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Abstract: Cellular Automata models are used for simulating spatial distributions and Markov
Chain models are used for simulating temporal changes. The main aim of this study is to
investigate the effect of urban growth on Faisalabad. This research is aimed at predicting seasonal
Land-Surface-Temperature (LST) as well as Land-Use and Land-cover (LULC) with a Cellular-
Automata-Markov-Chain (CA-Markov-Chain). Landsat 5, 7 and 8 data were used for mapping
seasonal LULC and LST distributions during the months of May and November for the years 1990,
1998, 2004, 2008, 2013 and 2018. A CA-Markov-Chain was developed for simulating long-term
landscape changes at 10-year time steps from 2018 to 2048. Furthermore, surface temperature during
summers and winters were predicted well by Urban Index (UI), a non-vegetation index, demonstrating
the highest correlation of R2 = 0.8962 and R2 = 0.9212 with respect to retrieved summer and winter
surface temperature. Through the CA-Markov Chain analysis, we can expect that high density and
low-density residential areas will grow from 22.23 to 24.52 km2 and from 108.53 to 122.61 km2 in 2018
and 2048, as inferred from the changes occurred from 1990 to 2018. Considering UI as the predictor
of seasonal LST, we predicted that the summer and winter temperature 24–28 ◦C and 14–16 ◦C and
regions would decrease in coverage from 10.75 to 3.14% and from 8.81 to 3.47% between 2018 and
2048, while the summer and winter temperature 35–42 ◦C and winter 26–32 ◦C regions will increase
in the proportion covered from 12.69 to 24.17% and 6.75–15.15% of city.

Keywords: LULC; land surface temperature; urban expansion; vegetation indices; CA-Markov
Chain analysis

1. Introduction

Globally, land use monitoring projects have been integral to international climate and
environmental science after the start of the Land Use and Land Cover (LULC) project. Urbanization,
marked by replacing natural environments with warm absorbing surfaces and houses, results in high
urban temperatures relative to rural and sub urban areas [1]. High temperatures occur in central
business districts (CBD) and high density residential (HDR) areas [2]. These kinds of temperature
changes may have negative environmental and socio-economic effects on built-up areas, including
enlarged consumption of heating and air conditioning thus raising energy prices and pollution-related
health threats [3,4]. Nonetheless, due to the substitution of impermeable surfaces and buildings as
cities expand their coverage and protection is diminished. The association between future temperature
and LULC changes predictions needs to be understood for renewable urbanization and making plans.
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Surface temperatures and the effect of localized LULC need to be evaluated in order to enhance
precision adaptation, prevention, rule design and execution in urban areas.

Several experiments targeted the interaction between LULC trends and LST utilizing
remote sensed data without rendering possible predictions [5]. Owing to a mixture of low
warm emissivity, weak latent temperature transmission and high heat absorption capacity, this
research explained that susceptible surfaces inside urban extents are distinguished by higher
temperatures. Conversely, low temperatures are also characteristic of natural landscapes such
as wetlands and vegetated areas [6,7]. Research has also looked at natural and long-term historical
temperature shifts related to population development [5]. Researchers have used vegetation
and urban indices to demonstrate the measurable association between LST and LULC rather
than on potential influences from weather trends [8]. For instance [9], describes temperature
reduction with the NDVI (Normalized-difference-vegetation-Index) combined with the NDBaI
(Normalized-difference-bareness-index) whereas the NDWI (Normalized-difference-wetness-index) is
showing rise in temperature with the NDBI (Normalized Difference Built-up Index). The association
among LST and variability of indices of LULC is strong, therefore variations in LULC indices such
as FVG (Vegetation Fraction) and NDBI have the ability to predict temperature accurately. There is
nevertheless a shortage of literature on the usage of LULC indices to predict the potential spatial
spread of urban LULC and LST trends.

Despite their success in predicting trends of population development, only one analysis used
indices of land cover to estimate projected distribution of soil surface temperature [10]. While [10] the
NDVI has been used to estimate residual city normal ecosystems and potential LST values, Normalized
difference Vegetation Index is considered to soak at large vegetation fractions, thereby giving a small
temperature variation. Previous researches clearly illustrate that Normalized difference Vegetation
is a weaker LST predictor than other vegetation and Non-vegetation indices that is, NDBI and ISA
(Impervious Surface Areas). In addition [10], single satellite images were used to calculate NDVI
to denote the complete season; a technique that is subject to chance, given that a season may differ
considerably with a land cover. Therefore, the method has to be changed such as the including seasonal
estimates of indices of land cover. In another analysis, calculated LST using a linear regression method
on a variety of indices resulting in the Enhanced Build-up and Bareness Index (EBBI), NDBaI, NDBI,
NDWI, NDVI, Built-up-Index(BI), Soil Adjusted Vegetation Index (SAVI) and Urban Index (UI) [11].
Thus [10], states that if many variables are included in a linear regression model, the precision of
the obtained dependent variable may be affected because of the clatter affected by the collinearity of
explanatory factors. Environment predictions are as valuable as they are reliable but hints that a means
to estimate LST correctly without errors due to collinearity need to be found first.

To predict changes in LULC and urban expansion, Markov Chain Models have been used [6,12].
For example [9], a Markov Chain analysis for Doha, Qatar, indicated that a 20% rise in built-up areas
by 2020 could be expected. Global and local model are widely used to predict temperature excluding
urban trend and considering their impact [13,14]. These models are not very fit for understanding
regional phenomena as they are at a coarse resolution and therefore need more downscaling [15]. In
addition, temperature changes induced by greenhouse gasses are emphasized by global and regional
models notwithstanding temperature variations due to the impact of LULC changes. Markov Chain
dependent modeling offers an ability to forecast the transition of the environment, offering insights
into potential thermal surface characteristics due to vegetation changes [10]. The research is ideal for
forecasting variations in temperature at the same spatio-temporal resolution with seasonal variations
in land-use land-cover patterns, hence is able to model regional processes such as urban surface
dynamics. The Markov Chain model provides tremendous potential for forecasting future LST that
needs to be further explored because of earlier achievements in measuring land use land cover shifts
relevant effects, usability, flexibility and parsimony. This study is significant for giving direction on
how thermal city environments can be projected into future based on the historical patterns of urban
development. Much research from various parts of the globe suggest that urbanization contributes to
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changes in LST but Pakistan still lacks a literature on this issue. The country’s meteorological research
have largely used large-scale climate models and in situ meteorological data, focused on precipitation
and typically targets agricultural impacts [16–18]. Remote sensing-based climate research, however,
has remained scarce in the region, particularly at the scale of urban microclimates. The same time,
urban development estimates based on remote sensing have concentrated mainly on quantifying recent
shifts in LULC over the long term [12].

Many of the communities are growing horizontally and vertically in core markets across the
world [19]. Pakistan and specially Faisalabad, do not have a suitable LULC management structure.
Recently related urbanization to historical first patterns by means of multi-temporal and spectral Landsat
datasets then did not forecast potential developments and their effects on the Faisalabad microclimate.
Therefore, to the best of our understanding, predictions of potential population development rates,
urban land use designs and its impact on LST based on RS (Remote Sensing) have not yet been
produced in Pakistan. Therefore, it is important to predict urban development and consequences for
the thermal climate of Pakistani cities with information utilizing remote sensing datasets at medium
resolution. This has potential to promote local-level adaptation processes, strengthen the decision
related to temperature and boost balanced city development that combines possible micro-climate
effects of LULC conversions.

Environmental growth is a troubling problem in developing countries like Pakistan. Pakistan has
not made a smooth urban transition due to many factors and one of them is the fact that sustainability
has not been a consideration. Thus, research on urbanization, urban expansion and the expansion rate
is very important for the economic development of Faisalabad and of great interest to the numerous
government authorities, town planners and urban scholars around the globe. Regional policy makers
and community planners can profit optimally from the work on sustainable expansion. Such research
is particularly necessary in order to decide the borders of the new developments and understand urban
sprawl across the Faisalabad region. Rapid urbanization has affected the agricultural land and land
use patterns generating problems worldwide. Faisalabad Pakistan is not an exception.

The present research identifies seasonal landcover-indices using Landsat 5, 7 and 8 data
representing correlations between seasonal (summer and winter) Land Surface Temperature (LST)
and seasonal (summer and winter) Land Use Land Cover (LULC) changes in Faisalabad, Punjab,
Pakistan from 1990 to 2018. The study also identified the specific indices most suited for prediction of
the seasonal distribution of Land Use Land Cover and LST using the CA-Markov-Chain. A further
objective was to use seasonal images of summer (May) and winter (November) in land cover indices
instead of single season as used in earlier studies when modeling seasonal patterns of land cover as
input in the Cellular Automata Markov model.

2. Materials and Methods

2.1. Study Area

This research was conducted in the industrial city of Faisalabad, Pakistan. It lies from 31◦25′15” N
to 73◦5′21” E (Figure 1). The plain fields of Faisalabad are mostly situated on the upper east side of the
Punjab, with a height of 604 feet (184 m) above sea level. The city appropriately spreads a territory
of roughly 52,142 acres of land while the district approximately covers 1,443,703 acres. In 1901 the
population of Faisalabad was 9171 persons, that growing to 70,000 in 1941 and 179,000 in 1951 after
partition due to the migration of Muslim refugees. After ten years, the figure had reached 425,000.
According to the 1998 census the population had increased to about 2.009 million, exceeding 3.56 million
in 2018. The lower Chenab trench is the fundamental water source infrastructure responsible for
irrigation across 80% of the cultivated fields. Faisalabad rests on alluvial loess soils with calcareous
characteristics, rendering the region extremely productive. The Chenab river flows in the north-west
for around 30 km while the Ravi river flows in the south-east at around 40 km from the area. The
temperature highs in the city range from 45 ◦C in summer to 15 ◦C in winter. The daily mean maximum
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and minimum summer temperatures are 39 ◦C and 27 ◦C. This drops to about 17 ◦C and 6 ◦C in
winter [20,21].Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 23 
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Figure 1. Geographical location of study area and points were used for statistically exploring the
relationship between vegetation indices and temperature.

2.2. Data Acquisition and Image Processing

Landsat 5 Thematic Mapper (TM), 7 Enhanced Thematic Mapper Plus (ETM+) and 8
Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) medium resolution images were
used to calculate LULC and LST. Images of Faisalabad with path/rows of 149/38 were obtained from
United States Geological Survey-Center for Earth Resources Observation and Science (USGS-EROS)
(http://earthexplorer.usgs.gov/) for two seasons, summer (May) and winter (November) in1990, 1998,
2004, 2008, 2013 and 2018. All these images had less than 10% cloud cover (Table 1). Landsat data were
selected because they are easy to access and widely used for classification in LULC and LST analysis.
We used cloud free images for analysis as illustrated in Tables 1 and 2. For atmospheric correction
we used the Fast Line-of - Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module
in ENVI v_5.4 (Harris Geospatial Solutions, Inc., USA) [22]. Image pre-processing began with layer
stacking to create a multispectral image after combining the necessary bands. The images were also
calibrated for noise removal [23]. This technique was important to help provide any useful details
about the data at the time of data collection, that is, sensor size, sun elevation and atmospheric state.
Scanning lines from 2004 and 2008 were eliminated from Landsat 7 (ETM+) in ENVI v_5.4 using
Landsat gapfills.sav extension on each band using a triangular approach. After scanning the lines from
each band, both bands were opened in Arc Map 10.6 and the bands exported at the same resolution
(spatial and radiometric) as Landsat 7 (ETM+). All the maps were geometrically modified using 45
Ground-Control-Points (GCP), toposheet (1:50,000) and aerial-imagery, all GCP obtained on satellite
images at the intersection of invariant features and roads. The city boundary was obtained from Urban
Unit Remote Sensing and Geographic Information System (GIS) Lab.

http://earthexplorer.usgs.gov/
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Table 1. Landsat data collected during the summer and winter.

Years Sensor Path Row Summer Date Air Temperature
(◦C)

Relative
Humidity (%) Winter Date Air Temperature

(◦C)
Relative

Humidity (%)
Processing

Level

1990 TM 149 38 22 May 1990 34.4 61.0 11 November 1990 31.0 58.0 TIER 1
1998 TM 149 38 10 May 1998 33.3 59.0 17 November 1998 30.0 63.0 TIER 1
2004 ETM 149 38 30 May 2004 34.7 51.0 09 November 2004 30.5 61.0 TIER 1
2008 ETM 149 38 16 May 2008 35.3 55.0 04 November 2008 31.0 62.0 TIER 1
2013 OLI/TIRS 149 38 27 May 2013 35.2 54.0 10 November 2013 31.5 56.0 TIER 1
2018 OLI/TIRS 149 38 02 June 2018 35.4 48.4 08 November 2018 31.7 53.0 TIER 1

Table 2. Land Use and Land Cover (LULC) classes from the field survey in Faisalabad city.

LULC Class Abbreviations Description

Central Business District/Industrial area CBD/I. Area Areas with very high density of buildings and a very high proportion of impervious
surface that include central business district and industrial areas.

High density residential HDR High density residential areas and areas under residential development (bare or
impervious) with low vegetation fraction.

Low density residential LDR Established low and medium density residential areas with high vegetation fraction.

Croplands Crops Areas where intra-urban agriculture is practiced including research sites could be
bare in the summer and winter seasons.

Green-spaces G. Spaces Areas covered by grasslands, shrubs and clusters of trees characterized by high
vegetation fraction even during the summer and winter season.

Water/Wetland Water Areas covered by water bodies or wetlands.
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Seasonal satellite images from 1990, 2004 and 2018 were used to develop the model and evaluate
the accuracy for predicting land surface variations whereas data from 1990, 1998, 2004, 2008, 2013
and 2018 (Table 1) were used to construct real seasonal predictions. To check the performance of this
model, the 10-years interval of satellite images (1998, 2008 and 2018) was changed. Table 1 illustrate
that beginning of the summer (all of images from May) and winter (all images from November) season
in 1990, 1998, 2004, 2008, 2013 and 2018. One satellite image from each season was used annually to
allow calculation of surface temperature and vegetation & non-vegetation indices for the prediction of
seasonal LULC and seasonal LST distributions. The impact of randomness was eliminated by using
seasonal averages.

2.3. Land Use Land Cover Classification (LULC) Accuracy Assessment and Mapping

LULC maps for the years 1990, 1998, 2004, 2008, 2013 and 2018 were obtained from Landsat 5, 7
and 8 reflective bands of 30 m using monitored Support-Vector-Machine (SVM) algorithms. Six LULC
categories that is, Central Business District/Industrial Area (CBD/I. Area), High-Density Residential
Area (HDR Area), Low-Density Residential Area (LDR Area), Green-Spaces (G. Spaces), Croplands
(Crops) and Water/Wetlands (Water) were obtained from every image as indicated in Table 2 [24].

The Support-Vector-Machine algorithm was selected because it does not interfere with the
likelihood function and has minimum training data requirements. The Support-Vector-Machine
algorithm has established itself in land use landcover classification relative to other classifiers such as the
Parallelepiped, Minimum-Distance, Maximum-Likelihood-Classifier (MLC), Artificial-Neural-Network
(ANN) and Mahalanobis-Distance classifiers [25,26]. Field observations support training and accuracy
assessment in supervised classification. A field survey conducted between March and June 2018
obtained 25 representative GPS points per class except water class. Based on the points were divided
into preparation (80%) and testing (20%). Samples of points using a region of interest instead of points
increase the reliability of validation results. Specialist expertise and ancillary Land Use Land cover
data from previous studies, aerial photos and toposheets were used to establish ground-truth regions
for evaluation of classification accuracy. For determining the precision of LULC classifications, the
kappa (K) coefficient and overall-accuracy (OA) were used. Post classification [27] variations for every
landcover-class from 1990 to 2018 were utilized to measure urban development trends in Faisalabad.

2.4. Calculation of Vegetation Indices and Urban Indices

Table 3 lists the vegetation and urban indices that were tested for their potential to predict seasonal
LST. Table 3 contains of Urban-Indices (UI) calculated using the digital numbers (DN) of specified
bands and indices of vegetation, calculated by reflecting the specified bands [11]. As mentioned
multiple indices were evaluated for predicting LST.
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Table 3. Indices of predicting Land-Surface-Temperature (LST) for 2028, 2038 and 2048.

Index Name Formulation (Landsat 5/Landsat 7) Formulation (Landsat 8) References

NDVI Normalized Difference
Vegetation Index

(Band4− Band3)
(Band4 + Band3)
(NIR − Red)
(NIR + Red)

(Band5− Band4)
(Band5 + Band4)
(NIR−Red)
(NIR + Red)

[28]

BI Bare Soil Index

(Band5 + Band3) − (Band4 + Band1)
(Band5 + Band3) + (Band4 + Band1)
(SWIR1 + RED) − (NIR + Blue)
(SWIR1 + RED) + (NIR + Blue)

(Band6 + Band4) − (Band5 + Band2)
(Band6 + Band4) + (Band5 + Band2)
(SWIR1 + RED) − (NIR + Blue)
(SWIR1 + RED) + (NIR + Blue)

[29]

NDBaI Normalized Difference
Bareness Index

(Band5− Band6)
(Band5 + Band6)
(SWIR1− TIRS1)
(SWIR1 + TIRS1)

(Band6− Band10)
(Band6 + Band10)
(SWIR1− TIRS1)
(SWIR1 + TIRS1)

[30]

NDWI Normalized Difference
Water Index

(Band3− Band5)
(Band3 + Band5)
(Red − SWIR1)
(Red + SWIR1)

(Band4− Band6)
(Band4 + Band6)
(Red− SWIR1)
(Red + SWIR1)

[31]

MNDWI Modified Normalized
Difference Water Index

(Band2− Band4)
(Band2 + Band4)
(Green−NIR)
(Green + NIR)

(Band3− Band5)
(Band3 + Band5)
(Green−NIR)
(Green + NIR)

[32]

UI Urban Index

(Band7− Band4)
(Band7 + Band4)
(SWIR2−NIR)
(SWIR2 + NIR)

(Band7− Band5)
(Band7 + Band5)
(SWIR2−NIR)
(SWIR2 + NIR)

[33]

NDBI Normalized Difference
Built up Area Index

(Band5− Band4)
(Band5 + Band4)
(SWIR1−NIR)
(SWIR1 + NIR)

(Band6− Band5)
(Band6 + Band5)
(SWIR1−NIR)
(SWIR1 + NIR)

[34]

SAVI Soil Adjusted Vegetation
Index

(Band4− Band3)
(Band4 + Band3 + L)

× (L + 1)

(NIR−RED)

NIR + RED + L
× (L + 1)

(Band5− Band4)
(Band5 + Band4 + L)

× (L + 1)

(NIR−RED)

NIR + RED + L
× (L + 1)

[35]

FVG Vegetation fraction
(NDVI −NDVISoil)(

NDVIVeg + NDVISoil
) (NDVI −NDVISoil)(

NDVIVeg + NDVISoil
) [36]

EVI Enhanced Vegetation
Index

(Band4− Band3)
Band4 + 6× Band3− 7.5× Band1 + 1

(NIR−RED)

NIR + 6×RED− 7.5× BLUE + 1

(Band5−Rand4)
Band5 + 6× Band4− 7.5× Band2 + 1

(NIR−RED)

NIR + 6×RED− 7.5× BLUE + 1

[37]

2.5. LST Estimation Using Landsat Data

For each year, land surface temperatures were obtained from the Landsat TM and ETM+ (B6)
and Landsat OLI/TIRS (B10) thermal bands developed on the dates shown in Table 1. To limit the
seasonal influences, the satellite images were taken in the month of May and November. There are two
thermal bands (10 and 11) in the Landsat 8 (OLI/TIRS) imagery but only band 10 was used for LST
estimation [38]. Land surface temperature recovery includes the transformation of digital numbers
(DN) to radiances (Lλ), the measurement of radiance brightness-temperatures (TB) and the adjustment
of emissivity in order to extract surface temperatures from brightness maps [39].

In this research Landsat TM & ETM+ and OLI/TIRS thermal band data from1990, 1998, 2004,
2008, 2013 and 2018 were used to retrieve seasonal (summer and winter) land surface temperatures.
Using the Reflectance Toolbox an extension applied to ArcMap 10.6 (ESRI, USA) Equation(1) was used
to transform digital numbers (DN) to radiances (Lλ) [23,40]. The tool extracts metadata files from
parameters and applies them to the matching thermal data. Brightness temperature was obtained
from thermal radiance by means of Equation (2) which is the Landsat channel basic approximation of
Planck’s blackbody temperature [8,41].

For LST estimation the following series of equations has been used. For each pixel, digital number
(DN) was converted into the radiance (Lλ) as follows:

Lλ =

(
Lmaxλ − Lminλ

QCALmax − LQCALmin

)
+ Lminλ, (1)
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where Lmaxλ is maximum radiance values, Lminλ is the minimum radiance values, QCALmax the
maximum quantized calibrated pixel value (corresponding to Lmaxλ in DN (255)), QCALmin is the
minimum quantized calibrated pixel value (corresponding to Lminλ in DN (01)) respectively; and the
metadata of the Landsat images provide their values. Secondly, the Lλ values were converted into
brightness temperature TB as in:

TB =

 K2

ln
(K1

Lλ
+ 1

) − 273.5, (2)

where K1 and K2 are constant value and available from the United States Geological Survey (see
Table 4) [42]. From every thermal band, we retrieved from spectral radiance and black body the
pixel-based land surface emissivity map (ε), as developed [43] and also applied recently [44]. Ultimately,
real LST was obtained using Equation (3) after emissivity correction (ε) was applied to the brightness
temperature [42].

TS =
TB[

1 +
[
λTB

p

]
lnε

] . (3)

The λ sign define wavelength of emitted radiance (λ = 11.5 µm), while p is equivalent to
1.438× 10−2mk. Using this method, LST was obtained from all the satellite images mentioned in Table 1.
The land surface temperature illustrates long term temperature fluctuations in the season and training
models in order to predict LST. The average earth surface temperature for 1990, 1998, 2004, 2008, 2013
and 2018 was determined by thermal data for the dates seen in Table 1. This was undertaken to test
whether the LST were still rising in reaction to urbanization and to determine if potential development
could be expected.

Table 4. Landsat 5, 7 and 8 Thermal band calibration constants & rescaling.

Sensor K1
[

W
(m2 sr µm)

]
K2

[
W

(m2 sr µm)

]
Rescaling

TM 607.76 1260.56
ETM 666.09 1282.71

OLI/TIRS 774.8853 1321.0789 ML 0.0003342
AL 0.10

2.6. Prediction of Temperature by Selecting Variables

A strong correlation between the surface temperature and predictor variables, with no collinearity
among the variables is required in seasonal land surface temperature calculation. Degree of correlation
with seasonal LST were assessed by indices appearing in Table 3. The seasonal indices having maximum
correlation with seasonal LST were chosen to predict seasonal LST using a linear regression model. The
association between such variables was also tested to exclude strongly clustered predictors that may
trigger collinearity-related errors. Indices strongly correlated with seasonal LST and weakly with each
other were used to develop a multi-variate linear model. To evaluate the model’s efficiency, we used it
to predict the 2018 observed seasonal LST. Mean Absolute Percentage Error (MAPE) -Equation (4) [29]
was used to quantify the accuracy.

MAPE% =
1
N

N∑
i=1

(∣∣∣∣∣∣Tpredicted − Tobserved

Tobserved

∣∣∣∣∣∣
)

i
× 100, (4)

where Tpredicted is the model surface temperature and Tobserved is the real ith pixel of LST reported from
Landsat info. The absolute mean percentage is an accuracy prediction metric that represents error
in terms of percentage. The model’s precision in temperature prediction was measured using the
Nash-Sutcliff performance, Root Mean Square Error (RMS), Mean Bias Error and Agreement-Index.
The model was applied after accuracy evaluation to predict the seasonal distribution of LST at 10-years
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intervals for the period from 2028 to 2048. An interval of ten years was selected because the analysis
showed noteworthy variations at parallel stages in the time.

2.7. Modeling of LULC Changes for 2028, 2038 and 2048

Numerous predictive models have been used to represent the seasonal LULC [45]. The flowchart
in Figure 2 describes the technique for predicting potential seasonal LULC and LST distribution from
remote sensing data collection utilizing CA-Markov-chain analysis [5,46]. Simulation tests for 2004
were contrasted with an actual map for 2004. In this analysis, the 2018 state simulation was performed
for validation purposes in order to equate the expected with the real distribution of LST. Sections 2.7.1
and 2.7.2 expand the specifics of the outlined measures.
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2.7.1. Use of CA-Markov Analysis to Predict Urban Expansion in Faisalabad

IDRISI Selva 17.0 (Clark Labs, USA) is an optimized, certified image processing and Geographical
Information Program that offers approximately 300 modules for interactive spatial information analysis
and display [47]. The platform provides environmental control, policy support, risk identification,
simulation and surface characterization methods. A Markov Chain, is a tool to evaluate adjustments in
land use among cycles by a sequence of values that depend on present state [6,48]. The Markov model
allows it possible for the structure to progress from the original state i to j over a time period T [9].
The Markov Chain was selected because of its capabilities in predicting time changes LULC [6,45].
In addition, the Markov Chain can predict complex system variations [45]. For other simulations,
then, the Markov Chain outputs are used as inputs to generate maps of potential allocation of land
usage. Because of its simplicity and parsimony, the Cellular Automata (CA) was nominated to map the
spatial dispersal to predicted urban expansion and effect on LST [6,49]. The 2018, 2028, 2038 and 2048
LULC distribution prediction were made using the coupled Cellular-Automata and Markov-Chain the
(CA-Markov chain) models in the IDRISI software Selva v_17.0 [1,50–52]. The changes probabilities
maps acquired from the Markov Chain analysis were used as inputs to the Cellular Automata (CA)
model that maps the future land use landcover distributions. Hence the synthesis of Markov Chain
and Cellular Automata exposed spatio-temporal shifts in land use and land cover. We checked their
ability to forecast future LULC trends in a dynamic urban environment and applied a CA Markov
Chain to make real predictions. We used seasonal LULC shifts between 1990 and 2004 to predict
seasonal LULC distribution for 2018 and seasonal LULC transformations between 1998 and 2008 to
predict seasonal LULC distributions for 2018 and contrasted both sets of results. The predicted land
use landcover was compared with the shape obtained in 2018 using the Support Vector Machine
classifications. The forecast performance for 2018 was measured using the Kappa-Agreement-Index
(KIA), which measures the degree of consensus between two maps (1990 and 2004, 1998 and 2008) of
the same case [51]. Thus, the KIA was used to evaluate performance of the CA-Markov in predictive
LULC changes by comparing the LULC map form supervised SVM classification with the modeled
map for 2018. After assessing the CA-Markov-Chain model precision, we used LULC seasonal patterns
of 1990, 2018 subsequently for predicting seasonal landscape for 2028, 2038 and 2048.

2.7.2. Prediction of LST Distribution in Faisalabad Using CA Markov Chain Study of Land
Cover Indices

The Urban Index (UI) was chosen as the best predictor variable of LST distribution as defined
in Section 2.6. To avoid restricting the arbitrariness related with one image, an average UI was
determined in each of the years 1990, 2004 and 2018 using images collected in May and November
(Table 1). The 1990 and 2004 average UI was inserted into the Markov-Chain model to produce changes
likelihood matrices used in the CA model to map the potential state of the index for 2018. Likewise, in
CA-Markov chain results the mean urban indices for 1990 and 2018 was used to estimate UI status in
2028, 2038 and 2048. For 2018, 2028, 2038 and 2048, UI prediction were converted into distribution of
LST by using linear regression function (Section 3.4). As the classes were predicted by CA-Markov
Analysis, UI maps were re-classified into a model to predict summer temperature classes of 24–28 ◦C,
29–30 ◦C, 31–32 ◦C, 33–34 ◦C and 36–42 ◦C and winter classes of 14–16 ◦C, 17–19 ◦C, 20–22 ◦C, 23–25
◦C and 26–32 ◦C. The groups were selected solely to allow a comparison of summer and winter LST
distributions in different years to map classes of surface temperatures observed in 1990 and 2018 with
the same ranges. Summer and winter LST predictions for Faisalabad city for 2028, 2038. and 2048 were
the outcomes of this step.

2.7.3. Statistical Significance of Analyzing Urban Expansion and LST

We checked the statistical significance of predicted seasonal variations in land use land cover and
dispersal of LST between 2018 and 2048. The test was applied to coded land use land cover values
and to temperature level values derived from 600 points. For each period the LST groups were coded
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1–5, whereas the LULC levels were coded 1–6 based on Markov analysis criteria and performance.
We used the Shapiro-Wilk statistic to initially test for regularity [47]. Meanwhile, the variations in
land use landcover and LST were checked for relevance using the Mann Whitney statistic [29,53]. We
checked the Ha hypothesis about the spatial distributions of seasonal LULC and LST is distinct from
the alternative Hb hypothesis: in 2018 and 2048 the pairs of LULC and LST were not same [24].

3. Results

3.1. LULC and Seasonal Changes Observed from 1990 to 2018

Table 5 presents variations in seasonal LULC distribution recorded at high accuracy using the SVM
Algorithm between 1990 and 2018. As shown, the accumulation of built-up areas in the central region
and extended from 1990 to 2018. Table 5 describes summer and winter season in two sections. Urban
expansion could be investigated from landcover maps and in summer season, CBD/I. area, HDR and
LDR was increased from 1.53 km2 (0.76%) to 6.35 km2(3.14%), 8.77 km2 (4.35%) to 22.23 km2 (11.28%)
and 57.53 km2 (28.51%) to 108.34 km2 (53.70%) (Table 5). Meanwhile, G. Spaces, Crops and water area
was decreased from 18.70 km2 (9.27%) to 16.40 km2 (8.13%), 114.31 km2 (56.65%) to 47.92 km2 (23.75%)
and 0.93 km2 (0.46%) to 0.52 km2 (0.26%) respectively (Table 5).The Table 5 winter part indicate that
the CBD/I. area, HDR and LDR area was increased from 1.53 km2 (0.76%) to 6.35 km2 (3.14%), 8.77 km2

(4.35%) to 22.23 km2 (11.28%) and 57.53 km2 (28.51%) to 108.34 km2 (53.70%) and G. Spaces, Crops and
water area decreased from 13.25 km2 (6.57%) to 6.74 km2 (3.34%), 114.49 km2 (56.74%) to 45.77 km2

(22.68%) and 1.38 km2 (0.68%) to 0.84 km2 (0.41%) respectively. In the summer season, OA and K
were 88.83% and 0.86, 87.23% and 0.88, 84.56% and 0.86, 85.20% and 0.79, 79.32% and 0.71 and 88.2%
and 0.81 and in winter season 84.78% and 0.83, 85.39% and 0.78, 85.36% and 0.81, 85.99% and 0.83,
85.32% and 0.65 and 75.35% and 0.69 for the years 1990, 1998, 2004, 2008, 2013 and 2018, respectively.
Table 5 displays the LULC transformations as the city expanded between 1990 and 2018. Built-up
areas expanded in Faisalabad from 1990 to 2018, at the disbursement of G. Spaces and Crops (Table 2).
For instance, built-up areas expanded exponentially, while Crops and G. Spaces declined from 1990
through 2018.

Table 5. The proportion of seasonal LULC changes from 1990 to 2018.

LULC
Type

Summer Area in km2 and (Percentage) Winter Area in km2 and (Percentage)

1990 1998 2004 2008 2013 2018 1990 1998 2004 2008 2013 2018

CBD/I
Area

1.53
(0.76)

3.05
(1.51)

4.67
(2.31)

5.18
(2.56)

6.05
(3.00)

6.35
(3.14)

1.53
(0.76)

3.05
(1.51)

4.67
(2.31)

5.18
(2.56)

6.05
(3.00)

6.35
(3.14)

HDR 8.77
(4.35)

11.34
(5.62)

11.93
(5.91)

13.05
(6.07)

17.74
(9.29)

22.23
(11.02)

8.77
(4.35)

11.34
(5.62)

11.93
(5.91)

13.05
(6.07)

17.74
(9.29)

22.23
(11.02)

LDR 57.53
(28.51)

73.10
(36.23)

78.64
(38.98)

82.12
(40.70)

95.39
(47.28)

108.34
(53.70)

57.53
(28.51)

73.10
(36.23)

78.64
(38.98)

82.12
(40.70)

95.39
(47.28)

108.34
(53.70)

G.
Spaces

18.70
(9.27)

19.31
(9.57)

36.37
(18.02)

31.34
(15.53)

18.40
(9.12)

16.40
(8.13)

13.25
(6.57)

17.57
(8.71)

23.68
(11.73)

19.85
(9.84)

9.40
(4.66)

6.74
(3.34)

Crops 114.31
(56.65)

89.73
(44.47)

70.02
(34.71)

68.73
(34.06)

63.07
(31.26)

47.92
(23.75)

114.49
(56.74)

88.94
(44.08)

69.46
(34.43)

67.80
(33.61)

60.92
(30.19)

45.77
(22.68)

Water 0.93
(0.46)

5.23
(2.59)

0.14
(0.07)

1.35
(0.67)

0.11
(0.05)

0.52
(0.26)

1.38
(0.68)

1.11
(0.55)

1.01
(0.50)

1.29
(0.64))

1.47
(0.73)

0.84
(0.41)

3.2. Seasonal Temperature Changes Observed Satellite Based from 1990 to 2018

Seasonal LST increased between 1990 and 2018 in response to urban development in Faisalabad.
as Figure 3 reveals that in 1990, as compared to later years, during the summer season, the region was
dominantly covered by temperatures in the range 24–28◦C and 29–30◦C. The 36–42 ◦C group was
dominant in 2018 while lower categories of surface temperature remained in some parts of the main
area of the study region. In the central region with CBD / I. area and HDR area, larger temperature
increases were found than in the outer areas with crops and G. Spaces.
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While LST warms significantly over period, temperatures less than 28 ◦C are normal in low
density cropland, G. Space and suburban identified areas. However, higher surface temperatures
occurred in the CBD/I. Area even during the winter period (Figure 4), such as in 1990 and 1998. Most
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A summary of the seasonal changes in LST observed in Faisalabad between 1990 and 2018 is
given in Table 6. When the city expanded between the seasons the proportion of summer LST in the
categories 29–30 ◦C decreased by around 37% and 17–19 ◦C categories decreased by 22% in the winter
season due to development of CBD I. area and HDR. During the same period, high LST coverage
increased nearly 12% in the summer season (35–42 ◦C) and nearly 6% in the winter season (26–32 ◦C),
suggesting a strong ground warming bias in Faisalabad.

Table 6. Average LST (summer and winter) responses to urban growth in Faisalabad City.

LST Summer Area in km2 and (Percentage) LST Winter Area in km2 and (Percentage)

Summer 1990 1998 2004 2008 2013 2018 Winter 1990 1998 2004 2008 2013 2018

24–28 11.06
(5.56)

29.62
(14.88)

12.93
(6.49)

28.77
(14.45)

16.11
(8.09)

21.40
(10.75) 14–16 32.20

(16.13)
12.73
(6.38)

33.88
(16.98)

31.89
(15.98)

27.04
(13.55)

17.59
(8.81)

29–30 107.95
(54.23)

30.49
(15.32)

35.59
(17.88)

36.58
(18.37)

53.07
(26.66)

34.38
(17.24) 17–19 118.16

(59.21)
108.53
(54.38)

54.17
(27.14)

59.73
(29.93)

73.03
(36.59)

75.23
(37.69)

31–32 61.65
(30.97)

60.13
(30.20)

67.55
(33.93)

46.52
(23.37)

53.08
(26.67)

45.75
(22.98) 20–22 42.05

(21.07)
40.75
(20.42)

70.83
(35.49)

57.57
(28.85)

56.46
(28.29)

62.76
(31.45)

33–34 12.96
(6.51)

62.20
(31.24)

58.35
(29.31)

61.08
(30.68)

40.26
(20.22)

74.57
(37.46) 23–25 07.52

(3.77)
29.95
(15.01)

32.23
(16.15)

42.54
(21.32)

30.09
(15.08)

30.43
(15.25)

35–42 0.65
(0.33)

16.64
(8.36)

12.73
(6.39)

17.43
(8.75)

23.03
(11.57)

25.27
(12.69) 26–32 01.01

(0.50)
7.61

(3.81)
8.85

(4.43)
8.51

(4.27)
13.38
(6.71)

13.47
(6.75)

3.3. Variables Selection: Correlation between Temperature and Urban Indices

Table 7 indicates a strong correlation between the summer, vegetation and non-vegetation indices
and the land surface temperature. The BI, NDWI, MNDWI (Modified Normalized Difference Water
Index), UI and NDBI coefficients are at magnitudes greater than 0.5. The other indices showed a lower
temperature correlation; for example, the NDBaI had the poorest surface temperature correlation.
The other indices displayed negative temperature association; in the summer season, for instance, the
EVI (Enhanced Vegetation Index), FVG, NDVI and SAVI had a negative correlation. The Urban Indices
had the strongest strong negative correlation with summer FVG (R2 = −0.7133) but a strong positive
correlation with summer temperature (R2 = 0.9467).

Table 7. Correlation of temperature (Summer) with indices of urban as well as vegetation.

LST NDVI BI NDBaI NDWI MNDWI UI NDBI SAVI EVI FVG

LST 1.0000 −0.7133 0.7461 0.0455 0.6120 0.7230 0.8962 0.8801 −0.7191 −0.0257 −0.7133
NDVI −0.7133 1.0000 −0.8148 −0.0322 −0.7956 −0.9040 −0.8918 −0.8556 0.9138 0.1202 1.0000

BI 0.7461 −0.8148 1.0000 0.4390 0.5870 0.8151 0.9541 0.9828 −0.9018 −0.1310 −0.8148
NDBaI 0.0455 −0.0322 0.4390 1.0000 −0.3435 −0.1059 0.2321 0.3089 −0.0483 −0.0809 −0.0322
NDWI 0.6120 −0.7956 0.5870 −0.3435 1.0000 0.9098 0.7413 0.6455 −0.8674 −0.0339 −0.7956

MNDWI 0.7230 −0.9040 0.8151 −0.1059 0.9098 1.0000 0.9316 0.8822 −0.9820 −0.1045 −0.9040
UI 0.8962 −0.8918 0.9541 0.2321 0.7413 0.9316 1.0000 0.9788 −0.9698 −0.1276 −0.8918

NDBI 0.8801 −0.8556 0.9828 0.3089 0.6455 0.8822 0.9788 1.0000 −0.9398 −0.1424 −0.8556
SAVI −0.7191 0.9138 −0.9018 −0.0483 −0.8674 −0.9820 −0.9698 −0.9398 1.0000 0.1084 0.9138
EVI −0.0257 0.1202 −0.1310 −0.0809 −0.0339 −0.1045 −0.1276 −0.1424 0.1084 1.0000 0.1202
FVG −0.7133 1.0000 −0.8148 −0.0322 −0.7956 −0.9040 −0.8918 −0.8556 0.9138 0.1202 1.0000

Table 8 indicates a strong positive correlation among LST and BI, UI and NDBI as suggested by
coefficients of correlation exceeding 0.5. The other indices showed lowest temperature correlation; for
instance, the MNDWI and NDBaI had the weakest correlation and NDVI, NDWI, SAVI, EVI and FVG
had negative surface temperature correlation. Urban Indices had the strongest winter temperature
correlation (R2 = 0.9212) and also had a strong negative correlation to winter FVG (R2 = −0.2353). As
the highest correlation was with LST. The Urban Indices have been discovered to be the excellent
predictor of urban LST in comparison to different indices.
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Table 8. Correlation of temperature (winter) with indices of urban as well as vegetation.

LST NDVI BI NDBaI NDWI MNDWI UI NDBI SAVI EVI FVG

LST 1.0000 −0.5353 0.8462 0.2641 −0.1700 0.1237 0.9212 0.9907 −0.6353 −0.0692 −0.2353
NDVI −0.5353 1.0000 0.3237 0.2865 −0.7157 −0.9757 −0.8786 −0.7698 1.0000 −0.3789 1.0000

BI 0.8462 0.3237 1.0000 0.9706 −0.7899 −0.5093 0.1155 0.2603 0.3237 −0.4521 0.3237
NDBaI 0.2641 0.2865 0.9706 1.0000 −0.8226 −0.4741 0.1757 0.3434 0.2865 −0.4009 0.2865
NDWI −0.1700 −0.7157 −0.7899 −0.8226 1.0000 0.8275 0.3073 0.1052 −0.7157 0.4324 −0.7157

MNDWI 0.1237 −0.9757 −0.5093 −0.4741 0.8275 1.0000 0.7651 0.6329 −0.9757 0.4364 −0.9757
UI 0.9212 −0.8786 0.1155 0.1757 0.3073 0.7651 1.0000 0.9699 −0.8786 0.2160 −0.8786

NDBI 0.9907 −0.7698 0.2603 0.3434 0.1052 0.6329 0.9699 1.0000 −0.7698 0.1447 −0.7698
SAVI −0.6353 1.0000 0.3237 0.2865 −0.7157 −0.9757 −0.8786 −0.7698 1.0000 −0.3789 1.0000
EVI −0.0692 −0.3789 −0.4521 −0.4009 0.4324 0.4364 0.2160 0.1447 −0.3789 1.0000 −0.3789
FVG −0.2353 1.0000 0.3237 0.2865 −0.7157 −0.9757 −0.8786 −0.7698 1.0000 −0.3789 1.0000

3.4. Extraction of LST from Urban Index

Figure 5 illustrates regression model of the urban indices for forecasting seasonal LST. The
relationship between surface temperature and urban indices for summer and winter season was too
strong that is, summer (R2 = 0.89) and winter (R2 = 0.92). Therefore, in both seasons, land surface
temperature and urban indices had increased and did not affect their relationship due to saturation
that disturb indices like NDVI, as the UI continuous to rise with unbounded temperature.Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 23 
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Figure 5. Prediction of seasonal LST from Urban Index by using Linear model.

Use of Urban Indices in Accuracy Assessment of Temperature Retrievals

The linear regression model was evaluated in May and November 2018 on individual Landsat
results. These strongly resembled the observed temperature patterns (see Figure 6). Tsat define is
the satellite observed temperature and Tmod define modeled derived temperature. The seasonal
temperature obtained from the UI was contrasted with that recovered directly collected from Landsat
8’s thermal data depending on 600 sampled points throughout the area of study (see Figure 1).
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3.5. Prediction of LST and LULC (Summer and Winter) for 2028, 2038 and 2048

3.5.1. Accuracy Assessment of Cellular Automata Markov Chain LULC (Summer and Winter) for 2028,
2038 and 2048

Visual examination displayed association between the distribution of land use and land cover
assessed using the SVM classifier and the distribution of land use and land cover of 2018 projected
using the CA-Markov (Figure 7). The model replicates the spatio-temporal dispersal of seasonal forms
of LULC as defined by the support vector machine, driven by in-situ-observations. The average KIA
predicted using CA-Markov between the summer and winter LULC and the dispersal calculated
by using SVM classifier were 0.88 and 0.85 (Table 9). In the summer, the agreement between the
green spaces and the weakest (KIA = 0.78) among the water classes in the two maps was strongest
(KIA = 0.89). In the winter, the agreement between the high- and low-density residential area and the
weakest (KIA = 0.79) was among the cropland classes in the two maps was strongest (KIA = 0.86).

Table 9. Statistical analysis of coordination between supervised classification and CA-Markov Chain
based on the 2018 prediction.

LULC Type Kappa Index of Agreement (KIA)

Summer Winter

CBD/Industrial 0.83 0.85
High density residential area 0.85 0.86
Low density residential area 0.84 0.86

Green-spaces 0.89 0.84
Croplands 0.81 0.79

Water/Wetland 0.78 0.80
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Figure 7. 2018 summer and winter LULC mapping with (a) supervised classification and (b) CA-Markov-
Chain prediction.

3.5.2. Prediction of Seasonal LULC Dispersal in Faisalabad

Figure 8 illustrates that, in 2028, 2038 and 2048, the CA-Markov-Chain model predicted expansion
in HDR and LDR areas associated with water and G. Spaces. Thus, if trends found between 1990 and
2018 remain constant, built-up areas might invade parks.Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 23 
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According to Table 10, residential areas are projected to rise from their present extent through
2048. CBD/I. areas, for example, are projected to expand from 6.89 to 7.92 km2 between 2028 and 2048.
HDR areas are projected to expand from 22.92 to 24.52 km2. LDR areas are projected to expand from
113.92 to 122.61 km2. As the region expands, crops will likely decline in area from 41.60 to 33.51 km2

while G. Spaces fields will decrease from 15.86 to 12.82 km2 at the same period. In the winter season,
CBD/I. area, HDR and LDR area would be increased from 6.89 to 7.92 km2, from 229.2 to 24.52 km2

and from 2028 to 2048 to 113.92 km2 to 122.61 km2. G. spaces and crops regions probably will reduce
in size from 12.80 to 9.04 km2 and 44.30 to 37.11 km2. Thus, according to the model projections and
expectations, potential development may primarily be marked by growth of HDR at the decrease of
water, g. spaces and crops regions.

Table 10. Change in proportion of summer and winter LULC types between 2028 and 2048.

LULC Type Summer Area in km2 and (Percentage) Winter Area in km2 and (Percentage)

2028 2038 2048 2028 2038 2048

CBD/I. Area 6.89 (3.41) 7.40 (3.67) 7.92 (3.93) 6.89 (3.41) 7.40 (3.67) 7.92 (3.93)
HDR 22.92 (11.36) 23.43 (11.61) 24.52 (12.15) 22.92 (11.36) 23.43 (11.61) 24.52 (12.15)

LDR 113.92
(56.46)

118.49
(58.72)

122.61
(60.77)

113.92
(56.46)

118.49
(58.72)

122.61
(60.77)

G. Spaces 15.86 (7.86) 14.56 (7.22) 12.82 (6.35) 12.80 (6.34) 11.77 (5.84) 9.04 (4.48)
Crops 41.60 (20.62) 37.13 (18.40) 33.51 (16.61) 44.30 (21.96) 39.83 (19.74) 37.11(18.39)
Water 0.58 (0.29) 0.77 (0.38) 0.39 (0.19) 0.94 (0.47) 0.95 (0.47) 0.57 (0.28)

3.5.3. Seasonal Temperature Changes Predicted in Faisalabad before 2048

Figure 9 illustrate the temperature increasing trend from 2028 to 2048. The model further explained
summer and winter LST changes between 2028 and 2048 due to increase in built up area. The extent of
high surface temperature (>35 ◦C) in summer (Figure 9a–c), was projected to rise at the cost of lower
temperature classes. Thus, eastern and southern areas having LDR areas were colder than CBD/I. area,
HDR areas in central and north western in all the predictions that is, 2028, 2038 and 2048. Most of the
area of low temperature (24–28 ◦C and 29–30 ◦C) transferred to the high temperature category area
(33–34 ◦C and 35–42 ◦C). Most of the areas, particularly in the north western and central area, could
shift towards high temperature (>35 ◦C) whereas the extent of low temperature classes (24–28 ◦C and
29–30 ◦C) may reduce (Table 11).

Table 11. Predicted changes in seasonal surface temperature due to urban growth.

LST
Summer Area in km2 and (Percentage)

LST
Winter Area in km2 and (Percentage)

2028 2038 2048 2028 2038 2048

24–28 13.52 (6.71) 9.92 (4.93) 6.32 (3.14) 14–16 13.99 (7.01) 10.39 (5.30) 6.79 (3.47)
29–30 28.98 (14.39) 25.38 (12.60) 21.78 (10.82) 17–19 71.63 (35.91) 64.43 (32.89) 60.83 (31.05)
31–32 40.97 (20.34) 37.37 (18.56) 33.77 (16.77) 20–22 59.16 (29.66) 55.56 (28.36) 51.96 (26.53)
33–34 80.04 (39.75) 85.44 (42.43) 90.84 (45.11) 23–25 35.83 (17.96) 41.23 (21.05) 46.63 (23.80)
35–42 37.87 (18.80) 43.27 (21.49) 48.67 (24.17) 26–32 18.87 (9.46) 24.27 (12.39) 29.67 (15.15)

The model predicted that the temperature ranges from 24 to 28 ◦C might decrease coverage
13.52–6.32 km2 whereas the temperature ranges in the 36–42 ◦C category are expected to rise from
37.87 to 48.67 km2 from 2028 to 2048. The high temperature category (>26 ◦C) likely rise at the
expense of lower temperature categories as suggested by the winter Figure 9 winter (a–c). Most of
the temperature increase will occur in the CBD/I. area, HDR and LDR areas. Most of the area of
low temperature (14–16 ◦C and 17–19 ◦C) will become high category areas (23–25 ◦C and 26–32 ◦C).
Many areas particularly in the center and north western part could shift towards higher temperatures
(>26 ◦C) whereas the extent of lower temperature (14–16 ◦C and 17–19 ◦C) might decrease as shown
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in Table 11. The model predicted that temperature range of 14–16 ◦C and 17–19 ◦C might decrease
in coverage from 13.99 to 6.79 km2 and from 71.63 to 60.83km2 while the temperature range in the
23–25 ◦C and 26–32 ◦C category is expected to rise from 35.83 to 46.63km2 and from 18.87 to 29.67 km2

between 2028 and 2048.
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4. Discussion

In this research and Cellular Automata Markov Chain models were developed for prediction
of seasonal land use landcover and seasonal LST in Faisalabad, Pakistan. The predictive ability of
a number of indices for landcover were assessed in relation spatio-temporal temperature. Among
a number of indices such as NDBI, FVG and NDVI, the UI was considered as the prior index for
predicting LST distribution. Urban expansion and spatiotemporal temperature were predicted by using
linear regression model. When the projected variables are not related to each other, it is appropriate to
use multiple linear regression [10,54]. Through a diagnosis analysis, all predictors were correlated
hence we found that UI provided the most robust temperature explanation. We used the UI as a
reference for urbanization and its projected spread to model possible types of LST spread. The model
projected temperature with an absolute average error of 1.85 ◦C by comparing LST computed from
thermal band and linear model using UI. UI‘s success in projecting urban development based heating
can be clarified by recent research that have found it to be closely associated with a number of urban
expansion metrics [55]. For example [55], observed UI increased with building density and decreased
with NDVI in Tokyo Bay.

While the association between temperature and UI has not been verified in earlier research, the
strong predictive strength found in this analysis is attributed to elevated temperatures in areas with
HDR and less vegetation. [54] also reported strong urban indices in water-intensive and residential
parts of Sri Lanka and Colombo. Research have also revealed that the use of water and household
energy rises with the intensity of urban weather, thus the strong association between UI and LST [3].
Given the complexity of urban LULC spread, the SVM is a high accuracy classifier tested both in 1990
and 2018. The study of Reference [25] also shows that the SVM classifier can generate high-precision
maps. The high accuracy of the map is related to the use of relevant digitized areas (rather than points)
as ground data for classification, so its accuracy exceeds the standard 80% [26].
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The derived maps of seasonal LULC showed that residential areas grew while vegetation and
water cover declined in the same region between 1990 and 2018, which is compatible with previous
studies [56]. The CA-Markov-Chain reliably predicts seasonal land use land cover types as showed
by the strong consensus between the projected map of the year 2018 and the map prepared from the
supervised rating. Based on variations in seasonal LULC between 1990 and 2018, the CA-Markov
Chain predicted that unless other measures such as green spaces, cropland and water are implemented
and identical trends exist, coverage of built-up area will tend to grow until 2048 at the cost of landcover.
This conclusion is aligned with global projections that human growth would continue to grow at the
cost of green space resulting in development of built-up areas [6,12]. The lowest temperature level
region is predicted to decrease in this summer and winter study, whilst the region protected by warmer
categories such as 36–42 ◦C and 26–32 ◦C is anticipated to increase. In addition to seasonal changes
in LULC distribution, the increasing trends would see residential areas expand to the detriment of
green spaces and water. The predicted temperature increases due to changes in urban development
demonstrated by the land use land cover are also consistent with earlier research [4].

5. Conclusions

This study is aimed at exploring seasonal land cover indices and building the CA-Markov-Chain
for predicting seasonal distribution of LST and LULC in Faisalabad. We found that the SVM algorithm
applied to urban areas classified using Landsat 5, 7 and 8 imagery achieved an overall accuracy above
80%. The model achieved the function of closely matching the spatio-temporal distribution of seasonal
types of LULC as defined by the SVM, driven by in situ observations. The average KIA predicted
using CA-Markov between the summer and winter LULC and the distribution calculated using SVM
classifier was 0.88 and 0.85. The proportion of summer season observed in Faisalabad between 1990
and 2018, LST in the categories 29–30 ◦C decreased by around 37% and 17–19 ◦C categories decreased
by 22% in the winter season due to the rapid development of the CBD/industrial and residential area.
During the same period, high LST coverage increased nearly 12% in the summer season (35–42 ◦C)
and nearly 6% in the winter season (26–32◦C), suggesting a strong biased trend of land heating in
Faisalabad. The model is restricted because it only consider the effects of urban development on
temperature changes and does not account for other factors. Although, the effective mitigation policies
and revised urban expansion strategies have slightly shifted the patterns of LST. Overall, the findings of
the present research demonstrate the value of medium-resolution satellite data, in forecasting potential
land surface temperatures in urbanized areas. We conclude that unless control measures are taken,
the acceleration of urbanization will increase warming and lead to higher temperatures in the future.
The results of this study are essential to warn urban planners in order to understand the consequences
of expansion on potential temperature changes and thermal comfort of urban residents. Future studies
are, however, required to investigate the viability of these approaches and techniques at global and
national spatial scales. The CA model was used for the identification of spatial distribution changes
and Markov Chain analysis were used for the prediction of temporal resolution. In future researcher
and policy makers will use this model to make new policies to control and manage the urban growth.
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