation of IMERG-L at 0600 UTC 16 Aug 2018 for TC Rumbia: (a) zonal wind (m/s),
(b) meridional wind (m/s), (c) surface pressure (Pa), (d) potential temperature (K), (e) surface dry air
mass pressure (Pa), and (f) specific humidity (kg/kg).

3.2.2. Temporal and Spatial Distribution of Precipitation

To better pinpoint the impact of the assimilated satellite precipitation with 4D-Var, we compared
the spatial distribution of simulated precipitation from the IMERG-L, CTL experiment, DA-CONV
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experiment, and DA-IMERG experiment for TC Jondari and Rumbia. Figure 7 shows the accumulated
rainfall from 0600 UTC 02 to 1800 UTC 03 August 2018 for TC Jondari. The IMERG-L precipitation
has a heavy rainband in the center of the YRD (Figure 7a). CTL experiment is able to simulate the
precipitation pattern compared with observed precipitation, but it fails in forecasting the precipitation
core (Figure 7b). When compared to the CTL experiment, although the DA-CONV experiment
improves the spatial pattern of heavy rain, it is still weaker than IMERG-L. Meanwhile, the position of
precipitation core forecast by the DA-CONV experiment is apparently different from the IMERG-L
(Figure 7c). For the DA-IMERG experiment, it further improves the forecast for the intensity of heavy
rainband, whereas, the precipitation pattern extends western YRD. The precipitation core forecasted
by the DA-IMERG experiment is farther north than in the IMERG-L (Figure 7d).

Figure 7. Precipitation accumulation of IMERG-L (a), CTL experiment (b), DA-CONV experiment (c),
and DA-IMERG experiment (d) for TC Jondari during 0600 UTC 02 to 1800 UTC 3 August 2018.

For TC Rumbia, the IMERG-L precipitation has a higher intensity and a larger spread than TC
Jondari (Figure 8a). Among in three assimilated experiments, CTL, and DA-IMERG experiments
capture the accumulated precipitation pattern, while the differences in the spatial distribution of those
experiment are still remarkable. The CTL experiment shows a wider rainband in the west of YRD than
DA-IMERG (Figure 8b). This indicates that DA-IMERG experiment assimilated IMERG-L satellite
precipitation is quite effective and shows an evident positive impact on the accumulated precipitation
forecasts. The cover area of heavy rain simulated by DA-IMERG experiment reduces in the western
YRD, which is closer agreement with IMERG-L than DA-CONV (Figure 8d). In comparison with the
IMERG-L, DA-CONV experiment obviously underestimates the accumulated precipitation (Figure 8c).

We further examine the evolution of the spatial pattern of precipitation, the 6 h accumulated
precipitation from the IMERG-L, CTL, DA-CONV, and DA-IMERG for TC Rumbia are shown for
comparison at three periods (Figure 9). At the three 6 h periods, the simulated precipitation in the
DA-CONV is weaker than the IMERG-L. DA-CONV does not capture the vortex structure of the
rainbands for the TC Rumbia. On the contrary, CTL and DA-IMERG experiments better captured
the spatial distribution feature of the TC rainbands. This result shows that the 4D-Var assimilated
conventional observation data has a negative impact on the forecast precipitation comparing with
the CTL. Moreover, compared to Figure 9f,h, it can be seen that the position and intensity of the
precipitation center for CTL and DA-IMERG show slightly different. The position of DA-IMERG
experiment shows an eastward deviation, which is a reasonable reason for explaining the 4D-Var
assimilated IMERG-L precipitation weaken the spatial distribution of heavy rainbands for TC Rumbia
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in the western YRD. Thus, DA-IMERG experiment shows an advantage for predicting the spatial
distribution of TC heavy rain.

Figure 8. Precipitation accumulation of IMERG-L (a), CTL experiment (b), DA-CONV experiment (c),
and DA-IMERG experiment (d) for TC Rumbia during 0000 UTC 16 to 1800 UTC 17 August 2018.

Figure 9. Spatial distribution of 6 h accumulated precipitation (mm) for: (a,e,i) IMERG, (b,f,j) CTL,
(c,g,k) DA-CONV, and (d,h,l) DA-IMERG.

3.2.3. Statistical Performance of Assimilation Experiments at the Grid Scale

To evaluate the simulated precipitation of the TCL, DA-CONV, and DA-IMERG experiments
against to IMERG-L, we calculated the CC, Bias, RMSE, POD, FAR, and CSI values. As shown in
Figure 10, DA-CONV and DA-IMERG experiments obtain slightly lower CC values than the CTL
experiment for TC Jondari. The averaged CC values for the CTL, DA-CONV, and DA-IMERG are
0.28, 0.21, and 0.20, respectively (Table 6). In terms of the systematic error, DA-CONV (averaged
RMSE = 4.41 mm) and DA-IMERG (averaged RMSE = 4.32 mm) have slightly smaller errors than CTL
with 5.92 mm. For the capability of the rainfall detection, the assimilation experiments improve the
ability of detecting for rainfall events with a POD value of 0.60 for DA-CONV and 0.73 for DA-IMERG,
but the FAR values are slightly higher than CTL. This suggests that the 4D-Var assimilated observation
data into the WRF model improve the ability of forecasting precipitation, but overestimates the
occurrence probability of rain events for TC Jondari. For TC Rumbia, the DA-IMERG shows higher
CC value and lower Bias and RMSE values than TCL and DA-CONV experiments in Figure 10. This
phenomenon is consistent with the results shown in Figure 8, which reconfirm that DA-IMERG has a
slight advantage in simulating precipitation events for TCs. Moreover, the DA-CONV and DA-IMERG
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have a better CSI value (averaged 0.56 and 0.57 for the DA-CONV and DA-IMERG, respectively) than
CTL with CSI value 0.49. Thus, we conclude that the detection capability of DA-IMERG experiment
for TC Rumbia is better than that for TC Jondari at grid scale.

Figure 10. Boxplots of statistical indices of CC (a), Bias (b), RMSE (c), POD (d), FAR (e), and CSI (f) for
the CTL, DA-CONV, and DA-IMERG.

Table 6. Statistical indices of mean hourly precipitation for the CTL, DA-CONV, and DA-IMERG.

CC Bias (%) RMSE (mm) POD FAR CSI

Jondari
CTL 0.28 3.73 5.92 0.71 0.47 0.42

DA-CONV 0.21 15.88 4.41 0.81 0.57 0.39
DA-IMERG 0.20 −4.81 4.32 0.73 0.58 0.36

Rumbia
CTL 0.23 25.29 6.44 0.69 0.35 0.49

DA-CONV 0.18 −19.25 5.44 0.89 0.39 0.56
DA-IMERG 0.41 −13.84 5.09 0.78 0.30 0.57

3.2.4. Evaluated of Rainfall Forecast Skill Scores

In the following section we evaluate the accuracy of the precipitation simulated by CTL, DA-CONV,
and DA-IMERG used FSS within domain D2, whose main aim is to present the dependence of forecast
quality on the spatial scale [39]. As delineated in Figure 11, the FSSs of the DA-IMERG experiment are
superior to the CTL and DA-CONV. This phenomenon is due to assimilation experiments obviously
changed the spatial distribution of the precipitation in Figure 7. Especially, the FSSs of the DA-CONV
and DA-IMERG are better than CTL is the threshold of 10 mm/h. This result substantially indicated
that the 4D-Var assimilated experiments improve the heavy rain forecast for the TC Jondari, which
is consistent with similar results presented in the Figure 7. For TC Rumbia, The FSSs values of the
DA-IMERG experiment show the best performance than CTL and DA-CONV in the threshold of
10 mm/h. It also shows in Figure 12 that the FSSs values of the DA-CONV experiment are lower than
other experiments. This feature is consistent with the spatial distribution of the DA-CONV forecasted
precipitation in Figure 8c, the DA-CONV experiment obviously underestimated the precipitation
pattern. Overall, although the DA-IMERG experiment only assimilated the precipitation products
into the WRF model, it substantially changed the initial conditions for the WRF model by the 4D-Var
system and further improved the forecast for the temporal-spatial distribution of the heavy rain than
the other experiments.
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Figure 11. Fractions skill scores for the hourly precipitation threshold of (a) 1.0 mm/h, (b) 2.5 mm/h,
(c) 5.0 mm/h, and (d) 10 mm/h at grid scale in the domain D2 for the TC Jondari. The precipitation
observation used in the score is from the IMERG-L.

Figure 12. Fractions skill scores for the hourly precipitation threshold of (a) 1.0 mm/h, (b) 2.5 mm/h,
(c) 5.0 mm/h, and (d) 10 mm/h at grid scale in the domain D2 for the TC Rumbia. The precipitation
observation used in the score is from the IMERG-L.

We also demonstrated the accuracy of the precipitation at different horizontal scales in Figure 13.
For TC Jondari, the DA-IMERG shows the best performance, the differences between DA-IMERG
and CTL and DA-CONV are more distinct when the hourly precipitation thresholds become higher.
As shown in Figure 13d, the FSS is higher in DA-IMERG than in CTL and DA-CONV at the rainfall
threshold of 10 mm/h. The FSS skill is the lowest at the grid scale (0.1 degree), as the size of the grid
scale is increased; the FSS skills show an increasing trend until it is rapidly asymptoting to be stable at
the grid sizes of 0.3 degree. For TC Rumbia, the skill of the CTL experiment performs better at the lower
threshold, but it is considerably worse than DA-IMERG at the threshold of 10 mm/h. The DA-CONV
generally provides a lower score relative to the others. Figure 13 also shows that the FSS skills of TC
Rumbia increased with the spatial scale. After the horizontal scales exceeding 0.3 degree, the FSS skill
increases further, but the trend of the forecasted precipitation is limited. This result suggests that the
horizontal scale of the simulated precipitation at 0.3 degree performs slightly better for capturing the
TC intense rains.
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Figure 13. The aggregated fractions skill scores for hourly precipitation threshold of (a,e) 1.0 mm/h,
(b,f) 2.5 mm/h, (c,g) 5.0 mm/h, and (d,h) 10 mm/h at different horizontal scales.

4. Discussion

Numerous existing studies evaluate the performance of satellite precipitation products. Most
of the IMERG and TMPA assessment and comparison studies indicated the IMERG products were
superior to its predecessor TRMM in the several regions in China, such as the eastern plain region [26],
northwest arid area [24], mid-latitude humid basin [40], southwest hilly area [41], Tibetan Plateau [22],
Yellow River source region [19], and the whole of China [20,25]. However, IMERG products have
different applicability in different geographical conditions and climate conditions, which tend to exhibit
relatively poor performance in complex areas, such as, high altitudes and arid regions [24,42]. In this
study, we evaluated the IMERG products with gauge observations at the hourly timescale during the
TC period over YRD. The performance of the IMERG precipitation products have better correlation (CC
value ranging from 0.40 to 0.45) and higher detection capability (POD value ranging from 0.78 to 0.92)
against to rain gauge observations at the hourly timescale. In addition, those satellite precipitation
products tend to overestimate precipitation during the TC period, which is consistent with He et al. [41]
and Xu et al. [26]. As shown in Figure 4, IMERG products underestimate light rain and overestimate
heavy rain events associated with TC landfall. Similar results have also been revealed in Singapore [43].
This highlights the variability of satellite rainfall estimates for the TC rainfall evaluation. IMERG-F
provides a relatively better estimated for light rain than IMERG-L and IMERG-E. The possible reason is
that the IMERG-F calibrated by GPCC gauge data effectively improves the ability of detecting light rain
events. However, IMERG-F exhibited the highest Bias and RMSE and the lowest detection capability
with higher FAR values, especially in heavy rain conditions. By comparison, IMERG-L performs
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slightly better than the IMERG-F. This finding contrasts with Jiang et al. [40]. This result indicates that
IMERG-L merged all possible satellite microwave precipitation is suitable for monitoring short-term
regional precipitation during the TC period than IMERG-F.

The accurate prediction of timing, location, and intensity of the heavy rainfall events is a
major challenge for the Numerical Weather Prediction (NWP). Especially in the tropics, NWP has
limited skill in forecasting convective type precipitation. One of the major reasons for the lowest
performance of NWP models in the convective precipitation forecast is due to its sensitivity towards
initial conditions [44]. Although only precipitation data are assimilated, 4D-Var can spread the single
observation information spatially, and the initial conditions of the WRF model can be adjusted by the
model constraint [45]. Our results indicate that 4D-Var was sensitive to assimilating satellite rainfall
observation. The initial conditions, including zonal wind, meridional wind, surface pressure, potential
temperature, surface dry air mass pressure, and specific humidity, have been substantially changed by
the 4D-Var system (Figure 6). The adjustments of the initial conditions play key roles in improving the
precipitation forecasted for the TC. DA-IMERG experiment gives an improved heavy rain prediction
over CTL after TC landfall at YRD. Such discrepancy of the precipitation forecasts is mainly ascribed to
the differences in the initial field forecasting. Assimilating the IMERG-L precipitation data significantly
changed the spatial distribution of humidity field and horizontal wind field (Figure 6). We suspect that
changes in DA-IMERG are sufficiently effective not only in improving the accuracy of the WRF model
but also advancing the detection capability of heavy rainfall events. These results are almost consistent
with the results from Choi et al. [46], who also points to assimilating observation data for improved
track and intensity forecasts of TC rainfall.

In summary, the simulated results provide strong justification that assimilation of IMERG-L
precipitation product help to improve the accuracy and detection capability of the heavy precipitation
systems. However, the 4D-Var experiment shows obvious deviation with the gauge observation
data at hourly timescale for different TCs. In a future study, more precipitation products can be
assimilated to understand the sensitivity of the 4D-Var model to precipitation products (e.g. Radar).
Furthermore, more advanced DA methods (e.g., EnKF, hybrid) will be utilized for assimilating radar
data and all-sky/clear-sky satellite radiances to improve precipitation forecasting. Besides, the effect
of background error should consider in the later assimilation experiment, which also improves the
forecast of the heavy rainfall system [47].

5. Conclusions

NWP models are widely used to provide short-term precipitation forecasts for real-time flood
forecasting systems. Previous studies have assessed the suitability of Weather Research and Forecasting
(WRF) for tropical cyclone (TC) prediction. In this study, we first examine the satellite precipitation
product IMERG (IMERG-E, IMERG-L, and IMERG-F) against observations during a TC period in
the Yangtze River Delta (YRD). We then compared the precipitation prediction between the CTL
experiment (no assimilated) and the DA-CONV (assimilated conventional observation) and DA-IMERG
(assimilated IMERG-L precipitation product). The conclusions are as follows:

(1) The spatial distributions and the amounts of the IMERG precipitation products are larger and
wetter than the rain gauge observations. Among the IMERG precipitation products, the IMERG-L
product shows a slight overestimation but has the best fit with the observation, which captured the
spatial pattern and provided lower systematic bias (higher CC and the lowest Bias and RMSE) of
precipitation than IMERG-E and IMERG-F for the landfalling TC precipitation at hourly timescale
over YRD.

(2) Assimilating the IMERG-L product into the WRF model with the 4D-Var algorithm substantially
affects the magnitude of the WRF model primary state variables, which certainly influences the intensity
and distribution of TC heavy rain. Compared to the precipitation simulated by CTL and DA-CONV
experiments, DA-IMERG experiment gives a reasonably spatial distribution of the heavy rain after TC
landfall in the YRD.
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(3) At the grid scale, DA-IMERG experiment further reduces the systematic error and improves
the ability of forecasting precipitation than the CTL and DA-CONV experiments. At the spatial
scale, DA-IMERG experiment with a higher FSS value in the threshold of 10 mm/h has a superior
performance for the heavy rain forecast. The horizontal scale of the simulated precipitation at 0.3 degree
performs better for capturing the TC intense rains. Therefore, the WRF assimilated the IMERG-L
precipitation has a positive impact on the heavy rain forecast for the landfalling TC, although the
improving efficiency of the 4D-Var algorithm is still comparatively limited.
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Appendix A The Method of WRF 4D-Var

The data assimilation system 4D-Var version 3.9.1, which is a variational assimilation system
developed for the WRF model. The 4D-Var system employs incremental 4D-Var formulation with the
arm of improving the reproductively of numerical weather simulations. The formulation of the 4D-Var
system was been proposed by Huang et al. [13], who presented preliminary results from real-data
4D-Var experiments. The aim of 4D-Var is to find the optimal estimate of the true atmosphere state in
the process of analyzing through iteratively minimizing a cost function J,

J = Jb + Jo + Jc (A1)

where Jb, Jo, and Jc denoted the background, observation, and balancing cost functions, respectively.
Jc is included in 4D-Var to remove high-frequency waves in the analysis state. The background cost
function Jb is given by:

Jb =
1
2

(
xn
− xb

)T
B−1

(
xn
− xb

)
(A2)

where xn is the analysis vector of model prognostic variables at the nth outer loop, xb is the background.
B is a covariance matrix for background error.

The observation cost function is

Jo =
1
2

k∑
k=1

{
Hk[Mk(xn)] − yk

}TR−1{Hk[Mk(xn)] − yk
}

≈
1
2

k∑
k=1

(
HkMk

(
xn
− xn−1

)
− dk

)T
R−1

(
HkMk

(
xn
− xn−1

)
− dk

) (A3)

where K is the total number of observation windows. H is the linearized observation operator which is
approximately transformed into a tangent linear observed operator. Mk is the tangent linear model. xn

denotes the guess vector, xn−1 is the analysis vector from the previous outer loop. dk is the innovation
vector. R is the observation error covariance matrix. The detailed discussion on the theory of the
4D-Var can be found in Ban et al. [45].
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