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Abstract: Human-induced deforestation has a major impact on forest ecosystems and therefore its
detection and analysis methods should be improved. This study classified landscape affected by
human-induced deforestation efficiently using high-resolution remote sensing and deep-learning.
The SegNet and U-Net algorithms were selected for application with high-resolution remote sensing
data obtained by the Kompsat-3 satellite. Land and forest cover maps were used as base data to
construct accurate deep-learning datasets of deforested areas at high spatial resolution, and digital
maps and a softwood database were used as reference data. Sites were classified into forest and
non-forest areas, and a total of 13 areas (2 forest and 11 non-forest) were selected for analysis. Overall,
U-Net was more accurate than SegNet (74.8% vs. 63.3%). The U-Net algorithm was about 11.5% more
accurate than the SegNet algorithm, although SegNet performed better for the hardwood and bare
land classes. The SegNet algorithm misclassified many forest areas, but no non-forest area. There
was reduced accuracy of the U-Net algorithm due to misclassification among sub-items, but U-Net
performed very well at the forest/non-forest area classification level, with 98.4% accuracy for forest
areas and 88.5% for non-forest areas. Thus, deep-learning modeling has great potential for estimating
human-induced deforestation in mountain areas. The findings of this study will contribute to more
efficient monitoring of damaged mountain forests and the determination of policy priorities for
mountain area restoration.
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1. Introduction

Forests perform many important roles that influence the lives of humans [1]. They store large
amounts of carbon in vegetation and soil, and exchange it for oxygen (i.e., contribute oxygen to the
atmosphere) [2]. Forests also affect the urban thermal environment via sheltering and evaporative
cooling. The social impacts of forests also cannot be ignored [3–5]. Forests also produce wood for
lumber, and help protect riverine ecosystems, prevent soil erosion, and mitigate climate change
through carbon exchange [1,2]. Forests also have indirect economic value; they promote water security
through the collection of approximately 139,000 gallons of rainwater annually, and they can reduce
air conditioning costs by up to 56% [3]. One study reported that investment in small urban forests
improved net profit by at least $232,000 through reducing air conditioning and water storage fees [6,7].
The economic value of Mediterranean forests, including the value of wood products such as cork and
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that of non-wood products such as honey, was estimated to be $149/ha [8], and the value of forests
to the South Korean economy was estimated to be approximately $6 billion in 2008, based on seven
criteria: atmosphere purification, recreation, forest water purification, watershed conservation, wildlife
protection, soil runoff, and landslide prevention. The value was calculated using the effective storage
quantity, landslide prevention, and oxygen quantity. Of these criteria, economic values were highest in
watershed conservation areas and for atmosphere purification (≥$1.4 billion) [9].

Despite the vast public benefit provided by forests, these ecosystems are frequently damaged
by human-induced large-scale deforestation, with consequences to their individual and industrial
values [10,11]. In Columbia, the increasing global demand for coca in 2016 and 2017 resulted in 83 km2

of deforestation in mountain regions [12]. Myanmar is rich in forest resources, but 82,426 km2 of forest
were disturbed in 2000–2010 due to illegal logging and timber export [13]. In South Korea, an estimated
8186 km2 of mountain forest damage is suspected to have occurred since 2012 due to illegal farming,
cattle grazing, and deforestation [14].

Such deforested mountain areas are generally investigated by forestry experts in terms of forest
cover [15]. Field studies covering broad areas, such as whole forests, are difficult to perform and
require large amounts of time and resources. Recently, remote sensing has been used to survey and
analyze landscape affected by deforestation; this approach is efficient in terms of time and cost [16].
Forest cover was estimated in Costa Rica from 1986 to 1991 using Landsat-5 Thematic Mapper (TM)
satellite images; the results showed 2250 km2 of forest loss in the study area, which represented about
50% of the Costa Rican territory, and the deforestation of about 450 km2 annually [17]. A study of
economic growth and mountain forest deforestation in southern Cameroon, in which land-use changes
were examined using remote sensing images, demonstrated that deforestation had increased after
the economic crisis of 1986 [18]. Studies of landscape affected by deforestation have involved remote
sensing–based analysis using low- and medium-resolution satellite images obtained by Landsat TM or
satellites with large instantaneous fields of view [19–22].

Remote sensing-based forest studies conducted in the early 2000s involved mainly the analysis of
forest vitality using the normalized difference vegetation index or object-based tree classification [23,24].
With the rapid development of technologies such as data mining and machine learning since 2010,
recent studies have integrated forest classification monitoring and detection over extensive mountain
regions using remote sensing and machine learning (ML), a branch of artificial intelligence (AI) [25].
ML methods used in this effort include the classification and regression tree, decision tree, support
vector machine, artificial neural network, and random forest algorithms [16,26–28]. Disadvantages of
these methods include the need to create accurate learning data based on expertise in tasks such as tree
characteristic extraction. Deep-learning emerged as a solution to this problem [29]. Most deep-learning
studies of mountain deforestation have involved the analysis of high-resolution satellite and aerial
images and models based on convolutional neural networks (CNNs) [30–35].

Recently, semantic segmentation developed from CNN-based image recognition has been proven to
be useful in various fields requiring object recognition, such as surveillance, healthcare, and autonomous
driving [36]. The typical model of semantic segmentation is the fully convolutional network (FCN) [37],
which uses input data of random sizes for learning and creates output values at relevant sizes [37].
However, the FCN has disadvantages, such as the loss of spatial information in the pooling layer,
which condenses data. To solve this problem, an advanced semantic segmentation algorithm was
developed [36].

This study classified mountainous areas using remote sensing and deep-learning algorithms,
to analyze land cover quantitatively in the context of landscape affected by deforestation in Korean
forests. First, optimal computer vision-based deep-learning algorithms were selected for application to
spatial information and remote sensing. The FCN-based U-Net and SegNet deep-learning algorithms
were used, based on a literature review. As existing deep-learning algorithms do not calculate location
information, the processing of satellite image analysis results can be challenging. Considering this
technical problem, the best algorithms were selected to analyze the mountain forest area. Next, study
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areas showing recent deforestation were selected using high-resolution remote sensing data acquired
by the Kompsat-3 satellite, and datasets for deep-learning using segmentation data were constructed
to incorporate spatial characteristics. Classification items were selected based on different types of
reference data. Third, the datasets were divided into learning and testing sets, and the learning
data were applied to the selected deep-learning algorithms. Hyperparameters were tuned in the
algorithm learning process, and the accuracy of the optimum test was evaluated. Finally, the results
were analyzed to determine the applicability of the algorithm and data for the assessment of landscape
affected by deforestation (Figure 1).
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2. Methodology

2.1. Method

Deep-learning algorithms are currently being used in various remote sensing and spatial
information studies. The CNN is the most widely used computer vision-related deep-learning algorithm.
CNNs reinforce the pixel characteristics of input images through a convolutional process and perform
an iterative process of condensing and pooling reinforced characteristics in a feature map, ultimately
producing fully connected layers that may be applied to a neural network. The CNN has evolved into
various algorithms, including LeNet-5, AlexNet, and GoogLeNet. The spatial characteristics of input
images and locational characteristics of objects are not involved in these processes.

FCN-based algorithms have been used recently to solve this problem of deep-learning algorithms
based on computer vision. In FCNs, fully connected layers are replaced with convolution layers to
overcome the limitations of the CNN model, such as the loss of image location information and fixation
of input images. Due to these characteristics, FCNs can not only classify objects, but also semantically
divide them [37].
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Various semantic segmentation models have emerged recently to supplement FCN methods [38].
Among them, SegNet [39] is effective in terms of learning speed and accuracy [40]. The architecture of
SegNet consists of encoder and decoder processes. The encoder process consists of image compression
and feature extraction using the rectified linear unit (ReLU) during activation. Upon its completion,
the decoder process restores the image. Image spatial information is maintained during the decoder
process because image restoration is performed using the same pooling layer as in the encoder process.
This feature of SegNet differentiates it from FCNs. When image reconstruction is complete, the image
is classified using a softmax function (Figure 2) [39,41].
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Figure 2. SegNet architecture introduced in [41].

U-Net [42] was developed based on the FCN and is applied mainly for the segmentation of
small numbers of medical images. The U-Net model architecture resembles the letter U [43], with a
contracting path on the left and expansive path on the right (Figure 3). The contracting path uses an
image patch, with the NxNxC C channel as input layers. In each path, sub-sampling is performed
using convolution layers, ReLU activation functions, and max pooling. In the expansive path, U-Net
has two definitive characteristics: the copy-and-crop step, which brings source information to the
contracting path using a skip connection [44], and convolution layers without fully connected layers
in the image restoration stage. In the network, input images are mirrored to predict the boundary
value of the patch [45]. U-Net uses input data in patch units instead of a sliding window, thereby
improving its speed over that of previous networks. This algorithm accurately captures the context of
the image through concatenation using the copy-and-crop function while solving the FCN issue of
localization [42].
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2.2. Study Area and Dataset

2.2.1. Satellite Image Preprocessing

High-resolution Komsat-3 images were used to construct the datasets. Kompsat-3 data comprise
five bands: panchromatic, blue, green, red, and near-infrared (NIR). Systematic errors in the data
are eliminated using rational polynomial coefficient sensor modeling data, followed by orthometric
correction by rectifying digital differentials through observation of ground control points. Atmospheric
correction was performed using the COST model that approximates the transmittance from the sun to
the earth by cosine [46]. The resolution of the Kompsat-3 panchromatic image was 0.7 m; resolution was
corrected for the multispectral band using pan-sharpening, which merges high-resolution panchromatic
images and relatively low-resolution multispectral images [47]. The pan-sharpened files used in this
study to generate 0.7-m-resolution multispectral images were obtained from the Korea Aerospace
Research Institute (KARI).

2.2.2. AI Learning Dataset Construction

Precise deep learning data are needed to apply deep learning to high-resolution satellite images,
to ensure accurate classification of regional attributes. Thus, learning and testing datasets are
constructed after satellite image preprocessing. The study areas were selected in consultation with:
Ministry of Environment land cover maps (1:5000); Korea Forest Service digital forest cover maps
(1:5000) and a mountain forest database (Table 1). The study area is selected near Bonghwa-gun,
Gyeongsangbuk-do, which has 19,031 km2 of mountainous area (Figure 4). In addition, according
to the data of the Korea Forest Service [14], the number of deforestation cases is the highest in the
country [14]. Furthermore, more than half of the forest area is made up of softwood and hardwoods,
and more than 70% of them are Softwood.
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Table 1. Base data and reference data in this study.

Data Contents Source

Base data

Satellite image KOMPSAT-3 (0.7 m)
Korea Aerospace
Research Institute

(KARI) (Korea)

Land cover map

Subdivided land cover
maps (1:5000)

Forest areas, building,
paddy field, field,

cemetery, road, facility
cultivation area,

grassland,
bare land, waters

Ministry of Environment
Environmental

Geographic Information
Service (Korea)

www.egis.me.go.kr/

Digital forest type map

Forests/non-forests and
subdivided base data
inside forests (1:5000)
Softwood, hardwood,
bare land, grassland,

field, waters

Korea Forest
Service (Korea)

www.forest.go.kr/

Reference data

Digital map
Reference data for

classification of
non-forest areas (1:5000)

Ministry of Land,
Infrastructure, and
Transport National

Spatial Data
Infrastructure Portal

www.nsdi.go.kr/

Mountain area
change DB

Reference of attributes in
classifying vegetation
correlation and use in

making floor plan

Korea Forestry
Promotion Institute

www.Kofpi.or.kr
(Korea)

Softwood DB
Coniferous forests DB

analyzed using
multi-time images

Korea Forestry
Promotion Institute

(Korea)
www.Kofpi.or.kr
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A training dataset was constructed using the study area data. The data were projected on the
WGS 1984 UTM Zone 52N coordinate system, and a learning data plan was established based on a
1:5000 scale. The software used for this process was ArcGIS ver. 10.3, ENVI ver. 5.1, and ERDAS

www.egis.me.go.kr/
www.forest.go.kr/
www.nsdi.go.kr/
www.Kofpi.or.kr
www.Kofpi.or.kr
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Imagine 2015 (or later versions). The working procedures for data labeling comprised five stages: data
collection, data preparation, land cover classification, quality inspection, and creation of learning data.

For this study, satellite images and land and forest cover maps were collected as base data, and a
continuous digital map (1:5000), mountain forest area database, and softwood database were collected
as reference data (Figure 5). The study area was selected to include at least 50% forest. Land cover
classification was performed of items that were visually distinct on the satellite images. Primary
classification consisted of dividing the data into forest and non-forest areas, after which forest areas
were subdivided into softwood and hardwood and non-forest areas were subdivided into buildings,
farmland, and bare land, resulting in a total of 13 cover types (Table 2). Detailed revision of the data
included corrections such as the elimination of roads blocked by trees in the satellite images (Figure 6).

Next, a quality inspection was conducted of the classified items to improve the efficiency of
learning dataset creation. This inspection consisted of a visualization test of classification items at each
step. Labeling was performed with precision revision when the accuracy was ≥95% and re-labeled
when the accuracy was lower. Finally, learning and test datasets were constructed according to the
relevant image data. For data labeling, the scope and resolution were equivalent to those of the
image data. Image and labeling data were converted to the Geotiff (unsigned integer 8-bit) standard
information compatibility format (Figure 7). Prior to the inclusion of satellite image and labeling data
in the datasets, 63 pairs of images were created. Image data and ground truth pairs represent the same
area, and all image pairs represent the areas that contain at least 50% of the forest area. Satellite image
data that corresponded to labeling datasets were constructed with the inclusion of red, green, blue, and
NIR bands. The 63 datasets were subdivided into 50 sets for learning and 13 for testing. The precisely
constructed dataset was applied to the SegNet and U-Net algorithms.
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Table 2. Label class in this study.

Classification Item Color (RGB
Composition) Note

Forest area
Softwood 255/0/0 Where coniferous forests take up at

least 75% of all stands

Hardwood 0/255/0 Where deciduous forests take up at
least 75% of all stands
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Table 2. Cont.

Classification Item Color (RGB
Composition) Note

Non-forest area

Paddy field 0/0/255 Land where rice is cultivated
using water

Field 255/255/0 Land where crops other than rice are
cultivated without water

Facility cultivation
area 255/0/255 Greenhouse cultivation plot made of

vinyl or glass, including ginseng field
Grassland 0/255/255 Land covered in herbaceous plants

Cemetery 255/128/128 Cemetery or land including grassland
formed around cemetery

Golf course 128/255/128
Ski resort 128/128/255

Building 255/255/128 Artificial establishments (residential,
commercial, industrial facilities)

Road 255/128/255 Including roads, parking lots,
airstrips, railroads, etc.

Waters 128/255/255
Areas with standing water such as

rivers/streams, lakes, reservoirs,
seas, etc.

Bare land 0/0/0 Bare ground not covered in vegetation

3. Result

3.1. Hyperparameter Tuning

Model learning was performed before optimum hyperparameter estimation. The hyperparameters
were estimated with considered of the number of iterations, batch size, patch size, and learning rate.
All hyperparameters consider the change in “training loss value” and test accuracy to avoid overfitting.
There was no underfitting; to minimize overfitting, a high-quality dataset was sought and the loss
value and final accuracy during the learning process were considered. Iteration refers to learning
trials; we began with 100,000 iterations and then increased this in steps of 100,000 considering the
training loss value and test accuracy. Of the algorithms tested, SegNet was the most accurate and had
the lowest loss value after 100,000 iterations, while U-Net was most accurate after 300,000 iterations.
The training loss value was smaller than 0.4 when U-Net learned 300,000 times and SegNet learned
100,000 times. Batch size is the number of input data; in this study, it was fixed at 100 for SegNet and 1
for U-Net. A patch size of 256 × 256 was used. The learning rate is based on the amount of learning
achieved in each iteration, which affects the model weights; in this study, it was set to 1 × 10−5 for both
the SegNet and U-Net algorithms (Table 3).

Table 3. Result of hyperparameter tuning.

Model
Hyperparameter

Iteration Batch Size Patch Size Learning Rate

SegNet 100,000 100 256 × 256 1 × 10 power −5
U-Net 300,000 1 256 × 256 1 × 10 power −5

3.2. Classification of Deforested Land

After constructed dataset learning and hyperparameter tuning, the final classification of the
mountain deforestation area was performed. These results were obtained from images in which
intact and damaged forests were distributed evenly among 13 test datasets. To obtain the results,
the softmax function was used for both the SegNet and U-Net models. Thirteen classification items
were obtained, and the total accuracy and item-level accuracy were calculated among all items not
excluded from the test datasets. Three accuracy metrics were calculated (Table 4). During the learning
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process, hyperparameter tuning was performed to enhance overall accuracy. Mean intersection over
union (MIoU) and frequency-weighted intersection over union (FIoU) values were derived from
the calculated hyperparameters. MIoU, the mean of the IoU values of all classes, is used widely in
computer vision-based object detection [48]. In this study, the MIoU values for SegNet and U-Net
were 14.0% and 25.4%, respectively; classes containing relatively small areas appear to have shown
low accuracy. The FIoU is calculated with greater weight on large-area items; it has been applied to
various datasets, such as the COCO dataset [49]. FIoU values for SegNet and U-Net were 41.4% and
61.6%, respectively; with the U-Net model FIoU showing 10–20% less than total accuracy. The total
accuracy values for SegNet and U-Net were 63.3% and 74.8%, respectively (Figure 8).
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Table 4. Result of MIoU, FIoU, and accuracy (unit %).

MIoU FIoU Accuracy

SegNet 14.0 41.4 63.3

U-Net 25.4 61.6 74.8
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Item-level classification showed that softwood represented the largest forest area, with a high
classification accuracy of 92.6% for U-Net and an accuracy of 84.4% for SegNet (Table 5). Hardwood
forest, which covered a smaller area than the softwood forest, was identified at an accuracy of 61.0%
by U-Net and 73.3% by SegNet. SegNet showed 54.6% higher accuracy than U-Net in classifying
bare land. However, U-Net showed better classification accuracy than SegNet for other non-forest
areas, perhaps because SegNet misclassified most non-forest areas as bare land. Fields represented the
second largest land cover area among non-forest areas; U-Net showed 84.2% accuracy and SegNet
showed 64.1% accuracy for their classification. Among non-forest land classes in the U-Net and SegNet
algorithms, fields had the highest classification accuracy. U-Net classified “facility cultivation” with
50.7% accuracy, while SegNet did not classify it at all. In most cases, facility cultivation was misclassified
as bare land or paddy field. U-Net and SegNet showed 21.2% and 11.5% classification accuracies,
respectively, for agricultural land including paddy fields; the most frequent classification error was
the misclassification of grassland as agricultural land, representing a 21.3% difference in accuracy.
For cemeteries, which occupied the smallest area among all land use types, the classification accuracy of
U-Net was 14.2%, which was misclassified to forest land. In the case of cemetery, all misclassifications
occurred in SegNet. Both U-Net and SegNet misclassified by cemeteries as hardwood forest. Regarding
the U-Net results for buildings and roads, the classification accuracy was less than 30%; it was typically
misclassified as field. Regarding the SegNet results, the building and road land use types were
misclassified as bare land and facility cultivation, resulting in low overall accuracy. Unlike U-Net,
SegNet could not accurately classify buildings and roads. The five land use types with a 0% value in
the SegNet model were misclassified as bare land or fields. Land use types that could not be classified
by SegNet had significantly fewer pixels than the classified types. The classification performance of
the U-Net algorithm also showed low accuracy in land cover types with a small number of pixels.

Table 5. Test accuracy for each class (unit %).

Class Soft Wood Hardwood Paddy Field Field Facility Cultivation

U-Net 92.6 61.0 21.2 84.2 50.7

SegNet 84.4 73.3 11.5 64.1 0

Grassland Cemetery Building Road Bare Land

U-Net 21.3 14.2 28.7 28.3 13.8

SegNet 0 0 0 0 54.6

4. Discussion

The SegNet algorithm outperformed U-Net in the classification of hardwood forests and bare
land; for all other land use types, U-Net was more accurate. U-Net classified forests and non-forests,
which was the basis of this study, with 98.4% and 88.5% accuracy, respectively. Previous studies
of deforested area based on remote sensing data and deep-learning have also shown a high rate of
accuracy (~90%), likely because land cover is divided into only two or three classes [35,50–52].

The overall accuracy of the U-Net model is 74.8%, which was about 11.5% higher than that of
SegNet (63.3%). These results are consistent with those of previous studies, which have revealed
greater accuracy of the U-Net model in single- and multi-class classification [53–56]. The model results
showed that SegNet outperformed U-Net in the classification of hardwood forest and bare land, but in
all other items, U-Net showed a higher rate of accuracy than SegNet. SegNet was not able to classify
facility cultivation, grassland, cemetery, building, and road. These results are performance in classes
with small number of pixels and are items that show low accuracy even in the U-Net model. As a
result, it is judged that SegNet exhibited lower performance in terms of a small number of pixels
compared to U-Net. The difference between the overall accuracy and FIoU differs by more than 20% for
SegNet, and this indicates that the accuracy of SegNet is lower than that of U-Net for items with a small
number of pixel values. Other studies have shown relatively low classification accuracy for farmland
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and roads [57]. SegNet shows lower performance in classifying buildings than U-Net according to
the dataset [58]. This may be explained by the difference in the decoder stage upsampling process
between U-Net and SegNet.

Forest and non-forest areas were classified with high accuracy (98.4% and 88.5%, respectively) in
this study. However, the accuracy of non-forest land cover (grasslands, fields, buildings, and roads)
classification was low. The distinction between bare land and fields was ambiguous because the
Kompsat-3 images used as learning data in this study were obtained in the spring, when the
aboveground plant biomass was low. Roads around disturbed mountain forests are typically made of
concrete, rather than asphalt, which may explain the models’ low accuracy distinguishing roads from
buildings. The facility cultivation, bare land, and cemetery land use types in the training dataset were
insufficient. The performance of the SegNet and U-Net algorithms was different for each item. As a
result, it is difficult to achieve high performance in 13 items with one algorithm, so each algorithm
must be treated organically by item. For example, the U-Net algorithm showed high performance
for forest/non-forest classification, but the SegNet showed better performance for hardwood and bare
land items. Therefore, it is necessary to organically use an algorithm suitable for each cover types
classification performance in the future, and the hardware performance limitations due to the use of
multiple algorithms is a task to be solved.

5. Conclusions

In this study, landscape affected by human-induced deforestation from high-resolution Kompsat-3
satellite images was classified using the FCN-based U-Net and SegNet deep-learning algorithms.
To ensure efficiency, precise training datasets were constructed from reference data, such as forest
and land cover maps. To this end, satellite images were preprocessed, and labeling data were
created from the reference data. In total, 13 classes were formed by the subdivision of forest and
non-forest areas. Training and verification datasets were applied to the SegNet and U-Net models
to estimate hyperparameters, considering batch size, patch size, number of iterations, and learning
rate. For SegNet, the hyperparameter estimation was optimal at a batch size of 100 and patch size of
256 × 256, with 100,000 iterations; for U-Net, performance was optimal at a batch size of 1, patch size
of 256 × 256, and 300,000 iterations. The final performance of the U-Net and SegNet algorithms was
evaluated based on the FIoU and MIoU values.

The overall accuracy of the U-Net model was 74.8%, which was 11.5% higher than that of SegNet
(63.3%). However, for land use types with a small number of pixels, both models showed low accuracy.
Overall, the accuracy of U-Net was high, and when the results of U-Net were divided into forest and
non-forest land, the forest land was misclassified within the forest land. The accuracy for non-forest
lands was also low, but misclassification occurred within non-forest lands. SegNet outperformed
U-Net in the classification of hardwood forest and bare land.

Training datasets can be constructed, and deep-learning algorithms like U-Net applied, for the
interpretation of high-resolution satellite images in various ways. Moreover, the U-Net hyperparameters
used in this study could be applied to other regions, which may facilitate quantitative analysis of larger
areas disturbed by deforestation.

This study has several limitations. First, more advanced deep-learning algorithms have been
developed since this study was conducted and which may improve upon the accuracy of our
classification results. Second, larger datasets are needed to accurately train the AI algorithms and
more clearly distinguish the various sub-classes used in this study, especially in non-forest areas.
We anticipate that further research using improved algorithms and larger datasets will result in better
estimation of the causes of deforested mountain areas. Furthermore, the implementation of a stable
system for upgrading deep-learning algorithms will facilitate future monitoring and management of
damaged mountain forests.
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