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Abstract: Soil moisture is a key variable used to describe water and energy exchanges at the land
surface/atmosphere interface. Therefore, there is widespread interest in the use of soil moisture
retrievals from passive microwave satellites. In the assimilation of satellite soil moisture data into land
surface models, two approaches are commonly used. In the first approach brightness temperature
(TB) data are assimilated, while in the second approach retrieved soil moisture (SM) data from
the satellite are assimilated. However, there is not a significant body of literature comparing the
differences between these two approaches, and it is not known whether there is any advantage in
using a particular approach over the other. In this study, TB and SM L2 retrieval products from the
Soil Moisture and Ocean Salinity (SMOS) satellite are assimilated into the Canadian Land Surface
Scheme (CLASS), for improved soil moisture estimation over an agricultural region in Saskatchewan.
CLASS is the land surface component of the Canadian Earth System Model (CESM), and the Canadian
Seasonal and Interannual Prediction System (CanSIPS). Our results indicated that assimilating
the SMOS products improved the soil moisture simulation skill of the CLASS. Near surface soil
moisture assimilation also resulted in improved forecasts of root zone soil moisture (RZSM) values.
Although both techniques resulted in improved forecasts of RZSM, assimilation of TB resulted in the
superior estimates.

Keywords: soil measurements; hydrologic measurements; data assimilation; Kalman filtering;
microwave radiometry; land-surface modeling

1. Introduction

Soil moisture (SM) is one of the most important variables affecting the land surface water and
energy budgets. It is one of the major components that impacts the terrestrial water, energy and
biogeochemical cycles by constraining the evapotranspiration from land [1–3]. It is involved in a series
of feedback processes at different scales from local to global and is one of the key initial condition
variables for climate and weather prediction models [4]. It also impacts the ground water recharge
and river outflow by controlling the division of rainfall into infiltration, percolation and runoff in
a basin [5,6]. Soil moisture has further impacts on air temperature and atmospheric stability by
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constraining the partition of the incoming solar radiation into latent and sensible heat fluxes [2,7].
The occurrence of high temperature extremes and heat waves are also related to SM deficits [8,9].
Soil moisture also influences land carbon uptake by governing the water stress for vegetation [10].
Accurate spatial and temporal estimation of SM is essential in many fields such as agriculture, ecology,
water resource management, flood and drought forecasting as well as predicting the impacts of future
climate change [11,12].

The conventional methods to obtain SM data are ground-based in situ measurements,
simulation of SM by land surface models forced by meteorological observations, vegetation and
soil parameters and remote sensing [13,14]. At the local scale in situ networks provide ground truth
data but it is not feasible to have in situ networks deployed at large scale as SM varies in both space
and time. Estimating SM by running a land surface model on a large spatial scale also comes with
limitations in the form of inaccurate initial conditions, and a lack of high quality meteorological forcing
observations on a global scale, inaccurate model physics, incomplete observations in space and time
and errors in parameter estimations [5,14–16]. Therefore, satellite remote sensing provides a useful
platform to map the SM and other variables globally and over long periods of time and at regular
intervals [17–19]. Another advantage of satellite remote sensing is that these systems are capable
of measuring the SM in all weather conditions at diurnal frequencies, provided it is operated at a
frequency transparent to vegetation, atmosphere and clouds [20]. Passive microwave sensors operating
at low frequencies can provide large scale SM estimates suitable for regional and global applications.
The Soil Moisture and Ocean Salinity (SMOS) satellite, launched in 2009 by the European Space
Agency (ESA), operates in passive L-Band microwave, the satellite mission was dedicated to global
surface moisture monitoring over land and sea surface salinity over oceans. SMOS also provides
significant information on vegetation moisture content and root zone soil water content [21]. The Soil
Moisture Active Passive (SMAP) satellite, launched in 2015 by the National Aeronautics and Space
Administration (NASA), also operating in passive L-Band microwave, monitors surface SM [3].
Both SMOS and SMAP missions also address many scientific problems in hydrometeorology including
and not limited to flood forecasting, drought monitoring and numerical weather prediction [22].

Satellite microwave remote sensing data alone are not adequate due to the coverage breaks in
space and time and also they can directly measure only the surface SM [13]. Remotely sensed SM
estimations from microwave satellites often have coarser spatial resolutions compared to land surface
models [23]. Therefore in order to estimate the best SM conditions we have to optimally combine,
the satellite data, data from in situ monitoring networks and land surface model output in a process
called data assimilation [4,24,25]. Data assimilation gives the best estimate of the state of the system
from incomplete and inaccurate dynamical models and erroneous observations [26]. There are many
data assimilation systems incorporated into numerical weather forecasting systems that assimilate
the passive microwave brightness temperature data into the land surface models to get a better
estimate of the SM state such as the European Centre for Medium-Range Weather Forecasts (ECMWF)
Numerical Weather Prediction (NWP) [4,27,28], National Centers for Environmental Prediction (NCEP)
Global Forecast System (GFS) [29] and the Canadian Land Data Assimilation System (CaLDAS) [30].
This improved estimate of the SM will provide the requisite conditions for improving the predictions
of water and energy balance of the surface [31–33].

A number of studies have investigated the assimilation of satellite SM data into land surface
models [14,30,34–38]. In studies examining the impact of assimilation of passive microwave derived
estimates of SM into land surface models, two approaches are commonly used. In the first approach,
brightness temperature (TB) data are assimilated into the land surface model using a radiative transfer
model (RTM) such as Community Microwave Emission Model (CMEM) [30,39–41] while in the
second approach, SM products derived from the passive microwave TB are assimilated [5,35,42].
For example, Xu at al. [42] assimilated the SMOS retrieved SM product into the Modélisation
Environmentale Communautaire-Surface and Hydrology (MESH) model over the Great Lakes basin
using a one-dimensional Ensemble Kalman Filter (EnKF). Their study showed the skill of SMOS
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in measuring the SM in a wide range of vegetation covers. The study also showed that the skill
of the assimilated product is better than the SMOS observation and the open-loop skill of the
model alone. Similarly, Zhao et al. [43] showed that assimilating the SMOS level 2 (L2) product
into a land surface model over the central Tibetan Plateau resulted in an estimate superior to
the cases where open-loop land surface modeling or remote sensing derived SM alone is used.
Ridler et al. [5] found that assimilating SMOS retrieved SM product in a fully integrated hydrological
and soil–vegetation–atmosphere transfer model in Western Denmark improved the SM correlations
in the surface layer and root zone at 25 cm. One of the potential disadvantages of assimilating
the retrieved SM product over the TB is the unknown errors arising from the inversion algorithm
used for retrieving the SM from the TB. The errors in the input variables and discontinuity in the
derivative of order zero or higher in the inversion algorithm can lead to a poor solution [44]. In the
case of direct TB assimilation, an RTM or backscatter model is coupled with the land surface model.
The RTM works as a forward modeling platform, which translates the land surface model simulated
SM into observed variable brightness temperature. The data assimilation term for the model that
maps the model state variables from the model space to the observation space is known as observation
operator [36,45,46]. Atmospheric RTMs play an important role in the satellite data assimilation
for NWP application as satellites measure radiances and do not observe directly the geophysical
variables such as humidity, temperature or cloud properties [47]. De Lannoy and Reichle, 2016 [38]
assimilated both the SMOS TB and SM retrievals into the Goddard Earth Observing System Model,
version 5 (GEOS-5). They found similar domain-average skill matrices for both the assimilation
experiments but varying skill levels locally. Recently, another approach has been also investigated
assimilating the Neural Network (NN)-based SM retrievals [48–50]. In this approach, the NN is trained
using the observed TB from the satellite as input and the simulated SM data from land surface model
as reference for the training. One of the advantages of this method is that there is no need to do further
bias correction. This NN approach has been used for both the SMOS [50] as well as SMAP [48,49] TB
data assimilation.

Since the advent of microwave remote sensing, the assimilation and validation of SM data,
retrieved or raw TB is an active area of research. However, there is not a significant body of literature
comparing the differences between these two approaches. Further, there are not many studies on
assimilating SM into the Canadian Land Surface Scheme (CLASS) model, the land surface component
of the Canadian Seasonal and Interannual Prediction System (CanSIPS) of Environment and Climate
change Canada (ECCC).

In this paper, we present our investigation into (i) the difference between assimilating the SMOS TB
vs the SMOS SM retrieval into the CLASS and if there is any particular advantage by using one method
over the other, (ii) how the assimilation of top layer SM affects the SM estimation at the root zone,
which has significant impacts on evapotranspiration rate especially in vegetated regions. This paper is
organized as follows. Section 2.1 describes the models used in this study. Section 2.2 introduces the
SMOS data, the study site and in situ data. In Section 2.3, there is a brief presentation about the EnKF.
Section 2.4 describes the data assimilation experiment set-up. The results and discussion are presented
in Section 3 and Section 4 respectively, and Section 5 holds the conclusion.

2. Models, Data, Methods and Experimental Set-Up

2.1. Models

2.1.1. The Canadian Land Surface Scheme (CLASS)

The land surface model used in this study was the Canadian Land Surface Scheme, CLASS,
the land surface component of the Canadian Global Climate Model or GCM [51,52]. CLASS simulates
energy and water balance of the land surface forward in time from an initial condition forced by
atmospheric data. CLASS can be run in offline mode or can be coupled with an atmospheric model.
The prognostic variables that must be initialized at the beginning of the CLASS simulation include
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the frozen and liquid water content and the temperature of each of the soil layers; mass, temperature,
density and albedo of the snow pack if present; the temperature and amount of intercepted rain
and snow on the vegetation canopy; the temperature and depth of ponded water on the soil surface;
an empirical vegetation growth index [40]. We also needed to specify the soil and vegetation parameters
of the area being simulated. The hydrological and thermal properties as well as the albedo of the soil
vary according to the texture and moisture content of the soil [51,52].

In this study, we used version 3.6 of the CLASS standalone driver. The soil column was divided
into three layers with bottom boundaries at 0.05, 0.20 and 4.10 m, respectively, from the soil surface.
The top layer boundary was set to 0.05 m in order to be consistent with the depth of the SMOS
satellite SM measurement. Verseghy [53] provide extensive details regarding CLASS components and
model physics. Energy and moisture fluxes were calculated at the top and bottom of each of the three
layers in CLASS. The prognostic variables, soil water content and temperature at each layer were
advanced in time in accordance with the calculated energy and moisture fluxes. The moisture fluxes
were modeled using the Green–Ampt theory in the case of infiltration, while Darcy’s method was used
in the case of water transfer between the soil layers and drainage [54,55].

The atmospheric forcing data (Table 1) was required to run CLASS include incoming shortwave
and longwave radiation, precipitation, air temperature, specific humidity, wind speed and atmospheric
pressure [55]. The meteorological forcing data we used were from the North American Regional
Reanalysis (NARR, [56]) data. We interpolated the three-hourly meteorological forcing data into 15 min
intervals. CLASS is run at a time step of 15 min. The parameters used to run CLASS include maximum
leaf area index, roughness length, above ground biomass density, rooting depth and minimum stomatal
resistance. Values assigned to these parameters were chosen according to the observation and are
summarized in Tables 2 and 3.

Table 1. Canadian Land Surface Scheme (CLASS) forcing variables.

Variable Description

FDLGRD Downwelling longwave sky radiation (W·m−2)
FSDOWN Shortwave radiation incident on a horizontal surface (W·m−2)
PREGRD Surface precipitation rate (kg·m−2·s−1)

PRESGRD Surface air pressure (Pa)
QAGRD Specific humidity at reference height (kg·kg−1)
TAGRD Air temperature at reference height (K)
UVGRD Wind velocity at reference height (m·s−1)

Table 2. CLASS model soil parameters, description and initial values.

Variable Description Value

DRNROW Soil drainage index 1
SDEPROW Soil permeable depth (m) 4.1
SANDROW Percentage sand content for each of the three layers 25, 50, 44
CLAYROW Percentage clay content for each of the three layers 27, 22, 29

ORGMROW Percentage organic matter content for each of the three layers 0, 0, 0
ZBOT Depth of bottom of soil layer (m) 0.05, 0.20, 4.10
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Table 3. CLASS model vegetation parameters, description and range.

Variable Description Range

GROROW Vegetation growth index (0−1)
PAMNROW Annual minimum plant area index of vegetation category 0.0–3.0
PAMXROW Annual maximum plant area index of vegetation category 1.5–4.0
LNZ0ROW Natural logarithm of maximum vegetation roughness length −0.5–0.2
ALICROW Average near-IR albedo of vegetation category when fully-leafed 0.15–0.36
ALVCROW Average visible albedo of vegetation category when fully leafed 0.3–0.6
CMASROW Annual maximum canopy mass for vegetation category 1.0–25.0
ROOTROW Annual maximum rooting depth of vegetation category (m) 1.0–2.0
RSMNROW Minimum stomatal resistance of vegetation category (s·m−1) 85.0–200.0

QA50ROW
Reference value of incoming shortwave radiation
(used in stomatal resistance formula) (W·m−2)

30.0–50.0

2.1.2. Community Microwave Emission Model (CMEM)

The Community Microwave Emission Model (CMEM) [57,58] was developed by the ECMWF
to simulate the low frequency passive microwave brightness temperatures (from 1 to 20 GHz) of the
surface as seen by passive microwave sensors included on a number of earth observation satellites.
We used CMEM version 5.1 in our study. Input to the CMEM include SM and temperatures
of the different soil layers, surface temperature, leaf area index, vegetation and soil parameters.
The parameters and models used in CMEM are summarized in Table 4. The CMEM model physics
follows the parameterization based on the Land Surface Microwave Emission Model [59] and
L-Band Microwave Emission of the Biosphere (L-MEB) [60]. The high modularity of CMEM allows
for consideration of different parameterizations for soil dielectric constant, effective temperature,
soil roughness, vegetation opacity and atmospheric contribution [61]. The vegetation opacity model of
Wigneron at al. [60] was used in this study.

Table 4. Community Microwave Emission Model (CMEM) parameters.

Model Parameters Value

Microwave frequency 1.4 GHz
Polarization Horizontal, vertical

Incidence angle 40◦

Dielectric model Mironov [62]
Effective temperature Model Wigneron [63]

Smooth surface smissivity Fresnel [64]
Surface roughness model Wigneron [63]
Vegetation opacity model Wigneron [60]

Atmospheric radiative transfer model Pellarin [65]
Temperature of vegetation Tveg = Tair

Number of Soil Layers 3
Soil Moisture Variable (from CLASS simulations)

Soil Temperature Variable (from CLASS simulations)
Surface Radiative Temperature Variable (from CLASS simulations)

In the SMOS TB assimilation, CMEM was used as the observation operator or observation model,
which maps the model state variables from the model space to the observation space [45,46]. One of
the reason for using an observation operator is because satellite measurements, such as radiance
or brightness temperature, is only indirectly related to the land surface variables of interest and
observation operator facilitates the conversion of model simulated variables to the satellite observed
variables [45]. Using the SM inputs simulated by CLASS, CMEM can predict a brightness temperature
estimate that can be compared to satellite observed brightness temperature from the same wavelength.
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2.2. Observation Data

2.2.1. SMOS

The Soil Moisture and Ocean Salinity (SMOS) satellite was launched by the ESA to collect global
surface SM from approximately 0–5 cm depth of soil [21,66]. The Microwave Imaging Radiometer
with Aperture Synthesis (MIRAS) onboard SMOS provides multi angular, bi-polarized brightness
temperatures (TB) at L-band. It covers a spatial resolution of 43 km on average with a repeat cycle
of less than three days. The target accuracy of the mission was ±0.04 m3·m−3 [67]. For the direct
TB assimilation we used the SMOS estimated brightness temperature (TB) (MIR-SCLF1C product
version 620) at both horizontal (H) and vertical (V) polarization. For SM retrieval assimilation we
used SMOS SM retrieval L2 product (MIR-SMUDP2 product version 620). Both the SMOS TB and L2
products are available to download from ESA website (https://smos-diss.eo.esa.int/oads/access/
collection/SMOS_Open/tree). In our experiment, we used the SM retrieval data that falls within the
realistic range of 0.02–0.6 m3·m−3. The brightness temperature observations were retained only when
it falls with in the range of 100−320 K. The SM product was retrieved from the TB using the L-MEB
forward algorithm [60], which is an iterative algorithm that matches the surface emission observed
by SMOS to the modeled L-band emission of the surface [68,69]. We used the TB data at an angle
of approximately 40◦. The L2 SM was obtained by minimizing a cost function between the SMOS
observed TB and the simulated L-MEB TB. The forward model requires the parameters such as SM,
land surface temperature, land cover information, leaf area index and soil properties [5,67].

2.2.2. In Situ Data (Study Sites and Ground Data Measurements)

This study was applied over the Brightwater Creek watershed in Saskatchewan Canada
(Figure 1) using in situ SM network run by the University of Guelph and Environment and Climate
Change Canada. The distribution of sensors in the network was arranged over a 40 by 40 km study
domain situated within an agricultural region [70]. The region is characterized by agricultural activities,
with typical crops including wheat, chick peas and canola. The network was designed to capture
SM variability within a footprint of a passive microwave radiometer and has been used previously
for the validation of SMOS SM retrievals [71]. In situ SM measurements were recorded using a
Stevens Hydra Probe II SDI-12 sensor. All soil moisture monitoring stations have a minimum of three
Stevens Hydra Probe sensors horizontally installed into the soil profile at 5, 20 and 50 cm depths.
The physical measurements obtained by these probes is described by [72] but, briefly, the probes
use an impedance-based approach to characterize the dielectric properties of the soil using a radio
frequency at 50 MHz. The reflected frequency was measured along four 5.7 cm tines extending
from a 3.4 cm diameter sensor head [72]. Using previously established calibration equations [73],
the measured real dielectric was converted to soil moisture. Stevens Hydra Probe SM sensors used in
this study were calibrated using infiltration wet-up and dry-down laboratory calibration procedures by
Burns et al. [73]. The calibration utilized the soil samples collected from the study site at Brightwater
Creek watershed, in Saskatchewan Canada. The soil samples were collected from 5, 20 and 50 cm
and of different textural compositions. The calibration experiments found that the RMSE values of
the sensors were <0.019 m3·m−3, which are significantly less than the SMOS targeted accuracy of
±0.04 m3·m−3. More details about the senor calibration can be found in Burns et al. [73]. The network
contains 36 stations and previous research by Rowlandson et al. [74] demonstrated that the mean of
the network was appropriate for estimating the SM average within the passive microwave footprint.
More details about the network can be seen in Tetlock et al. [70] and Burns et al. [75].

https://smos-diss.eo.esa.int/oads/access/collection/SMOS_Open/tree
https://smos-diss.eo.esa.int/oads/access/collection/SMOS_Open/tree
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Figure 1. Study area in Central Saskatchewan showing the soil moisture measurement network.

2.3. Assimilation Methods

2.3.1. Ensemble Kalman Filter (EnKF)

Advanced Kalman based filters have been widely used in geophysical data assimilation in
recent years [76–79]. The Kalman filter [80] provides the best linear unbiased estimate of the
system considering the past measurements and dynamics of the fluid system under consideration.
The nonlinearity and large number of degrees of freedom limits the application of standard Kalman
filter for numerical weather prediction and climate prediction models [78]. In the extended Kalman
filter (EKF), standard Kalman filter equations are applied after linearizing the nonlinear models but
the requirement of derivation of Jacobian or Tangent Linear Model (TLM) for the linearization of the
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nonlinear model is a computationally expensive process. EKF also neglects the contribution from
higher order moments in calculating the error statistics [78,81,82]. The Ensemble Kalman filter (EnKF),
introduced by Evensen [81], estimates the error statistics from ensembles integrated through the
nonlinear models [83] and there is no need to linearize the nonlinear models.

The main concept behind the derivation of EnKF is based on forecasting the error statistics
using Monte Carlo methods or ensemble integration. Thus, if the forecast model is interpreted as a
stochastic differential equation, the forecast-error statistics can be approximated using ensemble
integration [78,81]. For EnKF, there is no need for any closure approximation for calculating
the error covariance, whereas in the Extended Kalman Filter (EKF), closure approximation is
applied by neglecting contributions from higher-order statistical moments in the error covariance
evolution equation. Therefore in EnKF, the error covariance matrices can be calculated by integrating
the ensemble of model states in time via fully nonlinear model equations. Thus, all the statistical
information such as mean and covariances about the predicted model state that is required at the time
of analysis is obtained from the ensembles [81,82]. EnKF and its derivatives have been popular in
atmospheric and oceanic data assimilation because of its algorithmic simplicity, flow dependent error
structure, ease of implementation and comparatively lower computational cost [78].

Consider that Xt is the state of a dynamical model at time ‘t’ and Yt is the observation at time ‘t’.
The state space equations of the dynamical system can be expressed as

Xt = f (Xt−1, qt−1) (1)

Yt = h(Xt, rt) (2)

where f( ) is the nonlinear function which takes state Xt−1 to Xt and qt−1 is the random model error
following a Gaussian distribution with zero mean and covariance Qt−1, h( ) is the observation or
measurement function and rt is the observation noise, which is also Gaussian with mean zero and
covariance Rt.

In the EnKF, each ensemble member is propagated forward in time through the nonlinear model
and corrected whenever new measurements are available [78] and the cycle is repeated. The state
update equations are given by,

Xa
t = Xb

t + Kt(Yt − HXb
t ) (3)

Kt = Pb
t HT(HPb

t HT + R)−1 (4)

Pb
t = E[(Xb

t − Xb
t )(Xb

t − Xb
t )

T ] (5)

Pa
t = (I − KtH)Pb

t (I − KtH)T + KtRKT
t = (I − KtH)Pb

t (6)

where Xa
t is the analyzed state and H is the linearized observation operator. The subscript ‘b’ indicates

the model forecast state, Kt is the Kalman gain, Pb
t is the forecast error covariance, E[.] represents

the statistical expectation value, the overbar denotes the ensemble mean and Pa
t is the analysis

error covariance. I is an identity matrix.
In ensemble based filters such as EnKF, the ensemble members account for the uncertainties

in initial conditions. A finite number of ensemble members reduces the accuracy of the estimate
of the statistical moments, however a large number of ensemble members is computationally
expensive [78,83]. Not accounting for the model errors because the model is not perfect and initial
condition errors because of the limited number of ensemble members will leads to the underestimation
of the background error-covariance matrix. This can be addressed by using a covariance inflation
method [84–86]. The most common methods used are additive inflation [87] and multiplicative
inflation [84]. In the multiplicative-inflation method, the raw background covariance matrix is
multiplied by a small number greater than one. In our study we used an additive inflation method,
in this method, an additional random term with some covariance structure is added to the background
error covariance matrix [85,88,89].
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2.3.2. Bias Correction

Generally there is a large systematic bias between the satellite derived and model derived
SM products because of the uncertainties in RTMs, land surface and vegetation parameters, errors
in the land surface models and inaccurate atmospheric forcing [58,90–92]. One commonly used
method for addressing the bias is rescaling the satellite observations to long term model simulations.
Data assimilation techniques based on Kalman filters assume unbiased observation and model
forecast [46]. We applied a prior bias correction to the SMOS data based on the Cumulative Distribution
Function (CDF) matching [90,92] before the assimilation. For SMOS SM retrieval bias correction,
CDF matching was applied using the four years (2011–2014, April to September) of CLASS simulation
data and SMOS SM retrieval data and SMOS SM retrieval was rescaled into CLASS climatology.
For SMOS TB bias correction, we applied the CDF matching between the four years (2011–2014,
April to September) of CMEM forward simulation data and SMOS observed TB data. The initial
conditions for the CMEM forward simulations were provided by CLASS data. In our experiment,
for CDF matching, we used the data only from April to September because CDF matching can work as
an additional source of error by discarding the seasonal cycles in biases [91,92]. The standard deviation
for the observation error for the SM retrieval was set as 0.04 m3·m−3 according to the target accuracy of
SMOS. The standard deviation of the observation operator for the SMOS TB was set as 5 K, this include
the instrumental errors in radio meter and uncertainties in forward simulations using CMEM.

2.4. Experimental Set-Up

It is a challenge to find an optimal method that satisfies all the conditions over a large range of
constraints including different land surface models, different data assimilation schemes and different
land characteristics. This study was applied over an agricultural region in Saskatchewan, Canada.
For the assimilation of TB, CLASS was coupled with CMEM. We employed the EnKF data assimilation
scheme of Evensen [76].

Before starting the assimilation and open-loop integration, CLASS was spun-up by cycling
the model continuously through the period April 2011 to March 2014 for the model states to be in
equilibrium with the forcing meteorology. Please note that only the CLASS model was spun-up
and not the entire data assimilation system. This spin-up process was independent from the CLASS
simulations performed to build the CDFs (explained in Section 2.3.2). The initial conditions obtained
from the CLASS spin-up process was used for the open-loop simulations and data assimilation. At first
the CLASS open-loop run (no data assimilation) was performed in deterministic mode forced by the
NARR atmospheric data for the period April 2014 to September 2014. Two different approaches of
data assimilation experiments were conducted using the EnKF method. The first set of experiments
SM retrieval (SM-L2 product) from the SMOS satellite was assimilated into the CLASS model; whereas
the second set of experiment TB from SMOS was assimilated into the CLASS model using CMEM as
the forward model. The estimation skill of both the approaches as well as the CLASS open-loop run
experiment were compared with the in situ SM data.

In the first state estimation experiment, the retrieved SM (SM-L2 product) data from the SMOS was
assimilated into the CLASS from April 2014 to September 2014 using the EnKF algorithm. The SM data
was assimilated whenever it was available, the repeat cycle of SMOS was less than three days. In SM
retrieval assimilation, the model simulated variable and observed variable were SM, therefore there
was no need of an RTM and the observation operator was an identity matrix. The second approach was
identical to the first approach except that we assimilated SMOS observed TB instead of SM retrieval.
In this state estimation experiment, CLASS predicted SM was brought into the observation space
with the use of an observation model. The observation model used in this study was the CMEM.
The parameters used in CMEM are explained in Section 2. The schematic of the TB assimilation is
given in Figure 2.
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Met. Forcing EnKFSM, ST,.. TB

TB

Updated
SM 

SM, ST,..
CMEMCLASS

SMOS
TB

Figure 2. Schematic of the assimilation of the Soil Moisture and Ocean Salinity (SMOS) satellite
observed brightness temperature (TB) experiment set-up.

In EnKF, there are different perturbation strategies for initial ensemble generation, from the simple
addition of pure random perturbation to the advanced singular vectors. Addition of purely random
perturbation can lead to dynamical imbalance and deterioration of the quality of the ensembles [93].
We perturbed only the CLASS SM variable using Random Field (RF) perturbation technique [93]
that results in flow balanced ensembles, and did not perturb the meteorological forcing variables.
The initial ensembles were generated by adding the observed SM values from the in situ data with
differences of randomly chosen SM states from historical run of CLASS for the period of April 2011
to April 2014, the differences were scaled to zero mean before the addition. In this study, an additive
inflation method [85,88,89] was used to account for the model error. The mean of the perturbations
were scaled to zero and standard deviation equal to the climatological (April 2011 to April 2014)
standard deviation (0.065) of the CLASS simulated surface SM. We used a random subset of model
predictions of SM fields from a historical run of CLASS and scaled them to zero mean and added one
of these subsets into one of the background ensemble member following Li et al. [85].

The assimilation experiments were performed whenever the observation data were available for
the period from April 2014 to September 2014. For the same period, a open-loop run of CLASS was
also completed, forced by the NARR data. The background and observation errors were assumed
to be uncorrelated [94]. The selection of ensemble number is very important in the EnKF method.
A large number of ensembles are a computational burden when used with a high dimensional model
and a small number of ensembles cannot catch all the possible dimensions of the system. We used 41
ensemble members considering a balance of both the accuracy and computational expenses. The SM
assimilation estimate was evaluated using independent in situ SM data in the near surface zone as well
as the root zone. We used the measurements at around 20 cm as a proxy for the root zone SM value.
The estimation skill was evaluated in terms of Root Mean Square Error (RMSE), modified coefficient
of efficiency, E1 [95,96] and absolute error between the analysis and in situ data.

The modified coefficient of efficiency [96], E1 is defined as

E1 = 1− ∑N
i=1 |Oi − Pi|1

∑N
i=1 |Oi − Ō|1

(7)

where Oi and Pi are observation data and model simulated data respectively, and Ō is observation mean.

3. Results

Figure 3 illustrates the time series of the absolute error in SM at 5 cm for the three sets of experiments
compared with that of the station data. When the data assimilation was employed, the SM values are
closer to the station data than the case when there is no assimilation as can be seen from the reduced
absolute error for the TB assimilated case compared to the absolute error of CLASS open-loop run
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as can be seen in Figure 3. When the assimilation started in April, part of the SM was still in the
frozen state and the values were low and therefore there was a small absolute difference. In both
the assimilation approaches, we can see that the skill reduces in the beginning and then shows
improvement through time; that is because the system takes time to reach a steady state. When the
retrieved SM is assimilated, the system takes more time to reach in an equilibrium compared to the TB
assimilation. Data assimilation systems take different time periods for stabilization. The stabilization
time depends on lots of factors including the dynamical model, forward model, the observed variable
and if the error covariances are optimal.
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Figure 3. Absolute error in soil moisture (SM) estimation at 5 cm for the open-loop run (solid line),
SM retrieval assimilation (dashed line) and TB assimilation (dotted line) when compared with the
in situ data.

The assimilation skill was also evaluated in terms of RMSE and modified coefficient of efficiency,
E1. In Table 5 we can see that the SM estimate at 5 cm from the SMOS TB assimilated approach has
higher coefficient of efficiency value when compared to the station data than the case where the SMOS
SM retrieval was estimated. From Table 6 we can see the RMSE skill of different approaches when
compared with the station data for the period April to September 2014. The RMSE is much lower
for the SMOS TB assimilated case than the retrieved SM assimilation. The coefficient of efficiency,
E1 for the near surface SM in the TB assimilated case is higher than that of the case where there is no
assimilation indicating that assimilation of SM improves the model performance.

Table 5. Soil moisture (SM) coefficient of efficiency, E1, comparing the open-loop run, SM retrieval
assimilation and TB assimilation runs against observed SM.

Experiment at 5 cm at 20 cm

open-loop run 0.59 0.25
SM Assimilation 0.47 0.32
TB Assimilation 0.73 0.75
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Table 6. Soil moisture (SM) root mean square error (RMSE) comparing the open-loop run, SM retrieval
assimilation and TB assimilation runs against observed SM.

Experiment at 5 cm (m3·m−3) at 20 cm (m3·m−3)

open-loop run 0.1002 0.1181
SM Assimilation 0.1156 0.1051
TB Assimilation 0.0632 0.0476

Studies have shown that near surface SM is correlated with root zone soil moisture
(RZSM) [75,97,98]. To further explore the impact of assimilation of surface SM in the estimate of
RZSM, we analyzed the SM estimates around 20 cm from both the assimilation approaches with the
in situ data. Figure 4 displays the time series of the absolute error in SM at 20 cm for the assimilated
cases and open-loop run compared with the in situ data. As in the case of top layer SM estimate,
the simulated RZSM from the TB assimilated case is closer to the in situ data as seen by the lower
absolute error (Figure 4). After assimilating SMOS SM retrievals the skill of the CLASS is improved
as can be seen from the reduced RMSE and reduced absolute error for the RZSM values in Figure 4
and Tables 5 and 6. The reduction in error shown, illustrates the importance of synergistic use of
observation data and data assimilation in hydrological models.
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Figure 4. Absolute error in soil moisture (SM) simulation at 20 cm for the open-loop run (solid line),
SM retrieval assimilation (dashed line) and TB assimilation (dotted line) when compared with the
in situ data.

The estimation skill was evaluated using the RMSE and coefficient of efficiency metrics.
From Tables 5 and 6 we can also see that the simulation started from the TB analysis has higher
coefficient of efficiency value and lower RMSE. There is higher skill in the RZSM compared to
the near surface in all the three cases as evident by the higher correlation skill and lower RMSE.
When we assimilated TB in the surface layer, the information was passed onto the root zone and
the SM estimate at the root zone was improved. It is a very important result because we do not
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have direct satellite observation at root zone but we can improve the RZSM simulation of the land
surface model by assimilating satellite observed SM in the surface layer. Correctly estimating the
RZSM is very important in understanding the evapotranspiration rate in vegetative regions. Both the
data assimilation experiments improve the RZSM estimates compared to open-loop simulations in
terms of RMSE and coefficient of efficiency metrics. The results may further improve if the data
assimilation systems can evolve to realistically simulate the model and observation error parameters
over more time.

4. Discussion

This study investigated the assimilation of SMOS observations (both the SM retrieval and TBs)
into CLASS model using the EnKF technique. As shown in the results section, both TB and SM
retrieval assimilation analysis for near surface layer exhibit higher deviation from the station data
in the beginning of data assimilation and improves as the assimilation progresses. Similar results
have been reported by [40,78,99] where station data are more in agreement with the analysis as data
assimilation progresses in time. This result can be explained as we should expect some continuous
improvement to the analysis as more data are available. But the temporal pattern of improvement
in the SM trajectories for both the assimilation approaches are different which might be due to the
presence of random error in the SMOS observation [100]. Similar results have been reported by De
Lannoy and Reichle [38].

Assimilating the TB improved the CLASS SM estimates in the near surface layer whereas
assimilating SM retrieval data did not improve the model performance in the near surface layer.
This could be because the standard deviation for the SM retrieval observation error used in this
study (according to the target accuracy of SMOS) is relatively small, therefore the assimilation system
gives more weight to the erroneous observation over the model forecast. Additionally, sub-optimal
configuration of the model error covariance may also result in the degradation of the analysis.
Degradation of SM retrievals data may be because of the inconsistent auxiliary data such as land
cover or soil temperature used in the retrieval process [38]. Not properly tuning the retrieval model
parameters may deteriorate the quality of the SMOS SM retrieval data and thereby reducing the
accuracy of the analysis [100]. Therefore, directly coupling the land surface model with an RTM and
directly assimilating the TB is a more natural choice [38,46].

In both the assimilation approaches, assimilating the near SM observations into CLASS had
the greatest influence on the model estimate of the RZSM. This is in agreement with previous
studies [101,102], where assimilating the SMOS observations into land surface models resulted in
improved estimates of SM in the root-zone. Improvement in the estimation of the RZSM is very
beneficial for the agricultural drought monitoring and flood prediction [102].

One drawback of this study is related to the relatively small assimilation period. The reason
is that we do not have the historical time series of in situ data for the validation of assimilation
schemes as some of the stations have moved or were not in operational limiting the in situ
comparison to a relatively short time period. Nevertheless, the study period chosen satisfied the
requirement of our main objective, which is testing and comparing the performance of assimilation
of brightness temperatures vs the assimilation of soil moisture retrieval into a land surface model.
Additionally, the assimilation period include the growing season of the crop, that is the most important
period for an agricultural region such as Brightwater Creek watershed. Studies have shown that,
assimilation improves the SM estimates in limited vegetation areas where the SMOS SM observations
are relatively better [37,38].

5. Conclusions

Numerical weather prediction and seasonal to interannual hydrometeorological forecasts rely
on the accuracy of the land surface initialization, in particular soil moisture and snow. Satellite SM
observations can be assimilated into land surface models to improve the land surface and root-zone



Remote Sens. 2020, 12, 3405 14 of 20

SM states as well as other land surface variables such as soil temperature. However, there remains
fewer number of studies which compare assimilation of both SM retrieval and TBs at the same time.
In this paper we primarily addressed two issues. First, how assimilating SMOS L2 SM retrieval
product (SM retrieval) is different from assimilating SMOS TB into the Canadian Land Surface Scheme
(CLASS) using an Ensemble Kalman Filter (EnKF). Secondly, we studied the impact of near surface
SM assimilation in simulating the RZSM in a vegetative region. The assimilation results are verified
against the in situ data. The results indicated that assimilating the SMOS brightness temperature
improved the SM forecasting skill of the CLASS. This study also showed that assimilating the near
surface SM data from SMOS improves the simulation of RZSM.

The estimation skill of both approaches are compared to each other and also with the SM simulated
by the open-loop run of CLASS. When SM analysis at near surface from both the assimilation schemes
as well as the open-loop run is compared to the in situ data, the estimate was more close to the station
data when the assimilation was employed. When there is no assimilation the model simulation is
deviating from the truth (in this case quality controlled in situ data). This results demonstrates the
potential benefits of data assimilation for land surface modeling.

Analysis skill of both the approaches were compared to each other, and the results showed that
assimilation of direct TB is more robust than the other case where SMOS SM retrieval was assimilated.
Assimilating the retrieved SM retrieval product from the satellite is relatively easy compared to the
assimilation of direct TB because both the model forecast and observation are SM and this avoids
tuning the Radiative Transfer Models (RTMs). In order to retrieve the SM L2 product from the radiance
data as seen by the satellite it has to run through a RTM and it requires initial estimates of SM,
soil temperature and other parameters. Errors in the initial estimates of SM and other parameters will
act as an additional sources of errors in the process of SM L2 product retrieval and it may reduce the
overall quality of the SM L2 product and thereby accuracy of the state estimate in SM L2 assimilation.

For an end user, assimilating direct TB is computationally more expensive as it requires the
coupling of the land surface model with the RTM. In the case of assimilation of SMOS TB we use
CLASS model output as a source of the initial values necessary in the RTM. In our experiment, when we
couple the land surface model with the forward model, we improve its ability in capturing the observed
TB may be because of lots of auxiliary information including the soil temperature and vegetation
used in the forward model. These data are based on additional observations over the study area.
The forward model, CMEM, requires parameters such as soil temperature, land cover, vegetation types,
soil layer depth, sand, clay and water fractions and surface height over the study area. Though in
principle, both the assimilation approach should show similar skill level the differences in those
auxiliary information can create a difference in the performance of two RTMs. The difference in SM
analysis from SM retrieval assimilation and direct TB assimilation can also come from the sub-optimal
tuning of the data assimilation parameters.

Our analysis also showed that the SM information acquired by the satellite from the top layer
of soil can be propagated into deep layer though downward propagation of the updated surface SM
information by the soil heat diffusion schemes and can get an estimate of the RZSM. Assimilating
the near surface SM from SMOS improved the simulation of RZSM. However, improved root zone
estimates were observed when TB was assimilated rather than SM. The RZSM significantly impacts
the evapotranspiration rate in an agricultural region. This study further demonstrates that although
satellites such as SMOS measure SM only from the top few centimeters of the soil we can propagate
this information deep into the root zone by assimilating the surface SM from the satellites into land
surface models. The assimilation improves the surface estimate and the land models initialized from
the analysis produce better RZSM predictions.

This study suggests that two assimilation approaches vary in their results because of the difference
in accuracy of the retrieval algorithm used to derive SM. One of the limitations of this study is the
difficulty in generalization of the results as it is not easy to reach an optimal global solution which
works across a wide range of variables such as different land surface models, different land cover data,



Remote Sens. 2020, 12, 3405 15 of 20

different soil soil texture, different vegetation characteristics, and various data assimilation methods, etc.
Therefore, to generalize the results more studies need to be performed as new satellite products,
improved land surface models, more in situ data network as well as assimilation schemes are available.
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