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Abstract: Salinization is a major soil degradation threat in irrigated systems worldwide. Irrigated
systems in the Niger River basin are also affected by salinity, but its spatial distribution and intensity
are not currently known. The aim of this study was to develop a method to detect salt-affected soils
in irrigated systems. Two complementary approaches were tested: salinity assessment of bare soils
using a salinity index (SI) and monitoring of indirect effects of salinity on rice growth using temporal
series of a vegetation index (NDVI). The study area was located south of Niamey (Niger) in two
irrigated systems of rice paddy fields that cover 6.5 km2. We used remote-sensing and ground-truth
data to relate vegetation behavior and reflectance to soil characteristics. We explored all existing
Sentinel-2 images from January 2016 to December 2019 and selected cloud-free images on 157 dates
that covered eight successive rice-growing seasons. In the dry season of 2019, we also sampled 44
rice fields, collecting 147 biomass samples and 180 topsoil samples from January to June. For each
field and growing season, time-integrated NDVI (TI-NDVI) was estimated, and the SI was calculated
for dates on which bare soil conditions (NDVI < 0.21) prevailed. Results showed that since there
were few periods of bare soil, SI could not differentiate salinity classes. In contrast, the high temporal
resolution of Sentinel-2 images enabled us to describe rice-growing conditions over time. In 2019,
TI-NDVI and crop yields were strongly correlated (r = 0.77 with total biomass yield and 0.82 with
grain yield), while soil electrical conductivity was negatively correlated with both TI-NDVI (r = −0.38)
and crop yield (r = −0.23 with total biomass and r = −0.29 with grain yield). Considering the TI-NDVI
data from 2016–2019, principal component analysis followed by ascending hierarchical classification
identified a typology of five clusters with different patterns of TI-NDVI during the eight growing
seasons. When applied to the entire study area, this classification clearly identified the extreme
classes (i.e., areas with high or no salinity). Other classes with low TI-NDVI (i.e., during dry seasons)
may be related to areas with moderate or seasonal soil salinity. Finally, the high temporal resolution
of Sentinel-2 images enabled us to detect stresses on vegetation that occurred repeatedly over the
growing seasons, which may be good indicators of soil constraints due to salinity in the context of the
irrigated paddy systems of Niger. Further research will validate the ability of the method developed
to detect moderate soil salinity constraints over large areas.
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1. Introduction

Irrigated agriculture covers 275 million ha worldwide (i.e., 20% of cultivated land) and accounts
for 40% of world food production [1]. In the semi-arid area of the middle Niger valley (Niger) (Figure 1),
irrigation techniques have been developed to respond to aridity and an increasing population [2].
Three factors have contributed to the rapid development of irrigation: (i) successive droughts from 1972
to 1973 and 1983 to 1984, which made people aware of serious risks to rainfed production; (ii) the high
yields rapidly obtained in irrigated rice (Oryza sativa) and vegetable production; and (iii) commitment
of the national government, farmers’ organizations and several donors to irrigated agriculture. The first
irrigated systems in Niger were constructed during the colonial period in the 1930s. From 1934 to 2011,
36 irrigated rice-growing systems were built along the middle Niger valley in Niger. Irrigation has
improved the country’s food security but has led to serious soil degradation by salinity. Irrigation
facilities in many of these irrigated systems have aged and have not been renovated, and their drainage
systems are not functioning. Excessive irrigation of less drained soil leads to waterlogging and soil
salinization. The absence of a drainage network in clayey soils, which is characteristic of the study
area [3], increases the concentration and precipitation of soluble salts at the soil surface but also in the
subsoil and groundwater. Salt precipitates appear as white spots, mainly in the bright red oxidized clay
horizons and in association with yellow iron spots. This salinization process threatens the sustainability
of crop production in the study area by decreasing yields or reducing them to zero. The mechanisms
by which soil salinity affects plant growth are generally known and have been summarized by many
researchers [4–6]. In the middle Niger valley, rice is the main crop grown in irrigated fields. Rice can
tolerate salinity without a reduction in yield up to a threshold of 3.0 dS/m of electrical conductivity
of saturated paste (ECe) [7]. To preserve soil as a natural resource and maintain sustainable crop
production in the study area, the spatial extent and level of salinity must be known. This can be done
by performing field surveys to measure soil EC or electrical resistivity. Due to the large size of the
Niger River basin (>85 km2), however, doing so would require large amounts of time, labor and money.
Using the potential of remote sensing along with other data sources is currently a promising method to
map salinity at a large scale with high accuracy.

Figure 1. Location of the study area and aerial view of the experimental fields in the Sébéri and
Tchagriré irrigation systems south of Niamey (Niger).
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The use of remote sensing to monitor and map soil salinity dates to the 1990s [8]. Many researchers
have used remote-sensing and ground-truth data (i.e., direct or indirect measurements of soil) to assess
and monitor salinity [9,10]. A variety of remote-sensing data have been used to identify and monitor
salt-affected areas: aerial photographs, visible and infrared multispectral images, video images, infrared
thermography, microwave images and data collected by airborne geophysics and electromagnetic
induction [11]. Two remote-sensing methods exist to identify soil salinity: (i) observing surface
conditions of bare soil (i.e., salt efflorescence) and (ii) monitoring the behavior of vegetation affected by
salinity over time [8]. Before the most recent generation of satellites was developed, many researchers
used a classic single-date approach [12] because most older satellites passed over a given location too
infrequently to enable monitoring. However, this single-date approach has some limits: although
highly saline and non-saline soils can be detected easily, intermediate salinity classes are difficult to
differentiate. Moreover, if vegetation is present, bare soil cannot be seen, and vegetation behavior
cannot be monitored with a single-date approach.

The most recent generation of satellites (Sentinel-2, Landsat 8, SPOT 6 & 7) offers high spatial
resolution and frequent passes over a given location, which makes identifying salinity variations and
monitoring vegetation behavior appear possible. A variety of remote-sensing indices, such as the
salinity index (SI) [13], brightness index, normalized difference salinity index and normalized difference
vegetation index (NDVI) [14], have been developed to estimate the salinity of bare soil and monitor
vegetation behavior in saline environments. These indices have been combined with ground-truth
data. For instance, soil salinity was measured by electromagnetic induction and then combined with
multi-year Landsat 7 reflectance data to map salt-affected soils in the western San Joaquin Valley,
California, USA [9]. Electrical conductivity (EC) ground-truth measurements and various Sentinel-2
spectral parameters were used to create more reliable soil salinity maps in the Ebinur Lake region,
Xinjiang, China [15]. To monitor salt-affected areas in Turkey, researchers performed multi-temporal
monitoring of salinity using field EC measurements and spectral indices derived from multi-year
Landsat 5 and 8 satellite images [16]. In practice, most studies have focused more on detecting severely
salt-affected areas than on detecting and monitoring slightly or moderately affected areas.

This study aimed to develop a method to detect potential areas of soil salinity using multi-spectral
and high-resolution Sentinel-2 satellite images combined with field data using two complementary
approaches: (i) observing salinity of bare soil using the SI and (ii) monitoring vegetation behavior from
2016–2019 (eight growing seasons) in the arid zone of the Niger River basin. The study involved a
four-year time series of Sentinel-2 remote-sensing images and field measurements of biomass and
topsoil characteristics of cultivated rice fields.

2. Materials and Methods

2.1. Study Area

The study area corresponded to the irrigated systems of Sébéri and Tchagriré (6.5 km2), located in
the Niger River basin 50 km southeast of Niamey, the capital of Niger (13◦16′35.32′′ N, 2◦21′31.81′′ E)
(Figure 1). The climate of the area corresponds to the dry tropical zone of the Sudano–Sahelian type.
Annual precipitation has high spatial, temporal and interannual variability and a general trend towards
a southward shift of isohyets over the past 30 years. Mean annual precipitation is ca. 510 mm/year
(standard deviation (SD) = 100 mm/year) (National Meteorological Service of Niger). Precipitation
is irregularly distributed in space and time: it peaks in August (150 mm) and is lowest in October
(22 mm) and May (20 mm). Mean monthly temperature is 36 ◦C during the hottest period (April),
with a maximum temperature of 47 ◦C. Minimum mean monthly temperatures are 25 ◦C and are
observed from December to January. Evaporation varies from 1700 to 2100 mm/year. The water deficit
is thus large during the dry season and is accentuated by the Harmattan, a dry continental trade wind
from the Sahara. Consequently, the study area has two seasons: a dry season from October to May and
a wet season from June to September [17].
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Paddy fields in Sébéri and Tchagriré are located on the lowest alluvial terrace of the Niger Valley
(Figure 1). The soils are Vertisols (60–74% clay in topsoil and 52–85% in subsoil) but also acidic, with a
pH in water of 4.0–6.2 (SD = 0.5), an EC of 0.01–7.20 dS.m−1 (SD = 2.3 dS.m−1), and they have low
hydraulic conductivity at water saturation, which ranges from 2.8 × 10−8 in the topsoil horizon to
1.5 × 10−8 m s−1 at a depth of 50 cm [18,19]. In Sébéri, EC generally increases from the areas next to the
sand dunes to the river’s floodwater protection dike [19]. The types of salts found are hexahydrite,
gypsum, epsomite and, secondarily, wattevilleite and sodium carbonate hydrate [19].

The observed long-term downward trend in rice yields can be explained by several factors: poor
management of agricultural equipment, lack of technical supervision, soil degradation due to salinity
and failure to respect the cropping calendar. Implementing a fixed and common cropping calendar
for all rice-growing systems would create two growing seasons per year during optimal climatic
conditions. It provides for two harvests, one in the dry cropping season (mid-November to mid-May)
and the other in the wet cropping season (mid-June to mid-December) (Figure 2).

Figure 2. Double-cropping calendar for rice in the middle Niger valley (adapted from [20]).

2.2. Field Data Collection Strategy

In the Niger River basin, rice is grown in 0.25 ha (25 m × 100 m) fields. We selected 44 and 20
fields in the Sébéri and Tchagriré irrigated systems, respectively, for data collection on two dates in the
2019 dry season, each of which corresponded to a date when the Sentinel-2 satellite passed over the
study area. We chose the 64 fields based on the level of salinity in the study area and whether they
were cultivated with rice or bare. Three sampling plots of 1 m2 each were set up on one diagonal of
each of the 0.25 ha fields selected to collect soil and phenological parameters.

The first data collection campaign was performed on 8 February 2019, near the start of the growing
season, when fields were already flooded and covered by a layer of irrigation water a few centimeters
thick. The phenology of rice plants was assessed in a quarter (0.25 m2) of each 1 m2 plot. Then, all aerial
biomass of this quarter was cut, weighed and dried under laboratory conditions to determine dry
matter. The topsoil (0–30 cm) was sampled in each plot using an auger, and one composite sample
per field was obtained by carefully mixing the three elementary plot samples. Given the rapidity
of auger sampling and the very low hydraulic conductivity of these clay soils, sampling under a
water layer did not significantly change the EC and pH values of the soil, as shown in previous
studies performed in these irrigated systems [19]. Consequently, salt losses during soil sampling are
very low, ensuring good reliability of collected samples and good representativeness of soil salinity
measurements. The composite samples were air-dried and ground to pass through a 2-mm sieve. Then,
pH in water (pH1:5) and EC in water (EC1:5) were analyzed in the laboratory following ISO 10390 and
ISO 11265, respectively.

The second data collection campaign was performed on 4 May 2019, during the harvest period,
when fields were not flooded. Phenological assessment and soil sampling were identical to those
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during the first campaign. Moreover, rice grain was collected from an undisturbed 0.25 m2 quarter to
estimate grain yield. Soil and phenological parameters were analyzed statistically for each field.

2.3. Remote-Sensing Data Collection

Remote-sensing data and in situ observations were processed in multiple steps (Figure 3). First,
optical images were obtained from Sentinel-2 satellites. The Sentinel-2 mission is a constellation of two
satellites that are 180◦ out-of-phase on the same orbit, which increases the frequency of passes over a
given location (i.e., every five days). Each satellite records 13 bands, with three spatial resolutions:
blue, green, red and near-infrared bands at 10 m resolution; red-edge and mid-infrared bands at 20 m
resolution; and aerosol and water-vapor bands at 60 m resolution. Sentinel-2′s utility thus lies in its
high revisit frequency and high spatial resolution.

Figure 3. General data-processing flowchart.

All existing pre-processed Sentinel-2 images from January 2016 to December 2019 were
downloaded. Pre-processing was performed by the MACCS (Multi-sensor Atmospheric Correction
and Cloud Screening) processing chain, which consists of three successive steps: (i) cloud detection
(using the satellite cirrus band), (ii) aerosol-thickness estimation and (iii) atmospheric correction.
This processing chain, developed by CESBIO and CNES, provides ortho-rectified atmospheric-corrected
surface reflectance images of 100 km × 100 km as a final product [21].

Overall, 157 preprocessed Sentinel-2 images were downloaded and then resampled at a spatial
resolution of 10 m. Reflectance values that were missing due to cloud cover were estimated as the
mean reflectance value of the two dates before and after the missing date. Finally, the study area of the
irrigated systems of Sébéri and Tchagriré was extracted from the entire image.
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A second step consisted of distinguishing the periods during which a plot was bare or covered
with vegetation. To do this, the NDVI was first calculated per pixel (Table 1) [22], and then the mean
and standard deviation of the NDVI of each plot’s pixels was calculated. A pixel was considered to
be part of a plot if its centroid fell within the plot’s polygon. Since the plots measured 25 m × 100 m,
each contained ca. 25 pixels. Based on the literature [23,24], plots with a mean NDVI ≤0.21 or >0.21
were considered as bare soil or vegetation, respectively.

Table 1. Characteristics and equations of the bare soil and vegetation indices selected. RED and NIR
indicate red and near-infrared bands of the Sentinel-2 images.

Spectral Index Equation Characteristics

Salinity index (SI) SI = (RED/NIR) × 100 in [25] Created to detect saline soils.

Normalized difference
vegetation index (NDVI)

NDVI = (NIR − RED)/(NIR + RED) [22]
Varies from −1.0 to +1.0.For vegetation,

NDVI varies from 0.2–0.8.

A standardized index for
vegetation cover and chlorophyll
activity. Used to monitor drought

and monitor and predict
agricultural production.

Means and standard deviations of NDVI were used to create a 4-year time series of NDVI for
each plot. For the periods when the plots were estimated to be bare, we calculated an SI [25] (Table 1).
Otherwise, for the periods when vegetation was dominant, we created a time series of NDVI over the
four years of study.

A few days before rice planting and during the first part of the vegetation development cycle,
a water layer covers the soil. This layer is thin, no more than a few centimeters thick, and has high
turbidity. The NDVI of this water layer ranges from 0.10–0.21 before planting and then decreases as
the rice is transplanted and the vegetation canopy develops. In comparison, NDVI values of the river
near the plots are negative and close to −0.3.

The last step consisted of calculating the time-integrated NDVI (TI-NDVI) [26,27] for each growing
season for fields with vegetation. TI-NDVI for a given growing season was calculated as follows:

TI −NDVI =
de∑

t=d1

1
n

n∑
i=1

((
NDVIi,t + NDVIi,t+1

2

)
− 0.21

)
× (d(t + 1) − d(t))

 (1)

where d1 and de are the day of the year of the start and end (harvest) of the growing season (the same
for all fields), respectively; d(t) is the day of the year of date t for the set of days for which Sentinel-2
images are available during the growing season; n is the number of pixels within the field; and NDVIi,t
is the NDVI of pixel i on date t. Units of TI-NDVI are expressed as NDVI.days.

Figure 4 illustrates the calculation of TI-NDVI for two successive growing seasons in 2019 derived
from NDVI estimates based on existing Sentinel-2 images.
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Figure 4. Example of normalized difference vegetation index (NDVI) dynamics for a given field for the
dry and wet seasons of 2019 (derived from 42 cloud-free images among 60 existing Sentinel-2 images)
and time-integrated NDVI (TI-NDVI) calculation for the two growing seasons.

2.4. Multidimensional Analysis of the Data

Principal component analysis (PCA) was performed using the FactoMiner package in R
software [28] to analyze the multidimensional space of the remote-sensing and field data from
2019. Field data were pH and EC at the start and end of the growing seasons, aerial biomass and grain
yields of the 64 fields. Qualitative variables were added: pH class, salinity class, land use and position
in relation to the direction of river flow. Remote-sensing data were the mean SI of each field, TI-NDVI
of each of the eight growing seasons and the number of seasons that each field was used to produce
rice in dry and wet seasons. Remote-sensing data were considered as active variables and field data as
illustrative variables.

PCA was followed by hierarchical clustering analysis (HCA) using the module HCPC (hierarchical
clustering on principal components) [29] in R software [30] to create clusters of fields that behaved
similarly. Finally, supervised classification for grids (SCG) was applied to 10-m resolution grids of the
entire area that described the remote-sensing variables used in the PCA-HCA analysis (i.e., 8 grids
with the TI-NDVI of each pixel for the 8 seasons and 1 grid with the SI of each pixel) to represent the
spatial distribution of the clusters. Each pixel is assigned to the cluster with the shortest Mahalanobis
distance, and the distance to the nearest cluster is analyzed to assess the quality of assignment to
a cluster. SAGA-GIS 2.3.2 [31], implemented in QGIS 3.4.3, was used to perform the SCG with a
maximum-likelihood algorithm.

3. Results

3.1. NDVI Dynamics over the Eight Growing Seasons

Figure 5 shows the dynamics of mean NDVI estimated from the 25 pixels within each of the three
fields. The threshold of NDVI = 0.21 was selected to identify periods without live vegetation, and it
enabled the identification of the short intercropping period after harvest when field irrigation was
stopped, the soil plowed and irrigation started again before transplanting the next rice crop.
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Figure 5. Example of dynamics of mean NDVI for three fields over eight growing seasons from January
2016 to December 2019: (a) Field CP3_1, cultivated in season 2 but not in the other seasons; (b) Field
CP11-1, always cultivated but with lower NDVI in dry seasons than wet seasons; and (c) Field TVP7,
always cultivated and with high NDVI in both dry and wet seasons. For each field, mean NDVI and its
95% confidence interval were estimated from the field’s ca. 25 pixels.

Non-cultivated fields had NDVI dynamics below the threshold or slightly above due to weed
growth (Figure 5a). When cultivated during a growing season, some fields had lower NDVI due
to constrained plant growth, which could have been due in part to soil salinity. Among the fields
cultivated during both dry and wet seasons, two groups of cultivated fields were identified: (i) those
with lower NDVI during the dry seasons than wet seasons (Figure 5b) and (ii) those with smaller
differences between dry and wet seasons and generally high NDVI (Figure 5c).

3.2. Spatial Variation in TI-NDVI over the Eight Growing Seasons

For the 8 seasons and 44 irrigated fields monitored in Sébéri, TI-NDVI was always significantly
lower during dry seasons than wet seasons (Figure 6a): mean TI-NDVI per season ranged from 15
to 19 NDVI.days during the four dry seasons and 29 to 34 NDVI.days during the four wet seasons.
TI-NDVI also varied greatly among fields for a given season and showed systematic trends, with values
frequently lower in some fields in the south and northwest of the irrigation system and significantly
higher in fields in the center (Figure 6b). This spatial variation was lower in some seasons (e.g., seasons
2 and 6) but higher in others, e.g., season 7 in 2019, when field data were collected.
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Figure 6. Temporal and spatial variations in the time-integrated normalized difference vegetation index
(TI-NDVI) for the 44 fields of the Sébéri irrigation system: (a) mean and standard deviation of TI-NDVI
for each season; (b) maps of TI-NDVI estimated for the eight growing seasons.

3.3. Salinity Measured in the Field in 2019

For the 64 fields monitored in 2019 during the dry season, EC1:5 ranged from 0.01 to 5.36 dS/m
at the start of the season and 0.44 to 6.19 dS/m at the end of the season (SD = 1.16 and 1.33 dS/m,
respectively) (Table 2). The pH ranged from 5.52 to 6.68 in January and 5.29–6.25 in June (SD = 0.44
and 0.52, respectively). Differences between means and SDs for the two dates were not significant for
EC1:5 or pH. Total aerial biomass and grain yield at harvest varied greatly (Table 2), and 18 fields had
no rice production.

Table 2. Statistics of field data for the dry growing season in 2019 (i.e., season 7) (n = 64, including 18
non-cultivated fields).

Soil EC1:5 (dS/m) Soil pH1:5
Total Aerial

Biomass (g/m2)
Grain Yield

(g/m2)

Statistic Start of
Season

At
Harvest

Start of
Season

At
Harvest

At
Harvest

At
Harvest

Mean 0.40 0.44 5.52 5.29 914.2 389.5
Median 0.03 0.04 5.56 5.33 1048.5 420

SD 1.16 1.33 0.44 0.52 687.8 309.0
Min 0.01 0.01 4.45 4.00 0 0
Max 5.36 6.19 6.68 6.25 2269 1249
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3.4. Correlation between Remote-Sensing Data and Field Data during the 2019 Dry Season

A strong and significant (p < 0.05) positive correlation was observed between TI-NDVI in season 7
and both total aerial biomass (r = 0.77, p < 2 × 10−14) and grain yield (r = 0.82, p < 2.2 × 10−16) (Table 3),
which confirms that TI-NDVI is a good indicator of rice vegetation growth and its final yield. Soil EC1:5

was negatively correlated with TI-NDVI at the start and end of the season (r = −0.38, p = 0.002 for the
start, p = 0.002 for the end), with total biomass (r = −0.23, p = 0.062) and, significantly, with grain yield
(r = −0.29, p = 0.019).

Table 3. Pearson correlations between the TI-NDVI indicator derived from Sentinel-2-images and soil
(EC1:5, pH1:5) and crop indicators (total biomass, grain yield). Data were collected for 64 fields during
the dry season of 2019 (i.e., season 7). SS and ES indicate the start and end of the growing season,
respectively. Bold values indicate significant (p < 0.05) correlations.

TI-NDVI Soil EC1:5
SS

Soil EC1:5
ES

Soil pH
SS

Soil pH
ES

Total Aerial
Biomass

Grain
Yield

TI-NDVI 1.00
Soil EC1:5_SS −0.38 1.00
Soil EC1:5_ES −0.38 0.99 1.00

Soil pH SS 0.35 −0.63 −0.63 1.00
Soil pH_ES 0.16 −0.62 −0.62 0.74 1.00

Total Aerial Biomass 0.77 −0.23 −0.23 0.35 0.1 1.00
Grain Yield 0.82 −0.29 −0.28 0.34 0.07 0.72 1.00

3.5. PCA and HCA Analysis of Remote-Sensing Data over the Eight Growing Seasons

The first axis of the PCA was positively correlated with all of the TI-NDVI variables (Figure 7),
which indicates that the spatial variability in TI-NDVI among fields was the main factor that influenced
variations in the dimensional space. The second axis was correlated with SI but also distinguished the
TI-NDVI estimates of the dry seasons (1, 3, 5 and 7) from those of the wet seasons (2, 4, 6 and 8).

While soil pH was little represented in the first PCA plane, soil EC1:5 measured at the start
and end of season 7 was negatively correlated with the first axis and thus with TI-NDVI variables.
More surprisingly, neither soil EC1:5 variable was correlated with SI. Following PCA, HCA identified
five clusters of fields that behaved similarly during the eight growing seasons according to the
remote-sensing data (Figure 8).
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Figure 7. First plane of principal component analysis with variables derived from remote sensing as
active variables (black) and soil and vegetation variables as illustrative variables (blue). Abbreviations:
TI-NDVI_SN: time-integrated normalized difference vegetation index for season N; Mean_SI: mean
salinity index; biom_yield: biomass yield at harvest; grain yield: grain yield at harvest; Soil EC_start_s:
soil electrical conductivity at the start of the season; soil EC_end_s: soil electrical conductivity at the
end of the season; soil pH_start_s: soil pH at the start of the season; Soil pH_end_season: soil pH at the
end of the season; Nbr_dry_s: number of dry growing seasons during the time series; and Nbr_wt_s:
number of wet growing seasons during the time series.
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Figure 8. Representation on the first plane of principal component analysis (PCA) of the five clusters of
fields defined by ascending hierarchical classification applied to the first three axes of the PCA. Points
are labeled with field codes starting with S or T respectively for Seberi or Tchagrire irrigation system,
while squares indicate barycenters of clusters.
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3.6. Description of the Field Clusters

The five clusters differed in their remote-sensing and field data (Table 4):

• Cluster 1 had low TI-NDVI in both dry and wet seasons. In 2019, EC1:5 was highest in this cluster,
soil pH was very acidic and total biomass and grain yield were zero. The maximum EC1:5 of some
fields in this cluster (5.36 dS/m) indicates that this cluster had the highest salinity.

• Cluster 2 had low TI-NDVI in dry seasons, due to rare cultivation, and a higher TI-NDVI in
wet seasons, but one that was still lower than those of clusters 3–5. In 2019, soil EC1:5 was
not significantly higher than those of clusters 3–5, but total biomass and grain yield were
significantly lower.

• Cluster 3 had moderate TI-NDVI in dry and wet seasons and a significantly higher SI. In 2019, soil
EC1:5 was low, pH was relatively high, and mean total biomass and grain yield were the second
highest among the clusters.

• Cluster 4 had low TI-NDVI in dry seasons due to frequent non-cultivation but high TI-NDVI in
wet seasons. In 2019, soil EC1:5 and pH were low, and the fields were not cultivated.

• Cluster 5 had extremely high TI-NDVI in both dry and wet seasons. In 2019, soil EC1:5 was low,
pH was relatively high and total biomass and grain yield were the highest.

Table 4. Mean (and standard deviation) per cluster of fields defined by ascending hierarchical clustering
for the variables derived from Sentinel-2 images (TI-NDVI, SI) and from field data collected in 2019
(EC1:5, pH, total biomass, grain yield). For each variable, different letters indicate significant differences
in the mean among clusters according to a p < 0.05 Tukey test at a 95% confidence level.

2016–2019 Dry Season 2019

Cluster No. of
Fields

Dry Season
TI-NDVI

(NDVI.Days)

Wet Season
TI-NDVI

(NDVI.Days)
Mean SI Soil EC1:5

(dS/m) Soil pH
Total

Biomass
(g/m2)

Grain Yield
(g/m2)

1 7 1.0 (1.2) a 12.8 (4.4) a 72.9 (3.0) ab 2.6 (2.4) b 5.0 (0.6) a 0 (0) a 0 (0) a

2 9 5.2 (6.1) b 25.5 (3.1) b 72.5 (2.4) a 0.6 (1.1) a 5.5 (0.2) bc 314 (572) a 109 (217) a

3 14 19.7 (3.6) d 30.6 (1.8) c 74.8 (1.3) b 0.1 (0.0) a 5.7 (0.2) c 1308 (319) b 527 (179) b

4 6 10.1 (4.0) c 44.6 (5.0) e 70.1 (0.9) a 0.1 (0.0) a 5.2 (0.3) ab 0 (0) a 0 (0) a

5 28 25.4 (1.9) e 35.9 (3.1) d 75.0 (1.7) b 0.05 (0.1) a 5.6 (0.4) bc 1335 (414) b 592 (205) b

3.7. Mapping the Clusters over the Entire Study Area

Using the eight grids with the TI-NDVI of each pixel for the eight seasons and the grid with the
SI of each pixel, SCG enabled each pixel to be attached to one of the five clusters defined from the
64 study fields considered as training areas. Figure 9 shows the distribution of the five clusters over
the entire study area, with the associated distance to the nearest cluster, which indicates when the
cluster represents a given pixel well (i.e., small distance) or poorly (i.e., large distance). Clusters 1
and 2, both of which had low TI-NDVI during the dry seasons since they were often not cultivated,
were located mainly in the north and south of the Sébéri system (Figure 9). Cluster 5, with the highest
TI-NDVI in both dry and wet seasons, predominated in the north of the Tchagriré system and the
center of the Sébéri system. Cluster 3, with moderate TI-NDVI in both seasons, represented large areas
in Sébéri in intermediate positions between clusters 1 or 2 and 5, but also in non-agricultural areas
(e.g., paths, natural areas), which had large distances to the nearest cluster. Cluster 4 occupied small
areas in Sébéri and the south of Tchagriré, often near fields of cluster 2.
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Figure 9. Mapping of the five clusters over the entire study area of the irrigated systems of Sébéri and
Tchagriré using supervised classification that assigned each pixel to the nearest cluster.

4. Discussion

This study continuously monitored spatio-temporal dynamics of SI and NDVI in paddy fields
using Sentinel-2 satellite images over eight growing seasons from 2016 to 2019. Based on field data
collected (biomass, EC and pH) during the 2019 dry growing season, a relation between spectral indices
(NDVI and SI) and field data was established to understand the behavior of rice crops and relate the
spatio-temporal variation and pattern of spectral indices to salinity.

4.1. Variation in Spectral Indices among Crop Seasons

In the 2016–2019 time series, the spectral indices used (SI and NDVI) varied in different ways. First,
SI was estimated at dates when bare soils prevailed according to an NDVI threshold (NDVI <0.21). SI
averaged over the 4 years of study varied in a narrow range and was weakly correlated with soil EC1:5;
only highly saline areas, generally not cultivated, had higher SI values, due to the presence of salt
crusts at the surface. These results may be explained by the short periods during which bare soil can
be observed in irrigated paddy field systems; they generally last less than a month between successive
crops, which corresponded to 3–5 dates when Sentinel-2 images were available. Thus, only a few
dates when SI could be estimated were available. The soil may also be covered by crop residues or
change drastically in water content due to the stopping or starting of irrigation after harvest or before
preparatory work for planting rice. These factors may interfere with the estimation of SI and limit its
ability to distinguish soil salinity.

In contrast, NDVI dynamics could be followed at a fine temporal resolution since cloud-free
images were available at 133 dates during the eight growing seasons, with a mean of 21 dates per
season since the end of 2017. We observed significant differences in TI-NDVI among the fields and
eight growing seasons. TI-NDVI, which differed greatly between fields in a given season and over
time, was used to differentiate areas with constraints to vegetation growth in the irrigated systems.
In a given season, non-cultivated or cultivated areas with constraints had low TI-NDVI in dry and wet
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seasons (clusters 1 and 2) (Table 4). Areas cultivated throughout the year with few constraints had high
TI-NDVI in wet seasons and moderate TI-NDVI in dry seasons (cluster 3), while zones cultivated in
dry and wet seasons without any constraints had high TI-NDVI in both seasons (cluster 5) (Figure 8).
Nonetheless, there were areas near the main drainage channel with salinity constraints and moderate
TI-NDVI that were cultivated only in wet growing seasons. They may have occurred because they are
always wet and wild grasses grow there in the dry seasons, which influences the NDVI. TI-NDVI also
differed significantly between dry and wet seasons (Figure 5a,b). Wet growing seasons had higher
mean TI-NDVI than dry ones. TI-NDVI varied from 29 to 34 NDVI.days in wet seasons and 15 to 19
NDVI.days in dry seasons. This result is due to the climatic conditions in the study area in dry seasons
(hot, dry wind, high temperature) that limit crop growth. In addition, high temperature favors the rise
of salt from lower horizons to the rooting zone of crops, which damages their roots. In wet seasons,
conditions are more favorable for crop growth. Over the time series, wet and dry seasons varied among
years, again due to climatic conditions (temperature in dry seasons and precipitation in wet seasons).

4.2. Temporal and Spatial Patterns of NDVI

Soil salinity influences vegetation density and crop growth, as explained by NDVI. TI-NDVI
was used in this study to indicate constraints to crop growth and density, as in previous studies [32].
Five clusters were obtained to differentiate areas with constraints to rice growth in the two irrigated
systems. Non-cultivated areas had the lowest TI-NDVI and were considered likely to be areas with high
salinity constraints (cluster 1) (Figure 9). Areas cultivated only in wet seasons because of constraints
had low TI-NDVI and may be considered to have moderate salinity constraints that limit crop growth
(clusters 2 and 4) (Figure 9). Areas cultivated in both seasons with few constraints had high TI-NDVI
and may be considered to have few salinity constraints (cluster 3) (Figure 9). Finally, areas cultivated
without constraints had the highest TI-NDVI (cluster 5) (Figure 9) and were considered zones without
salinity constraints. Our results show that the spatial pattern of TI-NDVI corresponds to the spatial
distribution of problematic patches in the study area. The main constraint may be salinity, while other
constraints could be explained by soil type, microtopography and farming practices. Mean ECe
measured during ground truthing was calculated for each cluster and assigned to the respective
TI-NDVI of the clusters to validate the four salinity classes obtained from the classification of TI-NDVI.
Based on EC measurements, visual observations and knowledge of the terrain [33], mean TI-NDVI
of the clusters were classified into four classes of soil salinity [34]: non-saline, slightly, moderately
and very saline (i.e., ECe < 2, 2–4, 4–8 and 8–16 dS/m, respectively). Measured soil EC alone could
not explain the level of salinity of the clusters (Table 4); however, integrated interpretation using the
EC, mean TI-NDVI, total biomass and grain yield with visual observations of the study area could
be used. Cluster 1, consisting of abandoned fields with low mean TI-NDVI in dry and wet seasons,
no rice biomass or grain yield, maximum EC of 5.36 dS/m2 and white efflorescence on the soil surface,
can be considered saline soil. Clusters 2 and 4, consisting of fields cultivated only in wet seasons and
rarely in dry seasons, despite having a lower level of surface salinity, have low TI-NDVI in dry seasons,
low biomass and grain yield in the few fields cultivated in dry seasons and no yield in non-cultivated
fields. Salt efflorescence is present in these fields. The maximum EC was 2.59 dS/m2, which may not
reflect the true EC of the clusters. These two clusters can be considered moderately saline. Clusters 3
and 5 consisted of cultivated fields in both dry and wet seasons. Based on measured EC, they were
classified as non-saline, but since cluster 3 has lower TI-NDVI, biomass and grain yields than cluster
5, cluster 3 has few salinity constraints. Thus, cluster 3 can be considered slightly saline and cluster
5 non-saline.

4.3. Field EC Variation and Salinity

In the Sébéri irrigated system, EC generally increased from the areas next to the sand dunes to
the river’s floodwater protection dike, perhaps because the dike has modified the functioning of the
soils next to it [18]. In the Tchagriré irrigated system, EC generally increased from the areas next to the
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river to the main drainage ditch, likely due to topography. Areas at lower elevations had higher EC
than those at higher elevations. Overall, the pattern of EC followed those of TI-NDVI, biomass and
grain yield. EC measured in the two systems does not reflect the real situation in the field. Areas that
showed signs of salinity (i.e., abandoned fields, low NDVI, low yields) had low measured EC, which
indicates that a salt stock may lie in the lower horizons. To map salinity in this situation, measured EC
should be compared to other maps (e.g., TI-NDVI, yield, soil, elevation) of the same site with similar
sampling patterns or resolution. Doing so may provide useful insights into other parameters that
could explain salinity.

5. Conclusions

This study developed a step-by-step method to estimate constraints on the growth of rice, the most
important of which is salinity. Dense time series of Sentinel-2 images over eight growing seasons
enabled us to describe the behavior of rice biomass and to differentiate fields where rice is subjected to
stress during growing seasons. In irrigated systems, periods of bare soil were brief, and the SI derived
from Sentinel-2 images could not differentiate soil salinity of fields. Monitoring vegetation behavior
over four years by deriving the NDVI from Sentinel-2 images and calculating the TI-NDVI was able to
differentiate fields based on constraints that limit rice growth. Several constraints can occur in areas
subjected to stresses but can be related locally to soil salinity and verified by field sampling, which can
be guided by TI-NDVI classification. This approach is particularly adapted to irrigated rice systems in
which monoculture prevails and differences in TI-NDVI are not caused by different crops.

Author Contributions: I.M., C.W. and D.M. conceived the topic and developed the method. P.P. performed the
technical work of downloading and processing images and calculating spectral indices. I.M., C.W. and D.M. wrote
the manuscript, which was improved by H.N., Y.G. and I.A.B. participated actively in the fieldwork. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was made possible thanks to financial support of the EU-funded Agrocampus ERASMUS+
cooperation project in Rennes, France. This program financed a one-year’s internship for M.I. and his supervision.

Acknowledgments: This study was performed with the administrative and technical support of the soil science
laboratory from UMR SAS, INRAE and Institut Agro.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. World Water Assessment Programme (WWAP). Fact 24: Irrigated Land. United Nations Educational,
Scientific and Cultural Organization (UNESCO). Available online: http://www.unesco.org/new/en/natural-
sciences/environment/water/wwap/facts-and-figures/all-facts-wwdr3/fact-24-irrigated-land/ (accessed on 26
August 2020).

2. Barbiéro, L.; Van Vliet-Lanoe, B. The alkali soils of the middle Niger valley: Origins, formation and present
evolution. Geoderma 1998, 84, 323–343. [CrossRef]

3. Guéro, Y. Organisation et Propriétés Fonctionnelles des sols de la Vallée du Moyen Niger. Ph.D. Thesis,
Tunis University, Tunis, Tunisia, Niamey University, Niamey, Niger, 1987.

4. Munns, R.; Cramer, G.R.; Ball, M.C. Interactions between Rising CO2 Soil Salinity, and Plant Growth.
In Carbon Dioxide and Environmental Stress; Luo, Y., Mooney, H.A., Eds.; Academic Press: Cambridge, MA,
USA, 1999; pp. 139–167.

5. Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria
as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [CrossRef] [PubMed]

6. Pessarakli, M.; Szabolcs, I. Soil Salinity and Sodicity as Particular Plant/Crop Stress Factors. In Handbook
of Plant and Crop Stress, 2nd ed.; Pessarakli, M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1999; ISBN
978-0-8247-1948-7.

7. Maas, E.V.; Grattan, S.R. Crop Yields as Affected by Salinity. In Agronomy Monographs; Skaggs, R.W.,
van Schilfgaarde, J., Eds.; American Society of Agronomy: Madison, WI, USA, 2015; pp. 55–108.
ISBN 978-0-89118-230-6.

http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-and-figures/all-facts-wwdr3/fact-24-irrigated-land/
http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/facts-and-figures/all-facts-wwdr3/fact-24-irrigated-land/
http://dx.doi.org/10.1016/S0016-7061(98)00003-2
http://dx.doi.org/10.1016/j.sjbs.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25737642


Remote Sens. 2020, 12, 3399 16 of 17

8. Mougenot, B.; Pouget, M.; Epema, G.F. Remote sensing of salt affected soils. Remote Sens. Rev. 1993, 7,
241–259. [CrossRef]

9. Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San
Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [CrossRef]

10. Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Comparative regional-scale soil salinity assessment with near-ground
apparent electrical conductivity and remote sensing canopy reflectance. Ecol. Indic. 2016, 70, 276–284.
[CrossRef]

11. Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ.
2003, 85, 1–20. [CrossRef]

12. Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid contextby means of combining soil and
remote-sensing data. Geoderma 2006, 134, 217–230.

13. Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of
Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake
region, Xinjiang, China. Geoderma 2019, 353, 172–187. [CrossRef]

14. Tripathi, N.K.; Rai, B.K.; Dwivedi, P. Spatial modeling of soil alkalinity in GIS environment using IRS data.
In Proceedings of the 18th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October
1997.

15. Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a
simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [CrossRef]

16. Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce
conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [CrossRef]

17. Food and Agriculture Organization. AQUASTAT Profil de Pays-Niger; Organisation des Nations Unies pour
l’Alimentation et l’Agriculture: Rome, Italie, 2015; p. 18.

18. Guéro, Y. Contribution à L’étude des Mécanismes de Dégration Physico-Chimique des sols Sous Climat
Sahélien: Exemple pris Dans la Vallée du Moyen Niger. Ph.D. Thesis, Université de Niamey, Niamey,
Niger, 2000.

19. Adam, I. Cartographie Fine et Suivi Détaillé de la Salinité des sols d’un Périmètre Irrigué au Niger en vue
de leur Remédiation. Ph.D. Thesis, Uiversité de Bretagne Occidentale, Brest, France, Université Abdou
Moumouni de Niamey, Niamey, Niger, 2011.

20. Ndanga Kouali, G.; Lévite, H.; Anid, M. Diagnostic Participatif Rapide et Planification des Actions du Périmètre
de Daïbéri (Département de Tillabéri-NIger); Technical Report; l’Association Nigérienne pour l’Irrigation et le
Drainage (ANID): Niamey, Niger, 2010; p. 58.

21. Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA Algorithm Theoretical Basis Document; Technical
Report; CNES, CESBIO and DLR: Berlin, Germany, 2017.

22. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement of
Retrogradation of Natural Vegetation, Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; pp. 1–137.

23. Shabou, M.; Mougenot, B.; Chabaane, Z.; Walter, C.; Boulet, G.; Aissa, N.; Zribi, M. Soil Clay Content
Mapping Using a Time Series of Landsat TM Data in Semi-Arid Lands. Remote Sens. 2015, 7, 6059–6078.
[CrossRef]

24. Roussillon, J. Développement de Méthodes Innovantes de Cartographie de L’occupation du sol à Partir de
Séries Temporelles D’images Haute Résolution Visible (NDVI). Master’s Thesis, Le Mans Université, Le
Mans, France, 2015.

25. Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices
derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region.
Geoderma 2014, 230–231, 1–8. [CrossRef]

26. Ma, C.; Guo, Z.; Zhang, X.; Han, R. Annual integral changes of time serial NDVI in mining subsidence area.
Trans. Nonferrous Met. Soc. China 2011, 21, s583–s588. [CrossRef]

27. Reed, B.C.; Brown, J.F.; VanderZee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological
variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [CrossRef]

28. Husson, F.; Josse, J.; Pages, J. Principal Component Methods—Hierarchical Clustering—Partitional Clustering:
Why Would We Need to Choose for Visualizing Data? Technical Report; Agrocampus: Angers, France, 2010.

29. Husson, F.; Josse, J.; Pagès, J. Analyse de données avec R-Complémentarité des méthodes d’analyse factorielle
et de classification. In Proceedings of the 42èmes Journées de Statistique, Marseille, France, 25–29 May 2010.

http://dx.doi.org/10.1080/02757259309532180
http://dx.doi.org/10.1016/j.geodrs.2014.10.004
http://dx.doi.org/10.1016/j.ecolind.2016.06.015
http://dx.doi.org/10.1016/S0034-4257(02)00188-8
http://dx.doi.org/10.1016/j.geoderma.2019.06.040
http://dx.doi.org/10.1016/j.agwat.2004.09.038
http://dx.doi.org/10.1016/j.ecolind.2016.11.043
http://dx.doi.org/10.3390/rs70506059
http://dx.doi.org/10.1016/j.geoderma.2014.03.025
http://dx.doi.org/10.1016/S1003-6326(12)61644-6
http://dx.doi.org/10.2307/3235884


Remote Sens. 2020, 12, 3399 17 of 17

30. R Core Team. European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/
indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006 (accessed on 26 August
2020).

31. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.
System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007.
[CrossRef]

32. Kundu, A.; Denis, D.; Patel, N.; Dutta, D. A Geo-spatial study for analysing temporal responses of NDVI to
rainfall. Singap. J. Trop. Geogr. 2018, 39, 107–116. [CrossRef]

33. Abbas, A.; Khan, S.; Hussain, N.; Hanjra, M.A.; Akbar, S. Characterizing soil salinity in irrigated agriculture
using a remote sensing approach. Phys. Chem. Earth Parts A/B/C 2013, 55–57, 43–52. [CrossRef]

34. Shahid, S.; Rahman, K. Soil Salinity Development, Classification, Assessment, and Management in Irrigated
Agriculture. In Handbook of Plant and Crop Stress, 3rd Ed.; Pessarakli, M., Ed.; CRC Press: Boca Raton, FL,
USA, 2011; Volume 20102370, pp. 23–39. ISBN 978-1-4398-1396-6.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
http://dx.doi.org/10.5194/gmd-8-1991-2015
http://dx.doi.org/10.1111/sjtg.12217
http://dx.doi.org/10.1016/j.pce.2010.12.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Field Data Collection Strategy 
	Remote-Sensing Data Collection 
	Multidimensional Analysis of the Data 

	Results 
	NDVI Dynamics over the Eight Growing Seasons 
	Spatial Variation in TI-NDVI over the Eight Growing Seasons 
	Salinity Measured in the Field in 2019 
	Correlation between Remote-Sensing Data and Field Data during the 2019 Dry Season 
	PCA and HCA Analysis of Remote-Sensing Data over the Eight Growing Seasons 
	Description of the Field Clusters 
	Mapping the Clusters over the Entire Study Area 

	Discussion 
	Variation in Spectral Indices among Crop Seasons 
	Temporal and Spatial Patterns of NDVI 
	Field EC Variation and Salinity 

	Conclusions 
	References

