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laska@sci.muni.cz

3 Centre for Polar Ecology, Faculty of Science, University of South Bohemia in České Budějovice, Na Zlaté
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Abstract: Global climate change is expected to cause a strong temperature increase in the polar
regions, accompanied by a reduction in snow cover. Due to a lower albedo, bare ground absorbs
more solar energy and its temperature can increase more. Here, we show that vegetation growth
in such bare ground areas can efficiently mitigate surface warming in the Arctic, thanks to plant
evapotranspiration. In order to establish a comprehensive energy balance for the Arctic land surface,
we used an ensemble of methods of ground-based measurements and multispectral satellite image
analysis. Our estimate is that the low vegetation of polar tundra transforms 26% more solar energy
into evapotranspiration than bare ground in clear sky weather. Due to its isolation properties,
vegetation further reduces ground heat flux under the surface by ~4%, compared to bare areas,
thus lowering the increase in subsurface temperature. As a result, ~22% less solar energy can be
transformed into sensible heat flux at vegetated surfaces as opposed to bare ground, bringing about a
decrease in surface temperature of ~7.8 ◦C.

Keywords: solar energy distribution; arctic tundra surface energy balance; vegetation and
evapotranspiration; LANDSAT; vegetation cooling

1. Introduction

The increase in temperature in the Arctic region, as part of global climate change, results in lower
albedo due to the reduction of sea ice, snow cover, and glacier retreats, which has an impact on the
surface energy balance [1–3]. Following the disappearance of the snow and ice cover, the ground
surface is subject to further changes, such as the seasonal growth of vegetation, with the amount
increasing along with the continuous increase in temperature [3,4]. Vegetation with a sufficient water
supply has a major impact on the ground surface energy balance in temperate zones because it absorbs
a significant portion of solar energy for water evaporation in the evapotranspiration process [5–8], thus
reducing heating of the Earth surface, as well as the adjacent atmospheric layers [9]. The process of
vegetation cooling has been described for open landscapes [10,11] and urban environments [12–15],
and has been found to occur at mesoclimatic [16] and continental scales [17,18]. Conversely, vegetation
removal brings about a reduction of evaporation and increased surface temperature [19,20]. The
vegetation cooling effect in polar regions has received little attention until present, even though the
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ground surface of the Arctic tundra has been monitored using satellite technologies when it comes to
surface temperature [21,22] and studied by ground measurement methods for energy fluxes [23–25].
However, some studies have shown that the variability of the Arctic tundra surface can be reflected in
the changes of the surface energy balance [26–28].

Here, we show that even a minimum amount of vegetation in Arctic tundra areas has a major
impact on the mitigation of surface heating, despite the harsh climatic conditions, and we quantify the
effect. The aim of our work was to compare typical recently deglaciated surfaces with and without
vegetation from the perspective of the surface energy balance components. Our hypothesis was that
the amount of solar radiation energy transformed into evaporation (i.e., latent heat flux) at a vegetated
surface would be higher than at a vegetation-free surface. The amount of solar energy transformed
into ground surface heating was presumed to be lower in areas covered with vegetation. However,
the differences were supposed to be relatively small due to the minimum amount of low vegetation.
In order to monitor and calculate land surface parameters and the energy balance components, we
used LANDSAT multispectral satellite images and ground-based meteorological data.

2. Materials and Methods

2.1. The Study Sites

In order to assess energy fluxes and establish a comprehensive radiation and energy balance of
different types of Arctic surfaces, varying in vegetation cover, the two study areas were located in places
with a flat terrain situated several hundreds of meters from the coast of Petuniabukta, Billefjorden,
Central Svalbard, at 10 to 20 m above the sea level (Figure 1). One of the areas, further identified as “bare
ground” (B), belongs to the “Gravel Barren Communities” category [29]. It is continuously covered
in bare rock and is free of vegetation. The mean slope of the area is 1.9◦ with a southeast exposition.
The second area, further identified as the “vegetated surface” (V), belongs to the “Established Dryas
Tundra” [29]. It is continuously covered in low vegetation belonging to typical Central Arctic tundra,
with only two species: Dryas octopetala and Salix polaris. Local plants grow to a height of 5 cm above
the surface of the shallow, skeletal tundra soil. The mean slope of the area is 4.3◦ with a northeast
exposition. Both areas are located at the geographical coordinates 78◦42′37”N; 16◦27´28”E, comprising
an area of several tens of hectares, and are sharply divided by a 2-m ravine. Both areas have only
undergone natural processes and no human intervention has been carried out. An automatic weather
station (AWS) is located in a vegetation area several tens of meters from this dividing line. The station
continuously monitors basic meteorological parameters. The coastal zone of Petuniabukta belongs
to the high Arctic climate region [30], with a mean annual air temperature of around −4.5 ◦C, mean
summer temperature of 7.2 ◦C (July), mean wind speed exceeding 3.9 ms−1, and mean air relative
humidity of 80% [31].
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Figure 1. Bare ground surface (B) and vegetated surface (V) on the western coast of Petuniabukta, 
Billefjorden, Central Svalbard, shown on a false color composition (near infrared-red-green channels) 
of a LANDSAT 8 satellite image. The triangle mark symbolizes the automatic weather station (AWS) 
at the interface of both surfaces. 

2.2. Data Description 

In order to calculate the energy fluxes and surface functional parameters of both areas, we used 
satellite data and ground-based observations measured at the moment of satellite passage. The 
multispectral images of the LANDSAT 8 Operational Land Imager (OLI) and Thermal Infra-Red 
Scanner (TIRS) sensors were used as the satellite data. The OLI and TIRS sensors have a suitable 
spatial resolution (OLI: 30 m/px; TIRS: 100 m/px) and composition of spectral ranges of visible and 
infrared spectra [32], convenient for the calculation of the net radiation components and ground 
surface energy balance components. In order to calculate all of the parameters, cloudless images were 
chosen, representing the examined region at the peak of the vegetation seasons between 2014 and 
2017. Four satellite images were thus selected for these years, with the dates differing by a maximum 
of six days (15 July 2014, 9 July 2015, 9 July 2016, and 10 July 2017). Furthermore, five cloudless images 
were available to be used for 2016, in order to assess the development of the energy balance 
components throughout a single vegetation season (14 June, 2 July, 9 July, 27 July, and 10 August). 
Energy balance components were always calculated for the moment of satellite passage between 
12:00 and 12:30 UTC using ground-based meteorological observations (Table 1). 
  

Figure 1. Bare ground surface (B) and vegetated surface (V) on the western coast of Petuniabukta,
Billefjorden, Central Svalbard, shown on a false color composition (near infrared-red-green channels)
of a LANDSAT 8 satellite image. The triangle mark symbolizes the automatic weather station (AWS) at
the interface of both surfaces.

2.2. Data Description

In order to calculate the energy fluxes and surface functional parameters of both areas, we used
satellite data and ground-based observations measured at the moment of satellite passage. The
multispectral images of the LANDSAT 8 Operational Land Imager (OLI) and Thermal Infra-Red
Scanner (TIRS) sensors were used as the satellite data. The OLI and TIRS sensors have a suitable
spatial resolution (OLI: 30 m/px; TIRS: 100 m/px) and composition of spectral ranges of visible and
infrared spectra [32], convenient for the calculation of the net radiation components and ground surface
energy balance components. In order to calculate all of the parameters, cloudless images were chosen,
representing the examined region at the peak of the vegetation seasons between 2014 and 2017. Four
satellite images were thus selected for these years, with the dates differing by a maximum of six days
(15 July 2014, 9 July 2015, 9 July 2016, and 10 July 2017). Furthermore, five cloudless images were
available to be used for 2016, in order to assess the development of the energy balance components
throughout a single vegetation season (14 June, 2 July, 9 July, 27 July, and 10 August). Energy balance
components were always calculated for the moment of satellite passage between 12:00 and 12:30 UTC
using ground-based meteorological observations (Table 1).
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Table 1. Overview of meteorological conditions observed by an automatic weather station at the times
of satellite image acquisition.

Satellite Image
Acquisition Time

Air Temperature
(◦C)

Air Relative
Humidity (%)

Wind Speed
(ms−1)

Primary Incident
Shortwave

Radiation (Wm−2)

15 July 2014 10.7 69.4 3.2 517.4
9 July 2015 11.0 52.4 5.4 529.5

14 June 2016 7.5 55.2 3.6 560.8
2 July 2016 12.6 67.8 6.2 538.9
9 July 2016 11.3 49.7 4.6 530.6

27 July 2016 9.6 73.1 2.9 495.5
10 August 2016 5.5 73.3 8.1 378.2

10 July 2017 8.8 72.9 4.2 552.1

Satellite images are distributed in the UTM coordinate system, zone 33 N, WGS84 ellipsoid, and
were obtained from the United States Geological Survey (USGS) server (see Appendix A). Channels
of the visible and infrared spectra of satellite images were provided by a distributor in the form of
at-surface reflectances with radiometric and atmospheric corrections already carried out, produced by
the Landsat 8 Surface Reflectance Code–LaSRC model [33]. Radiometric and atmospheric corrections
of thermal channel no. 10 were conducted during image processing using a radiative transfer model,
developed by Barsi et al. [34]. The surface functional parameters (vegetation index and surface
temperature) and radiation and surface energy balance were calculated based on the satellite images,
providing satellite maps with each pixel giving the value of the studied parameter in the given place.
In the satellite maps, two polygons were created above the surfaces with and without vegetation. Each
of the two surfaces with the actual area of 21 hectares was represented by 236 pixels of the original
satellite data. The differences between the surface parameters and energy balance components were
then assessed for the two areas. Satellite image processing and calculations of the surface functional
parameters and energy balance components were carried out using the ClarkLabs–TerrSet software.

2.3. Calculation of Surface Functional Parameters

The Normalized Difference Vegetation Index (NDVI, unitless) was used as a parameter for the
estimation of vegetation cover and was calculated using the following equation [35]:

NDVI =
band NIR − band RED
band NIR + band RED

, (1)

where “band NIR” and “band RED” represent the spectral reflectance values obtained from the 5th
(NIR) and 4th (RED) channels of the LANDSAT 8 OLI satellite sensor, respectively.

Thermal band no. 10 of the LANDSAT 8 TIRS satellite sensor was used in order to calculate the
surface radiation temperature. First, the spectral radiance at the top of the atmosphere was calculated
using the digital number (DN) values of pixels of the thermal band using the following equation [32]:

LTOA = ML·Qcal + AL, (2)

where LTOA (W m−2 sr−1 µm−1) represents the spectral radiance at the top of the atmosphere (also
called the “at-sensor spectral radiance”), the radiance multiplicative scaling factor (also called the
“gain”) ML = 3.342 × 10−4 W m−2 sr−1 µm−1 DN−1, Qcal (DN) is the digital number value of the pixel,
and the radiance additive scaling factor (also called the “offset”) AL = 0.1 W m−2 sr−1 µm−1. The ML
and AL values were obtained from satellite image metadata [32].
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The at-surface spectral radiance was calculated during the thermal band atmospheric correction
process and the emissivity correction process as follows [34]:

LS =
LTOA − LU + τ(1− ε)LD

τε
, (3)

where LS (W m−2 sr−1 µm−1) represents the at-surface spectral radiance, LU (W m−2 sr−1 µm−1) is the
upwelling or atmospheric path radiance, τ (unitless) is the atmospheric transmission, ε (unitless) is the
surface emissivity, and LD (W m−2 sr−1 µm−1) is the downwelling or sky radiance. τ, LU, and LD were
obtained from the radiative transfer model defined by Barsi et al. [34], using the atmospheric condition
data (Table 1) measured at the time of satellite image acquisition. The Web-Based Atmospheric
Correction Tool for Single Thermal Band Instruments [36] was used for the calculation of the radiative
transfer model parameters. Surface emissivity ε was calculated by the NDVI Threshold Method using
the NDVI vegetation index [37].

The surface radiation temperature was calculated using the at-surface spectral radiance, as
follows [32]:

Ts =
K2

ln
(K1

LS
+ 1

) − 273.15, (4)

where Ts (◦C) is the surface radiation temperature, the thermal conversion constant K1 = 774.8853 W
m−2 sr−1 µm−1, and the thermal conversion constant K2 = 1321.0789 K. The K1 and K2 constants were
obtained from satellite image metadata [32].

2.4. Calculation of Net Radiation Components

The total net radiation Rnet (Wm−2) as a result of the balance of shortwave and longwave radiation
could be determined as follows [38]:

Rnet = RS↓ −RS↑ + RL↓ −RL↑, (5)

where RS↓ stands for the incident shortwave radiation, RS↑ is the reflected shortwave radiation, RL↓
represents the incident longwave radiation, and RL↑ is the longwave radiation emitted by a land
surface. Primary raw data of incident shortwave radiation RS↓ were obtained from an automatic
weather station.

Corrections for the slope, aspect, solar radiation geometry, latitude and longitude, and date and
time of satellite image acquisition were established for the primary raw RS↓ data using the method
developed by Kumar et al. [39]. The RS↑ value was calculated as follows:

RS↑ = RS↓·α, (6)

where α represents the albedo, calculated as follows [40]:

α =
∑7

b=2

(
ρS, b·wb

)
, (7)

where b is the number of a LANDSAT 8 OLI channel, ρS,b represents values of the land surface spectral
reflectance, and wb stands for weight coefficients (for a detailed description, see Tasumi et al. [40]).

The RL↓ value was calculated based on the Stefan–Boltzmann law using the following equation:

RL↓ = εacσ (Ta + 273.16)4, (8)
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where εac is the emissivity of the atmosphere, σ stands for the Stefan–Boltzmann constant, and Ta

represents the air temperature. The εac value was calculated as follows [41]:

εac = 1.24
( ea· 10

Ta + 273.16

) 1
7
, (9)

where ea (kPa) is the atmospheric water vapor pressure.
The ea value was calculated as follows:

ea =
Ea· Rh

100
, (10)

where Rh (%) is the air relative humidity measured by an automatic weather station and Ea is the
saturation water vapor pressure in the air, calculated using the Magnus–Teten equation with coefficients,
published by Buck [42], as follows:

Ea = 0.61121 · exp
( 17.502 ·Ta

240.97 + Ta

)
. (11)

The RL↑ value was also calculated based on the Stefan–Boltzmann law:

RL↑ = εσ (Ts + 273.16)4. (12)

2.5. Calculation of Surface Energy Balance Components

The total net radiation, Rnet, represents the amount of energy transformed into different energy
balance components on the surface of Earth, depending on the environmental conditions. These are
the ground heat flux (heat flux into the soil), sensible heat flux (heat absorbed for an increase of the
mass internal energy near the surface), latent heat flux (heat used for evapotranspiration), and energy
used for photosynthesis. The amount of energy used for photosynthesis is very low, usually <1%, and
it can thus be disregarded for the purpose of calculating the surface energy balance. Knowing Rnet, the
individual surface energy balance components can be expressed using the following equation:

Rnet = G + H + LE, (13)

where G is the ground heat flux, H represents the sensible heat flux, and LE indicates the latent heat flux.
The ground heat flux, G (Wm−2), was calculated using the following equation [43]:

G =
Ts

α

(
0.0038α+ 0.0074α2

)(
1− 0.98NDVI4

)
Rnet. (14)

The latent heat flux, LE (Wm−2), was calculated using an adjusted equation for the evaporative
fraction [44,45]:

LE =
(Rnet − G)(Tsmax − Ts)

(Tsmax − Ta)
, (15)

where TS max stands for the highest value of the actual radiation temperature identified in a
satellite image.

The sensible heat flux H (Wm−2) was calculated using the surface energy balance equation
(Equation (13)) after calculating the other surface energy balance components.

3. Results

The bare ground surface significantly differed from the surface covered with vegetation in terms of
the net radiation and surface energy balance, as well as physical parameters. Both surfaces differed from
each other when compared during a single vegetation season, as well as in each of the studied years.
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3.1. Mid-Seasonal Radiation Balance

From 2014 to 2017, the mean values of the incident short-wave radiation for the bare ground were
around 26 to 31 Wm−2 higher in the individual years than for the surface covered with vegetation
(Figure 2a). The albedo for the bare ground and vegetated tundra surfaces was between 13 and 14%
and 10 and 11%, respectively (Figure 2g). The mean short-wave radiation reflected from the bare
ground was 14 to 22 Wm−2 higher than for the vegetated surface each year (Figure 2b). The resulting
mean net short-wave radiation was always higher for the bare ground, by 5 to 14 Wm−2, than for the
vegetated tundra surface (Figure 2c).Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 16 
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wave radiation on average than the vegetated surface in the individual years (Figure 2e). The net 
long-wave radiation presented an energy deficit, which was 6 to 13 Wm−2 lower on average for the 
bare ground than the vegetated surface (Figure 2f). This means that, due to long-wave radiation 
emission, the vegetated surface lost more energy than the bare ground. 

The total net radiation (Figure 2i) shows that the energy flux always reached higher mean values 
for the bare ground (from 315 to 340 Wm−2) than the vegetated surface (between 293 and 322 Wm−2) 
for each study year. The differences in total net radiation between the two types of tundra surfaces 
ranged from 17 to 23 Wm−2 in the individual years. Moreover, the values for the vegetated tundra 
surface were significantly more dispersed. 
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Figure 2. Net radiation components of two different tundra surfaces estimated for 15 July 2014, 9 July
2015, 9 July 2016, and 10 July 2017. RS incident (a) stands for incident shortwave radiation, RS reflected
(b) is reflected shortwave radiation, and RS net (c) is net shortwave radiation. RL incident (d) represents
incident longwave radiation, RL emitted (e) is longwave radiation emitted by the land surface, and
RL net (f) stands for net longwave radiation. Albedo (g) represents reflectance of the land surface,
emissivity (h) stands for the ability of the land surface in terms of the emission of longwave radiation,
and R net (i) is the total net radiation.

The mean values of incident long-wave radiation differed by less than 1 Wm−2 between the bare
ground and vegetated surfaces each year (Figure 2d). Whereas the calculated emissivity, i.e., the ability
to emit long-wave radiation, only reached 87% on average at the bare ground surface, it was 99% in
the case of the vegetated surface (Figure 2h). The bare ground emitted 5 to 12 Wm−2 less long-wave
radiation on average than the vegetated surface in the individual years (Figure 2e). The net long-wave
radiation presented an energy deficit, which was 6 to 13 Wm−2 lower on average for the bare ground
than the vegetated surface (Figure 2f). This means that, due to long-wave radiation emission, the
vegetated surface lost more energy than the bare ground.
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The total net radiation (Figure 2i) shows that the energy flux always reached higher mean values
for the bare ground (from 315 to 340 Wm−2) than the vegetated surface (between 293 and 322 Wm−2)
for each study year. The differences in total net radiation between the two types of tundra surfaces
ranged from 17 to 23 Wm−2 in the individual years. Moreover, the values for the vegetated tundra
surface were significantly more dispersed.

All radiation balance components significantly differed between the bare ground and vegetated
surface on each reference date (Mann–Whitney test, p < 0.05), with the single exception of 9 July
2015, when the net short-wave radiation was similar for the bare ground and vegetated surface
(Mann–Whitney test, p = 0.062).

3.2. Mid-Seasonal Surface Functional Parameters and Surface Energy Balance Components

Whereas the temperature of the bare ground, with mean NDVI values around 0.1, ranged from 25
and 26 ◦C, the temperature of the vegetated surface, with average NDVI values amounting to around
0.5, varied from 16 to 19 ◦C (Figure 3a,b).
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Figure 3. Functional parameters and surface energy balance components of two different tundra
surfaces estimated for 15 July 2014, 9 July 2015, 9 July 2016, and 10 July 2017. NDVI (a) stands for
the Normalized Difference Vegetation Index and surface temperature (b) represents the radiation
temperature of the land surface. Latent heat flux (c) stands for heat used for evapotranspiration,
sensible heat flux (d) is heat absorbed for the increase of mass internal energy near the surface, and
ground heat flux (e) represents heat flux into the soil.

The surface energy balance shows even larger differences between the bare ground and vegetated
surface values than the radiation balance. The mean latent heat flux for the bare ground ranging from
117 to 147 Wm−2 was 63 to 81 Wm−2 lower than that for the vegetated surface each year, varying
between 180 and 216 Wm−2 (Figure 3c). The mean sensible heat flux for the vegetation-free surface
varied between 136 and 167 Wm−2, while that for the vegetated surface reached only 66 to 89 Wm−2,
differing from the bare ground by 70 to 82 Wm−2 in different years (Figure 3d). The mean values of the
ground heat flux for the bare ground ranged from 39 to 40 Wm−2 and were 16 to 18 Wm−2 higher than
for the vegetated surface each year, which varied between 22 and 24 Wm−2 (Figure 3e).

All surface energy balance components and functional parameters significantly differed between
the bare ground and vegetated surface on each reference date (Mann–Whitney test, p < 0.05).

3.3. Radiation Balance during the 2016 Vegetation Season

In the 2016 vegetation season, the mean intensities of incident short-wave radiation were 26 to
30 Wm−2 higher for the bare ground surface than the vegetated surface (Figure 4a,b). The reflected
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short-wave radiation from the bare ground was 13 to 16 Wm−2 higher compared to the vegetated
surface throughout the vegetation season. The differences in the mean intensities of incident long-wave
radiation between the bare ground and vegetated surface did not exceed 1 Wm−2. The bare ground
emitted 5 to 14 Wm−2 less long-wave radiation on average than the vegetated surface. The radiation
balance of the entire 2016 vegetation season shows that the total net radiation intensities always reached
higher mean values for the bare ground (from 235 to 341 Wm−2) than the vegetated surface (between
206 and 320 Wm−2). The difference in total net radiation between the two types of surface ranged from
18 to 29 Wm−2 on average for the individual sampling dates.Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 16 
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Figure 4. Components of the net radiation, surface energy balance, and functional parameters of
two different tundra surfaces estimated for 14 June, 2 July, 9 July, 27 July, and 10 August of the 2016
vegetation season (means and standard deviations with general trend of parameter values shown by
trend lines). RS incident stands for incident shortwave radiation, RS reflected is reflected shortwave
radiation, RL incident represents incident longwave radiation, RL emitted is longwave radiation emitted
by the land surface, and R net stands for total net radiation (a,b). NDVI stands for the Normalized
Difference Vegetation Index, surface temperature represents the radiation temperature of the land
surface, and air temperature is the thermodynamic temperature of the air, measured 2 m above the
ground (c,d). Latent heat flux stands for heat used for evapotranspiration, sensible heat flux is heat
absorbed for the increase of mass internal energy near the surface, and ground heat flux represents heat
flux into the soil (e,f). In th case of invisibility of the standard deviation mark, the range of standard
deviation is lower than the size of the mean mark.

All radiation balance components significantly differed between the bare ground and vegetated
surface on each reference date (Mann–Whitney test, p < 0.05).
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3.4. Surface Functional Parameters and Surface Energy Balance Components during the 2016 Vegetation
Season

Whereas the mean temperature of the bare ground with mean NDVI values around 0.1 ranged
from 12 and 27 ◦C, the mean temperature of the vegetated surface with mean NDVI values between
0.43 and 0.5 varied from 6 to 19 ◦C (Figure 4c,d).

The surface energy balance components for the whole 2016 vegetation season show larger
differences between the bare and vegetated surface values than the radiation balance, similar to the
data obtained from the peaks of the vegetation seasons of different years (Figure 4e,f). The mean latent
heat flux for the bare ground ranged from 107 to 158 Wm−2 and was 28 to 79 Wm−2 lower than that for
the vegetated surface on the individual dates, varying between 171 and 220 Wm−2. The mean sensible
heat flux for the bare ground varied between 64 and 163 Wm−2, while that for the vegetated surface
reached 15 to 94 Wm−2, differing from the bare ground by 49 to 82 Wm−2 on different dates. The mean
ground heat flux for the bare ground ranged from 13 to 44 Wm−2, being 7 to 18 Wm−2 higher than that
for the vegetated surface on the individual dates, which varied between 6 and 26 Wm−2.

All surface energy balance components and functional parameters significantly differed between
the bare ground and vegetated surface on each reference date (Mann–Whitney test, p < 0.05).

4. Discussion

As expected, the results showed that the impact of vegetation on the solar radiation and heat
fluxes of the surface energy balance was evident in the Arctic tundra environment. However, what
was surprising was the level of impact of heat fluxes.

4.1. Radiation Balance

Since the exposition of both the surfaces towards the sun is different due to their slightly different
slopes, and since the sun position is very low, the calculated amount of incident short-wave radiation
was lower for the vegetated surface (Figure 2a). In addition, the more uneven terrain of the vegetated
surface brought about a larger variability of the surface exposition to incident short-wave radiation,
and thus a wider range of values. Due to the lower albedo (Figure 2g), the vegetated surface reflected
less short-wave radiation than the bare ground, which lost more energy in this way (Figure 2b). The
difference in the net short-wave radiation balance was not very high (Figure 2c), because the difference
in albedo of the vegetation-free and vegetation-covered surface was relatively small (3%). Moreover,
the difference was eliminated due to the inclination of the vegetated surface, as mentioned above. This
is probably the reason for the non-significant difference between values of net short-wave radiation in
one case (9 July 2015).

The energy from incident long-wave radiation differed little between the surfaces (by less
than 1 Wm−2) given the fact that long-wave radiation—as opposed to short-wave radiation—is
omnidirectional, as it comes from the atmosphere. However, the most significant difference was seen
for the emissivity of the two surfaces, i.e., the ability to emit long-wave radiation. It was 12% higher
for the vegetation-covered surface than the bare surface (Figure 2h). The vegetation gets rid of energy
by emitting long-wave radiation much more efficiently than the bare ground, and the difference in
the efficiency (12%) was thus much higher than the difference between the albedo of the two surfaces
(3%). Despite the large difference in emissivity of the two surfaces, the absolute difference in the
emitted long-wave radiation was relatively small (5 to 12 Wm−2). The reason for this is the fact that
the vegetated surface always had a lower surface temperature (Figure 3b), and thus—following the
Stefan–Boltzmann law (Equation (12))—a much smaller amount of inner energy available for emission.
In line with the increasing temperature of the vegetation cover, the amount of emitted long-wave
radiation would exceed the long-wave radiation of the bare ground much more significantly. The total
radiation balance (Figure 2i) shows that the amount of total net radiation (Rnet), entering the heat fluxes
of the surface, was always higher for the bare ground than for the vegetated surface. On average, the
vegetated surface uses about 1% less energy than the bare ground due to differences in the albedo,
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emissivity, and temperature in the form of the total net radiation for surface energy balance components
(Figure 5). The impact of different surface types on net radiation can be observed in the data collected
at the peaks of the vegetation seasons, as well as in the data collected during the season (Figure 4). The
trend lines do not precisely represent the trends in parameter development during the season due
to changing weather conditions and irregular time intervals of satellite image acquisition. However,
these trend lines show some general seasonal development, and a decrease in solar energy input is
evident at the end of the vegetation season.
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Figure 5. Components of the net radiation and surface energy balance of two different types of Arctic
land surface. Mean values of the radiation energy balance and surface energy balance components
(in Wm−2) were calculated using the values from the dates of 15 July 2014, 9 July 2015, 9 July 2016,
and 10 July 2017. RS stands for shortwave radiation, RL is longwave radiation, and Rnet is the total net
radiation. LE stands for the latent heat flux, H means the sensible heat flux, and G is the ground heat
flux. The total radiation energy balance and the surface energy balance component values are also
shown in % in brackets. Rnet represents 100% of the surface energy balance.
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4.2. Surface Energy Balance Components

Much higher differences in energy flux ratios between the two areas could be observed when it
comes to the surface energy balance components (Figures 3 and 4). The transformation of around 12%
of the total net radiation into ground heat flux in the bare ground areas, established by spectral data
analysis (Equation (14)), is comparable to values acquired by ground measurement methods [24,46].
In Arctic tundra, the ground heat flux usually forms 10–20% of the total net radiation during the
summer period [24,46–48]. The difference in the ground heat flux (Figure 3e) between the bare and
vegetated areas can be attributed to the fact that vegetation has an insulation impact [26,49,50], causing
the transfer of total net radiation to be higher for bare ground than in a vegetation-covered area.

The surfaces also differed in terms of latent heat flux, which was about one third higher for
vegetated surfaces than bare ground (Figure 3c). This difference was caused by a more intense
evaporation from the soil surface and plant transpiration, compared to bare ground. The vegetated
surface was evenly covered by plants, but the vegetation was relatively sparse, reaching a height
of several centimeters. According to the approaches of different authors, the amount of biomass
calculated based on our spectral data using the NDVI index values ranges from 0.25 to 0.3 kg.m−2 [51]
up to 0.5 to 0.6 kg.m−2 [52]. The question remains as to what extent the significant evaporation from
the vegetated surface was due to plant transpiration and net evaporation from the surface, i.e., the
transpiration/evaporation ratio; in other words, if, in the given conditions of the small amount of
vegetation, it could be evaporation that caused the high value of the latent heat flux. If this was the
case, a significant part of the effect could be attributed to vegetation. Vegetation helps maintain a
shallow soil profile in demanding climatic conditions, increasing the surface roughness and preventing
erosion. In addition, it absorbs a certain amount of water in plant bodies and the rhizosphere [53,54],
limiting rapid direct water run-off and helping to maintain surface moisture and thus the process of
evaporation. Moreover, soil moisture alone only influences the evapotranspiration rate a little when
the water in the soil is in excess, plentiful, or at least above the wilting point [55,56]. The availability of
water in the root zone and the condition of vegetation are far more important for the evapotranspiration
rate [57]. In this sense, vegetation cover proves to be a key factor in the rate of latent heat flux.

The higher loss of energy during the evapotranspiration process for the vegetated surface leads to
a significantly lower residual inner energy of the vegetation and soil mass. That is why a vegetated
surface has only half the values of sensible heat flux than bare ground (Figure 3d) and has a significantly
lower surface temperature than bare ground (Figure 3b).

In our study, the vegetated surface displayed mean values of 66% and 26% of the total net radiation
to the latent heat flux and sensible heat flux, respectively, at the peak of the vegetation season (Figure 5).
However, only 40% of the total net radiation striking the bare ground was converted to the latent heat
flux, while the sensible heat flux, on the contrary, reached up to 48% (Figure 5). These results showed
the importance of vegetation. These findings, based on surface energy balance calculation methods
using spectral data, are consistent with other types of heat flux determinations in the Svalbard region.
Spot measurements of energy fluxes for a surface with a shallow humus profile and a thin layer of
moss at midday at the peak of the vegetation season in the Svalbard region showed a very similar
distribution of total net radiation into heat fluxes (latent heat flux and sensible heat flux of around 62%
and 20%, respectively) [26]. Similarly, measurements using eddy covariance techniques in Svalbard
showed an increase of evaporation values and a divergence of latent heat flux and sensible heat flux
values in vegetated areas during the vegetation season [28]. Our observation of the surface energy
balance components during a single vegetation season shows that this phenomenon is significant
for the entire vegetation season. Even at the very end of the season, with a decreased input of solar
radiation energy, there is still a significant difference between the sensible heat flux of the bare ground
and vegetated surface (Figure 4e,f). Similarly, temperatures of both surfaces still differed at the end of
the season, even though they were approaching the air temperature (Figure 4c,d). The mean value
(1.2) of the Bowen ratio (H/LE ratio) for the bare ground surface in our study is comparable to values
acquired by ground measurement methods on similar surfaces in polar regions during the summer
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period (e.g., [28,50]), which suggests a consistency of the spectral calculation method and other types
of sensible and latent heat flux determinations.

Therefore the results show that, in the vegetation season, tundra vegetation efficiently and
significantly mitigates surface heating through the evapotranspiration process, even in the latitudes of
the High Arctic. Heat fluxes of an active surface in polar regions play a main role in the distribution
of incident radiation energy [24], and in this study, we have shown the important degree to which
a relatively small amount of vegetation contributes to the final surface energy balance. The higher
input of short-wave radiation due to the smaller reflectance of the vegetation is largely compensated
for by its much more significant ability to lose energy through long-wave radiation emission. When
it comes to the values of energy loss through evaporation, a vegetated surface exceeds bare ground
by tens of percent, limiting its overheating and heat penetration under the surface. Although some
works have shown that warming of the Arctic region does not necessarily mean an increase in biomass
production, depending on local conditions [58], in general, an increase of temperatures in the Arctic
region is associated with an increase in green biomass [4,51,59]. It can therefore be presumed that the
process of warming mitigation due to vegetation will progress in such areas and will represent some
feedback to the warming of the local climate.

5. Conclusions

The results of the study showed that, in the conditions of high latitudes, even a small amount of
vegetation can have a major impact on the fate of solar radiation energy in the environment. Recently,
rapid climate change has taken place in the High Arctic at local and regional scales with increased air
temperatures, as part of the wider global climate change. Such a change of environmental conditions
can have an impact on the future distribution and amount of polar tundra vegetation. As part of an
active ground surface, vegetation can trigger feedback on both microclimate and local climate processes
of the region, in terms of mitigating surface warming, and become one of the factors involved in the
future projections of climate change. It is therefore evident that further research is necessary when it
comes to this specific role of vegetation in the formation of the local climate of polar regions, which has
been rather overlooked.
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Appendix A

The meteorological data for all of the calculations are available in Table 1 (see Materials and
Methods chapter). The LANDSAT 8 OLI/TIRS satellite data are available for free at the United States
Geological Survey, ESPA ordering interface: https://espa.cr.usgs.gov/index/ (see Materials and Methods
chapter for a detailed data processing description).

Original codes for satellite data downloaded for dates used in the study:
15 July 2014: LC08_L1TP_214004_20140715_20170421_01_T1
9 July 2015: LC08_L1TP_215003_20150709_20170407_01_T1
14 June 2016: LC08_L1TP_218003_20160614_20170324_01_T1
2 July 2016: LC08_L1TP_216003_20160702_20170323_01_T1
9 July 2016: LC08_L1TP_217003_20160709_20170323_01_T1

https://espa.cr.usgs.gov/index/
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27 July 2016: LC08_L1TP_215003_20160727_20170322_01_T1
10 August 2016: LC08_L1TP_217003_20160810_20170322_01_T1
10 July 2017: LC08_L1TP_219003_20170710_20170725_01_T1
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