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Abstract: Precision agriculture (PA) is a management strategy that analyzes the spatial and temporal
variability of agricultural fields using information and communication technologies with the aim
to optimize profitability, sustainability, and protection of agro-ecological services. In the context of
PA, this research evaluated the reliability of multispectral (MS) imagery collected at different spatial
resolutions by an unmanned aerial vehicle (UAV) and PlanetScope and Sentinel-2 satellite platforms
in monitoring onion crops over three different dates. The soil adjusted vegetation index (SAVI)
was used for monitoring the vigor of the study field. Next, the vigor maps from the two satellite
platforms with those derived from UAV were compared by statistical analysis in order to evaluate the
contribution made by each platform for monitoring onion crops. Besides, the two coverage’s classes
of the field, bare soil and onions, were spatially identified using geographical object-based image
classification (GEOBIA), and their spectral contribution was analyzed comparing the SAVI calculated
considering only crop pixels (i.e., SAVI onions) and that calculated considering only bare soil pixels
(i.e., SAVI soil) with the SAVI from the three platforms. The results showed that satellite imagery,
coherent and correlated with UAV images, could be useful to assess the general conditions of the
field while UAV permits to discriminate localized circumscribed areas that the lowest resolution of
satellites missed, where there are conditions of inhomogeneity in the field, determined by abiotic or
biotic stresses.

Keywords: spatial resolution; mixed pixels; vegetation indices (VIs); soil adjusted vegetation index
(SAVI); geographical object-based image classification (GEOBIA); correlation analysis; onion crops;
bare soil

1. Introduction

The agricultural sector is one of the areas of application of geographic information systems, remote
sensing (RS) methods, and data [1]. The remote platforms and their associated imaging systems are
distinguished based on platform altitude, spatial, and temporal resolution. The spatial resolution
determines the smallest pixel area that can be identified; thus, as the spatial resolution increases,
the pixel area decreases, and the homogeneity of soil or crop characteristics inside the pixel increases [2].

The temporal resolution is essential for the evaluation of time patterns in plant and soil
characteristics. However, the availability of RS images from satellite and aerial platforms is limited
by cloud cover [3–5]. Landsat platforms, among the most used satellites, have spectral resolutions
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of the order of 30 m in the visible and near-infrared (NIR) and have a temporal resolution close
to 17 days [6]. For many precision agriculture (PA) applications, this temporal resolution is not
suitable, even considering cloud cover problems that increase the time interval in which images
without coverage are available. The same applies to spatial resolution, which may not be suitable for
determining variability within the field. The launch of satellites by government space agencies and
commercial earth-observing companies has provided a significant improvement in revisiting time
and multispectral (MS) detection capability. In this respect, two examples are given by Sentinel-2
and PlanetScope satellites. Sentinel-2 satellites are equipped with sensors capable of exploiting as
many as 13 spectral bands ranging from the visible to NIR and short wave infrared region, with spatial
resolutions between 10 and 60 meters [7] and a temporal resolution of about 5 days at the European
latitudes [8,9]. PlanetScope constellation composed of a large number of small nano-satellites equipped
with RGB and NIR camera provides a 3–5 m ground sampling resolution with a one-day revisiting
time [10].

While satellite observation has guided many information-based advances in agricultural
management and practice [6], critical technological developments and steep rise have affected
unmanned aerial vehicles (UAVs) in the last decade, which represent a potential game-changer in PA
applications [11]. In comparison with other RS platforms, UAVs are generally more independent of
climatic variables.

Being able to provide data with higher temporal and spatial resolution, today represents a
significant source of RS imagery in PA [12] considering also that, as highlighted by scholars in PA
applications, the knowledge of the within-field spatial variation of edaphic factors and the state of
crops constitute an essential prerequisite [13]. Among the sensors mounted on UAVs employed in
agriculture, MS cameras are the most common [14].

Thanks to UAVs and high-resolution MS images, the managers and specialists in agriculture can
use new tools and have more information to optimize management decisions and formulate precision
farming solutions [15]. In particular, this technology can determine the amount of agricultural inputs,
including agrochemicals and fertilizers, based on non-invasive monitoring of crop growth status [16].

The ability to better control the use of agrochemicals and fertilizers brings benefits, in addition
to the enhanced quality and quantity of production, reducing the environmental risks arising from
the excessive use of inputs, increasing the use efficiency, and also reducing them, using variable
management practices [17,18].

Many MS UAV cameras, in particular, permit to obtain spectral information in the Red, Red
Edge, and NIR band for vegetation applications with a very high spatial resolution [19]. Based on
the combination of these three bands, most of the indices (i.e., vegetation indices, VIs) have been
developed with the aim to monitor, analyze, and map temporal and spatial variations of vegetation in
both field and tree crops [19]. In the framework of PA applications, among the techniques capable of
extracting reliable and reusable information, the geographic object-based image classification (GEOBIA)
techniques have demonstrated their effectiveness [1].

GEOBIA is a typology of a digital RS image analysis and classification approach that studies
geographical entities through the definition and analysis of object-based instead of single pixels [20,21].
Image objects are objects that can be distinguished in the scene. They are formed by groups (or clusters)
of neighboring pixels that share a common meaning, such as, for example, in a farm context, pixels
that join together to form trees’ canopies of an orchard or crops in a field [22]. In the literature
applications of GEOBIA, starting from satellite or UAV data, both herbaceous and tree crops have been
concerned [23–32].

Onion (Allium cepa L.) is a vegetable bulb crop widely cultivated and known to most cultures [33,34].
For economic importance among vegetables, the onion ranks second after the tomato [35,36]. This
plant belongs to the family of Amaryllidaceae and is biannual or perennial (depending on the cultivar).



Remote Sens. 2020, 12, 3424 3 of 27

The plant has shallow adventitious fibrous roots [37], which grow, usually in the first 20–25 cm of
soil. The umbrella-shaped inflorescence develops from an apical ring meristem and is formed by the
aggregation of small single flowers (from 200 to 600).

The bulb has variable shapes (flat to globular to oblong) and colors (red, white, or yellow). The bulb,
the edible part, comes from the enlargement of the basal part of the inserted leaves, superimposed
on a central cauline axis. The bulb’s thick outer leaves lose moisture and become scaly until harvest,
while the inner leaves thicken as the bulb develops [38].

In this framework, this study was aimed at comparing data acquired by fixed-wing UAV
and the PlanetScope and Sentinel-2 satellites in onion crop monitoring. RS techniques applied to
onion crops could help to monitor the crop growth, guide localized fertilization, phytosanitary
treatments, and harvest, and, in general, support PA techniques implementation. To our knowledge,
very few studies have dealt with onion crop monitoring using UAV and satellite data in the PA
framework [16,23,33,34,39].

Considering the objectives of this research, the study site was located in a very relevant onion
production area of Southern Italy. The comparison was performed to achieve the following objectives:
a) evaluate the similarities and the informative content of the vegetation index at different spatial
resolutions; b) evaluate the contribution made by each platform for monitoring the vegetative status of
the onion crop and in guiding fertilization and phytosanitary treatments.

This paper is structured as follows. In Section 2, information about the study site, data acquisition
and processing, and data analysis are reported. Section 3 is devoted to presenting and discussing the
results. Section 4 deals with conclusions and future research perspectives.

2. Materials and Methods

2.1. Study Site

The onion field is located in Campora S. Giovanni, in the municipality of Amantea (Cosenza,
Italy, 39◦02’ 55” N, 16◦05’ 59” E, 5 m a.s.l) (Figure 1a). The onions produced here are an essential local
crop that, as a typical product, plays a crucial role in the economic and rural development of this
territory [40]. This particular pink-red colored onion type, since 2008, is labeled with the European
Protected Geographical Indication “Cipolla Rossa di Tropea IGP”.

It is well-known worldwide for its sweet flavor and for its high content of nutraceuticals that
make it an upcoming “functional food” [41]. These unique characteristics have given the product a
reputation at the national level and in markets outside Italy.

The producing farms are organized in a consortium whose cultivated area is over 500 hectares [42].
The study area covers a surface of 4 hectares. The field is crossed by 10 paths, 2.5 m wide, used for the
passage of agricultural vehicles necessary for phytosanitary treatments and fertilization. The plants
are placed at a distance of 15 cm from each other, on baulature, 1 m wide, as shown in Figure 1b–d.

The transplant took place between mid-August (end of the summer) and mid-September
(early autumn). In particular, in a portion of the field, about 0.47 ha, transplantation took place
3 weeks later.
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of harvestable vegetative plant parts) (Figure 2) of the BBCH (Biologische Bundesanstalt, 
Bundessortenamt and Chemical Industry) extended scale [43]. Surveys were carried out at 50 m of 
flight height using a very light fixed-wing UAV Parrot Disco-Pro AG made with foam and the weight 

Figure 1. (a) The location of the study site. (b,c,d) The onion field in which the surveys were carried
out (Campora S. Giovanni, CS – Italy).

2.2. Platforms and Data Acquisition

2.2.1. UAV Images

The UAV surveys were carried out between the middle (November) and the end of the cultivation
cycle (January). Onion crop was, in this time frame, in the principal stage 4 (development of harvestable
vegetative plant parts) (Figure 2) of the BBCH (Biologische Bundesanstalt, Bundessortenamt and
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Chemical Industry) extended scale [43]. Surveys were carried out at 50 m of flight height using a very
light fixed-wing UAV Parrot Disco-Pro AG made with foam and the weight of only 780 g (Figure 3).
The UAV was equipped with an MS camera Parrot Sequoia, a light-weight camera employed in
several research works related to PA, on herbaceous crops, monitoring wheat [44], maize and poppy
crops [45], phenotyping of soybean [46], and on tree crops proving useful in identifying [47] citrus
trees [24], mapping irrigation inhomogeneities in an olive grove [48] and the vigor in vineyards [49].
The Parrot Sequoia MS had four different channels, each with 1.2 Mp of resolution: Green (530–570 nm),
Red (640–680 nm), Red Edge (730–740 nm), and NIR (770–810 nm). Furthermore, it was also equipped
with an RGB composite sensor, an external irradiance sensor with a global navigation satellite system
(GNSS), and inertial measurement unit (IMU) modules placed on top of the UAV. The irradiance sensor,
which measures the sky down-welling irradiance, was placed on top of the UAV and continuously
captured the sky irradiance at the same spectral bands as the MS camera [50,51]. The IMU allowed
capturing sensor angle, sun angle, location, and irradiance for every image taken during the flight.
This data was mainly used for image calibration. The UAV flights were carried out three times as
follows: 23 November 2018, the second on 19 December 2018, and the last on 18 January 2019. The first
two dates, as shown in Figure 2, concerned the phase of the crop cycle of the full development of
harvestable vegetative plant parts. In this phase, crucial operations were carried out, such as a large
part of the fertilization and phytosanitary treatments. Instead, on the last date of monitoring, in January,
onions were close to harvesting.
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Figure 3. The Parrot Disco-Pro AG fixed-wing unmanned aerial vehicle (UAV) during the pre-flight
calibration using the Parrot Sequoia calibration target.

The procedure performed for field surveys was similar to the one shown in Messina et al. [52,53].
In the field, 9 ground control points (GCPs) were placed whose position was geo-referenced using a
Leica RTK GNSS with a planimetric accuracy of 0.03 m. In particular, GCPs were made using 50 cm ×
50 cm white polypropylene panels and covering two quadrants using black cardboard to locate the
point. MS imagery was calibrated using a panel with known reflectance, the Parrot Sequoia calibration
target (Figure 3). In particular, photos of the target were taken before and after the flight, and it was
assumed that the raw sensor data was transformed into percentage reflectance in combination with
the data provided by the solar radiation sensor. All consecutive images were processed via aerial
image triangulation with the geo-tagged flight log and the geographic tags through the software Pix4D
mapper (Pix4D S.A., Switzerland). Following the recommended Sequoia image correction procedure,
corrections were applied to the raw data, generating four single reflectance-calibrated GEOTIFFs.

2.2.2. Satellite Images

Sentinel-2 is managed through the Copernicus Program proposed by the European Union (EU)
and the European Space Agency (ESA). The first satellite was launched in 2015 [54]. Sentinel-2 consists
of two twin satellites, Sentinel-2A and Sentinel-2B, both operating on a single orbit plane but phased at
180º with a temporal resolution of 5 days with this bi-satellite system [55,56].

The Sentinel-2 data consists of 13 bands in the visible, NIR, and short-wavelength infrared (SWIR)
spectral range [55,57] with a spatial resolution of 10 m, 20 m, or 60 m depending on the band. Sentinel-2
images used in this work were the four spectral bands at 10 m spatial resolution in Blue, Green, Red,
and NIR spectra, shown in Table 1. Data were downloaded from the Copernicus Open Access Hub [58]
in level 2A, which provides the bottom of atmosphere (BOA) reflectance images ortho-rectified in
UTM/WGS84 projection.

PlanetScope’s imagery was acquired from the PlanetScope archive [59], which manages the largest
satellite constellation consisting of more than 150 satellites orbiting the Earth. PlanetScope satellites
follow two different orbital configurations [60]. Some satellites are in International Space Station Orbit
(ISS), and they are at a 52◦ inclination at about 420 km of altitude. Other satellites are in the Sun
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Synchronous Orbit (SSO) with an altitude of 475 km (at 98◦ inclination) and have equatorial crossing
between 9:30 and 11:30.

These sensors called 3U CubeSats (Table 1), also called “Doves”, have small dimensions (10 cm ×
10 cm × 30 cm and a weight of 4 kg) and provide daily sun-synchronous coverage images of the whole
Earth landmass [60].

Dove satellites’ CCD array sensor (6600 × 4400 pixels) allows capturing images using three bands
RGB or four (in addition, there is NIR) [61]. PlanetScope imagery has a scene footprint of about
24.4 km × 8.1 km and a ground sample distance of 3.7 m.

PlanetScope imagery we used is the Ortho Scene product (Level 3B), i.e., imagery processed
to remove distortions caused by terrain. Imagery is radiometrically, sensor, and geometrically
corrected [59]. Furthermore, imagery is atmospherically corrected using the 6S radiative transfer model
with ancillary data from the moderate resolution imaging spectroradiometer (MODIS) [62].

Table 1. Characteristics of the multispectral camera and of the satellites whose images were used in
this research.

Platform
UAV SATELLITE

Parrot Disco-Pro AG PlanetScope Sentinel-2

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 27 

 

Platform 
UAV SATELLITE 

Parrot Disco-
Pro AG 

PlanetScope Sentinel-2 

    
Camera Parrot Sequoia 

 
3U Cubesat 

 

Number of channels 
used 

4 4 4 

Spectral 
wavebands (nm) 

Green 550 
(width 40) 

Red 660 
(width 40) 

Red Edge 690 
(width 10) 
NIR 790 

(width 40) 

Blue 464–517 (width 26.5) 
Green 547–585 (width 19) 
Red 650–682 (width 16) 
NIR 846–888 (width 21) 

Blue 426–558 (width 66) 
Green 523–595 (width 36) 
Red 633–695 (width 31) 

NIR 726–938 (width 106) 

Radiometric resolution 10 bit 16 bit 16 bit 

Dimension 
59 mm × 41 

mm × 28 mm 
100 mm × 100 mm × 300 

mm 3.4 × 1.8 × 2.35 m 

Weight 72 g 4 kg 1000 kg 

FOV 
HFOV: 62° 
VFOV: 49° 

HFOV: 24.6 km 
 VFOV: 16.4 km HFOV: 290 km 

Flight quote AGL 50 m 475 km 786 km 
Ground resolution 

distance (GSD) 5 cm 3.7 m 10 m 

Number of images to 
cover the study site 

>1000 1 1 

2.3. Comparison of Vegetation Indices (VIs) from the Three Platforms 

In view of comparing satellite data with UAV data, three satellite images from each satellite 
platform were collected. Images were selected among those available without cloud cover in the days 
closest to those of the UAV surveys, as follows: 1) 29 November 2018, 19 December 2018, and 15 
January 2019 from Sentinel-2 and 2) 23 November 2018, 19 December 2018, and 19 January 2019 from 
PlanetScope (Figure 2). The soil adjusted vegetation index (SAVI) was chosen to analyze the 
vegetative vigor of onion cultivation. SAVI was developed by Huete [63] to minimize the effects of 
soil background on the vegetation signal by inserting in the normalized difference vegetation index 
(NDVI) formula a constant soil adjustment factor L [64], according to the following formula: = ( 1 −  )( 1 + + ) (1 + )  

 

(1)

where L is the constant soil adjustment factor, and it can assume values between 0 and 1, depending 
on the level of vegetation cover, and ρ is the reflectance at the given wavelength.  

The SAVI, belonging to the family of soil-corrected vegetation indices [65], is suitable to further 
reduce the background contribution reflectance by facilitating the identification of plants and their 
discrimination from the soil.  

In this case study, the species monitored, onions, have thin and small leaves, especially in the 
early and middle stages of growth (mid-August-October, Figure 2), and in monitoring their growth, 
it is difficult to effectively extract the images from the background [16]. SAVI was calculated at the 
native MS band's resolution of each sensor (5 cm for UAV, 3 m for PlanetScope, and 10 m for Sentinel-
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2.3. Comparison of Vegetation Indices (VIs) from the Three Platforms

In view of comparing satellite data with UAV data, three satellite images from each satellite
platform were collected. Images were selected among those available without cloud cover in the
days closest to those of the UAV surveys, as follows: 1) 29 November 2018, 19 December 2018,
and 15 January 2019 from Sentinel-2 and 2) 23 November 2018, 19 December 2018, and 19 January
2019 from PlanetScope (Figure 2). The soil adjusted vegetation index (SAVI) was chosen to analyze the
vegetative vigor of onion cultivation. SAVI was developed by Huete [63] to minimize the effects of
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soil background on the vegetation signal by inserting in the normalized difference vegetation index
(NDVI) formula a constant soil adjustment factor L [64], according to the following formula:

SAVI =
(ρNIR1− ρRed)

(ρNIR1 + ρRed + L)
(1 + L) (1)

where L is the constant soil adjustment factor, and it can assume values between 0 and 1, depending on
the level of vegetation cover, and ρ is the reflectance at the given wavelength.

The SAVI, belonging to the family of soil-corrected vegetation indices [65], is suitable to further
reduce the background contribution reflectance by facilitating the identification of plants and their
discrimination from the soil.

In this case study, the species monitored, onions, have thin and small leaves, especially in the early
and middle stages of growth (mid-August-October, Figure 2), and in monitoring their growth, it is
difficult to effectively extract the images from the background [16]. SAVI was calculated at the native
MS band’s resolution of each sensor (5 cm for UAV, 3 m for PlanetScope, and 10 m for Sentinel-2).
The various SAVI maps were used to describe and assess the variability within the onion field, as also
shown in Khaliq et al. 2019 [66].

Descriptive statistics and histograms, calculated with R software, were used for a preliminary
comparison of image data with native image resolutions. The degree of correlation between pairs of
SAVI maps was then investigated using Pearson’s correlation coefficients. Initially, three comparisons
were made taking into account the three dates investigated: a correlation between UAV (images
resampled at 3 m resolution) and PlanetScope, a correlation between PlanetScope (images resampled
at 10 m resolution) and Sentinel-2, and, finally, a correlation between UAV (images resampled at 10 m
resolution) and Sentinel-2.

Then, to investigate the relationships between crop and soil cover, further correlation analyses
were performed between the UAV SAVIs, including only onions and only soil and the SAVIs from the
two satellite platforms.

2.4. Image Segmentation and Classification

A GEOBIA process was developed to explore the potentiality of UAV images in discriminating soil
coverage types and in producing other UAV SAVI maps for the subsequent comparison. Considering
the type of crop and the structure of the field, which imply the presence of portions of soil, clearly
visible from above, both among the plants and in the paths used for the passage of agricultural vehicles,
classification was performed to separate crop and soil. Firstly, to extract the onion crop, the GEOBIA
image classification procedure was performed. The classification was developed considering only the
spectral response of the vegetation in the different bands. The first step performed in the GEOBIA
procedure was the segmentation of the image. It is a fundamental prerequisite for classification/feature
extraction [67] and foresees the segmentation of the image into separate, non-overlapping regions [68],
then extracted in the form of vectorial objects.

Segmentation, which consists of dividing objects into smaller ones and creating new ones, altering
the morphology of the previously existing ones, takes place according to precise rules. Segmentation’s
algorithm used is the multiresolution algorithm [69].

This algorithm operates by identifying single objects, having a size of a pixel, and merging them
with the nearby objects following a criterion of relative homogeneity while minimizing the average
heterogeneity [70]. The homogeneity criterion is linked to the combination of the spectral and shape
properties of the original image’s objects and of those of “new” objects obtained by the merging process.
Homogeneity criteria are regulated by two parameters: shape and compactness.

The setting of the shape parameter concerns the importance\weight given by the segmentation
process to the shape of objects with respect to color. The shape parameter can assume a value between
0 and 0.9. Color homogeneity derives from the standard deviation of spectral colors. Indeed, shape
homogeneity results from the deviation of a compact (or smooth). Color and shape are linked,
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and the value or weight given by the user to the shape parameter determines different results of
the segmentation.

In particular, the higher is the chosen value (between 0 and 0.9), the higher the influence of
shape, with respect to the color, in the segmentation, and vice versa [71]. Compactness is the second
adjustable parameter and determines the importance of shape with respect to the smoothness. It results
in the product of width and length calculated on numbers of pixels [72]. The third parameter is
the scale. The scale parameter determines the final size and dimension of the objects resulting from
segmentation [67,73].

Attributing higher values or smaller values of scale parameter generates larger and smaller objects,
respectively. Since the size of the objects depends on this parameter, it indirectly defines the maximum
allowed heterogeneity for the obtained image objects. In addition, different weights can be attributed
to the several input data (i.e., band layers). To perform the segmentation, the following parameters
were chosen: 0.1 for shape, 0.5 for compactness, 0.3 for scale parameter, and weight 1 assigned to layers
that correspond to the bands provided by Parrot Sequoia: Green, Red, Red Edge, and NIR.

Before choosing these parameters, some trial-and-error tests were performed, attributing different
values to the segmentation parameters until the segmentation considered better (based on visual
interpretation) was obtained. It was essential, in this case, to obtain segments that would allow the
single plants to be distinguished.

After completing the segmentation phase, the onion crops were classified based only on a SAVI
threshold value of ≥0.25. The value was chosen as a result of some trial-and-error tests and judged
better based on visual interpretation of its ability to detect plants, following the methodology used in
Modica et al. (2020) [74].

The data obtained concerning the vegetation coverage of the field was used to create a mask
(and a second for the soil) to be applied to the map. The masks obtained by exporting a vector file
containing only the class “onions” were applied to the UAV images at their native resolution with the
aim to obtain only parts of orthomosaics concerning the onion crop.

In order to evaluate the presence of pure and mixed pixels of the vegetation class in Sentinel-2 and
PlanetScope images, a spatial analysis procedure was developed in eCognition. First of all, shapefiles
containing vector grids matching the pixel size of the Sentinel-2 and PlanetScope images were prepared
on eCognition using a chessboard segmentation.

These grids were then superimposed on the classified UAV images at an upper level of the hierarchy.
Several levels of segmentation constitute a hierarchical structure in the GEOBIA paradigm [75], and in
our case, the super-objects (the grids) belonged to the upper level and included the vegetation class
present in the lower level as a sub-object. Following this procedure, the area percentage occupied by
the class “onion” within each pixel at Sentinel-2 and PlaneScope resolutions was calculated.

3. Results and Discussions

SAVI calculated at the native MS band’s resolution of each sensor is shown in Figure 4. Considering
the imagery of November, UAV SAVI’s value ranged from 0 to 0.4, PlanetScope SAVI’s value ranged
from 0.15 to 0.5, while Sentinel-2 SAVI’s value ranged from 0.15 to 0.8. In December, UAV SAVI’s value
ranged from 0 to 0.7, PlanetScope SAVI’s value ranged from 0.3 to 0.9, and Sentinel-2 SAVI’s value
ranged between 0.15 and 1.

Lastly, in January, as far as the UAV was concerned, the range was similar to that of the previous
month, while SAVI’s value ranged between 0.15 and 0.8 and from 0.3 to 1 in PlanetScope and
Sentinel-2, respectively.
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Figure 4. SAVI (soil adjusted vegetation index) maps, showing onion crop, derived from the platforms
UAV (top), satellite PlanetScope (center), and Satellite Sentinel-2 (bottom) at their native resolutions
(5 cm for UAV, 3 m for PlanetScope, and 10 m for Sentinel-2).

The histograms reported in Figure 5 show the frequency distribution of SAVI values as a percentage
of the total values and using the native resolution of each imagery. The histograms showed interesting
differences between the three platforms used and differences also between the datasets of the same
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platforms. In general, histograms showed a reduced range of values in UAV images when compared
to the broader ranges of Planetscope and, especially, Sentinel-2.
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UAV SAVI average had values of 0.11, 0.14, and 0.19 in November, December, and January,
respectively (Table 2). As for PlanetScope images, the mean value of the SAVI was 0.27, 0.53, and 0.48
in November, December, and January, respectively. In Sentinel-2 images, the mean value of the SAVI
index was 0.36 in November, 0.42 in December, and 0.59 in January.

Table 2. Basic statistics considering images of the three platforms (UAV, PlanetScope, and Sentinel-2) at
their original resolution.

Date Platform Number of
Pixels SAVI Mean SAVI Standard

Deviation SAVI CV (%)

November 2018
UAV 28,132,559 0.112 0.07 62.5

PlanetScope 8118 0.276 0.09 32.6
Sentinel-2 696 0.360 0.12 33.3

December 2018
UAV 28,132,559 0.142 0.10 70.4

PlanetScope 8118 0.536 0.13 24.2
Sentinel-2 696 0.420 0.15 35.7

January 2019
UAV 28,132,559 0.199 0.11 55.2

PlanetScope 8118 0.484 0.14 28.9
Sentinel-2 696 0.590 0.16 27.1

SAVI varied among different platforms, increasing its value from imagery with a higher resolution
(UAV) to those with the lowest (Sentinel-2). However, even though the satellite and the UAV maps
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had different index ranges, it was possible to see some similarities in the distribution of vigor in the
onion field. The SAVI values of UAV and PlanetScope showed a high correlation, with values between
0.82 and 0.86 (Figure 6). Similar correlations resulted from the comparisons with Sentinel-2 imagery.
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months surveyed.

This was highlighted by similarities in the localization of some areas of greater or lesser vigor
of the field. This was evident by imagining to divide the image into two parts: in the upper part,
there were areas of less vigor, while in the lower part, there were areas of the field with high vigor.
Therefore, the satellites showed that they were capable of assessing the general conditions of the field.

However, it is essential to remember that the heterogeneity of the surfaces analyzed in terms of
land cover (rows, inter-rows, and paths) and the spatial resolution of Sentinel-2 imagery implies that
a single pixel is made up for the most part of rows, inter-rows, and paths used for the passage of
agricultural machines [76].

Evaluating the spectral resolution of the three platforms, taking into account the coefficient of
variation (CV), there was a clear difference between the CV of UAV images and that of satellites,
as shown in Table 2. Considering the UAV imagery, CV had a value of 62% in November, 70% in
December, and 55% in January, while the CV in satellite imagery ranged between 24% and 35% in the
three months/datasets. In general, there was an increase in the CV in low (satellite) to high resolution
(UAV) imagery. However, the increase in CV was not accompanied by a greater range of SAVI values in
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UAV images compared to those of the satellites. This was also confirmed by higher standard deviation
values in satellite imagery than those of the UAV.

The onion crop surveyed is a highly heterogeneous crop characterized by the alternation of plants
(higher values), inter-rows, and bare soil of background (lower values). The 5-cm very high-resolution
of UAV images detected the oscillation of these values, allowing a distinction between plants and
soil. On the other hand, the discontinuity between plants and bare soil was not detected by the lower
satellites’ resolution that averages plants and bare soil reflectance values, therefore resulting in a
narrow distribution.

Regarding the degree of correlation between pairs of SAVI maps based on Pearson’s correlation
coefficients, observing the coherence between SAVI maps of the UAV (resampled at 3 m) and PlaneScope
satellite platforms (Figure 6), high correlations emerged in the three months with r index values of 0.84
in November, 0.86 in December, and 0.82 in January. A similar correlation was found when comparing
Sentinel-2 and UAV in November (0.81). Higher values were that of December and January, 0.9 and
0.88, respectively.

By comparing PlanetScope images with those of Sentinel-2, the highest correlation values could
be observed in each month, compared to previous correlations with 0.84, 0.94, and 0.92 in November,
December, and January, respectively. Indeed, even comparing visually at their respective resolutions
(Figure 4), this was highlighted by similarities in the localization of some areas of greater or lesser vigor
of the field.

The results obtained from the correlations of the UAV images, resampled first at 3 m and then at
10 m, seemed to indicate a certain coherence between the information provided by the three platforms.

With the aim of obtaining a more comprehensive picture of the analyzed crop, the SAVI index
was also calculated by classifying the onion crop and the soil separately, using the UAV imagery
as reference.

Therefore, we obtained, on the one hand, crop pixels (i.e., SAVI onions) and, on the other hand, bare
soil pixels observed in the inter-rows and the paths (i.e., SAVI soil). This allowed taking into account
the presence of mixed spectral pixels, dependent on the spatial resolution [77], and more evident,
considering the size of the pixels compared to the object of study, in PlanetScope and Sentinel-2 images.

Then, further correlation analyses were performed to analyze the ability of platforms to provide
information on crop and soil. Observing the correlation between SAVI onions and PlaneScope (Figure 7),
values were 0.61 in November, 0.84 in December, and 0.7 in January. The analysis of the correlation
between SAVI onions and Sentinel-2 (Figure 7) showed the following values: 0.63, 0.83, 0.77 in
November, December, and January, respectively. The lower correlation in November values found
with both satellites could be explained by a lower crop coverage compared to the soil, unlike December,
where there was an increase in coverage.

Observing the correlation between SAVI soil and PlaneScope (Figure 8), values were 0.56 in
November, 0.24 in December, and 0.28 in January. The analysis of the correlation between SAVI soil
and Sentinel-2 (Figure 8) showed similar following values: 0.55, 0.31, 0.25 in November, December,
and January, respectively. The correlation values in December and January were quite similar, while the
highest value was found in November. This probably confirmed what was said before, considering
that in November, the bare soil was prevalent within the scene compared to the crop. The results
obtained confirmed what was shown in Khaliq et al., (2019) [66]. In particular, satellite imagery showed
some limitations, indirectly providing reliable information concerning the status of the crops where
the crop radiometric information can be altered by the presence of other sources like the soil, in this
case, which in the month of November is predominant. In the following months, lower correlation
values were due to a smaller presence of bare soil, compared to parts of the field completely covered or
sporadically covered by the crop.
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The aspect of the influence exerted by the different types of coverage on the pixel signal was
related to spectral mixing pixels. This was a problem that concerned lower resolution images, i.e.,
those of PlanetScope and Sentinel-2. Using the onion class mask extracted from the UAV images,
the percentage of area occupied by vegetation (onion) within the PlanetScope and Sentinel-2 pixels
was calculated and is shown in Figure 9.
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Figure 9. Maps showing onion crop area, derived from the UAV imagery (top), and the percentage
of area covered by onion crop within PlanetScope’s (center) and Sentinel-2’s (bottom) pixels at their
native resolutions (3 m for PlanetScope, and 10 m for Sentinel-2).

Pixels in orange contained a percentage of the pixel area occupied by vegetation between 0 and
10% and could be assimilated to pure pixels of bare soil. On the other hand, pixels in dark green could
be assimilated, with a percentage of the pixel area occupied by vegetation between 90 and 100%, to pure
pixels of vegetation. The remaining pixels, colored with different shades of green, were mixed pixels.
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A preponderant presence of orange pixels and, therefore, bare soil was easily visible in PlanetScope
and Sentinel-2’s maps of November.

On the other hand, pure pixels of vegetation were mostly present in the maps of the following
months, as a natural consequence of the course of the cultivation cycle. During these months, when the
crop was regularly growing and the underlying soil cover capacity was improved, there were many
pure pixels of vegetation. This happened especially in PlanetScope images, whose pixels covered
an area of 9 m2 each. After all, the smaller the pixel size, the less likely it was that a pixel contained
more coverage types. Fewer pure pixels were present in Sentinel-2 images, whose pixels had a size of
10 m × 10 m.

A correlation analysis between SAVI values and the percentage of area covered by onion crop
within PlanetScope’s and Sentinel-2’s pixels was performed in order to deepen the aspect related to the
presence of mixed pixels (Figure 10). Regarding PlanetScope images, the highest value was that of
November with 0.86, probably explained by a predominant presence of pure pixels of bare soil. In the
following months, the value obtained was 0.7; fewer pixels of bare soil were present, but the pure
pixels of vegetation increased. This trend was similar in the correlation between Sentinel-2 images,
but the values were lower: 0.74 in November, 0.6 in December, and 0.59 in January. In these images,
the problem of mixed pixels was more pronounced.
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Finally, we produced the SAVI maps using the images surveyed of the considered three months
and for all the three platforms (Figure 11). With this aim, the UAV and PlanetScope maps were
resampled at Sentinel-2’s 10 m geometrical resolution.

Looking at the map, the main effect of resampling UAV images was evident: the impossibility of
distinguishing the details, which permit to discriminate among the crop, the soil, and the inter-rows.
The resampling of the UAV images to a coarser spatial resolution, resulting in fewer pixels, had the loss
of information related to the different SAVI values of rows, inter-rows, and paths as its main visible
consequence. Indeed, the upscaling of spatial resolution has the consequence of erasing the details
of the original data [78]. Increasing pixel size determines the decreasing of spatial variability of a
vegetation index, as shown in Tarnavsky et al., (2008) [79]. Besides, radiometric resolution influenced
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VIs’ dynamic range. Indeed, observing SAVI in Figure 11, differences between platforms in the range
of the index values appeared immediately evident. What was evident at first glance was the difference
between the SAVI values of the UAV images when compared to the images of the two satellites, as a
result of lower spectral variability in UAV images.
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Figure 11. SAVI maps, showing onion crop with 10 m resolution, derived from the platforms UAV
(top), satellite PlanetScope (center), and satellite Sentinel-2 (bottom).

As far as UAV images were concerned, the lowest values were close to 0, while the highest values
were 0.3 in November and December and 0.4 in January. Looking at the PlanetScope images instead,
the highest values reached by the SAVI were 0.5, 0.9, and 0.8 in November, December, and January,
respectively. In the Sentinel-2 images, there were minimum values higher than those of the other
platforms, between 0.2 (from November) and 0.3 (in January). The maximum values reached by the
SAVI were 0.7, 0.9, and 1 in November, December, and January, respectively. One important aspect must
be stressed. The trend of the SAVI, proceeding from November, two months after the transplantation,
until January, period close to the onion harvest, was the same regardless of the platform used. The same
trend was confirmed by comparing the bands of the SAVI highlighted in the spectral signatures derived
from pure pixels of onion in the three periods (see Figure A1 of the Appendix). The SAVI increased
progressively from November to December and January.
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This aspect appeared less apparent when looking at the UAV images resampled due to the loss of
information. However, the SAVI calculated on the lower resolution images of the satellites had higher
values from the dominant green color of the relevant vigor maps. While it is not clear how differences
in spatial resolution affect VIs values under field conditions, some studies have demonstrated this
effect by comparing different satellites [80–85], showing that VIs values are higher in coarser spatial
resolution images. Factors responsible for inter-sensor VIs variations can be several [85]. Firstly,
the calibration procedure may cause inter-sensor SAVI variations. Calibration provides precision and
correctness to the data derived from a sensor so that all the datasets obtained from the same sensor can
be compared. Algorithms used for calibration, including those useful for radiometric correction, are
different between one sensor and another. These uncertainties remain when VIs produced by different
sensors are compared [86,87]. However, as far as the calibration aspect is concerned, Sentinel-2’s
images are better than PlanetScope [88]. Obviously, the technological differences between the sensors
used by the UAVs and those present on the satellites cannot be ignored. Other variations can be due to
the lack of bandwidth correspondence, as shown in Gallo and Daughtry (1987) [89] and Teillet et al.,
(1997) [90]. Besides, the differences in the spatial and radiometric resolution of the several sensors must
also be taken into account [85]. Therefore, since there are several factors responsible for the differences
between the sensors concerning the values of the vegetation indexes, it must be taken into account that
these differences are not necessarily attributable to a single factor. It is rather prudent to consider all
the cumulative effects of factors on VIs [85].

In addition to the maps with 10 m resolution, another was made, including the SAVI computed
only on the onion crop. This was done in order to evaluate the contribution made by the UAV images.
As shown, the UAV images proved useful for a separation between vegetation and soil due to obvious
limitations (related to the size of individual plants) due to the spatial resolution of the satellites.
The maps were produced using the masks produced on eCognition, already shown in Figure 12.
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performed using eCognition Developer. Dataset of 23 November 2018.
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In particular, the masks obtained by exporting a vector file containing only the class “onions” were
applied to the UAV images at their native resolution with the aim to obtain only parts of orthomosaics
concerning onion crop. As a result, parts of the scene occupied by soil were excluded from the
onion’s map.

Observing SAVI maps (Figure 13), applied to UAV images, considering only the part of the
imagery occupied by onion crop, the index for three months surveyed was between 0 and 0.9.
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Figure 13. SAVI maps from November 2018 (top) to January 2019 (bottom). Next to the image of each
dataset, blue and magenta rectangles magnify the details of the vegetative vigor of onion crops in two
different parts of the field and where the transplanting took place with three weeks apart. The ellipses
highlight areas of the field where the onion crops showed a low vegetative vigor.
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The values for November were the lowest. This could be since the crop was still in the early stages
of the cultivation cycle. Besides, during the segmentation phase, the software was not always able to
correctly separate the vegetation from the background. It was conceivable that the lower values in the
map could be traced back to the underlying terrain. Considering the map of December, the values
were higher than the previous month. In the portion of the field where the transplant took place
in mid-September, the index values were lower and were between 0.15 and 0.45. There were also
evident areas where vegetation was challenging to grow, as shown in Messina et al. (2020) [52]. In the
portion of the field in an advanced stage of cultivation, the values were higher. In particular, the values
were between 0.45 and 0.9. The contrast of colors between the two areas of the field with different
transplanting times was evident. The January map showed an increase in SAVI values where the crop
was at a near harvest stage.

Vigor maps produced were useful to investigate areas of the field where the crop was struggling
to grow, providing the farmer with potentially helpful information. Indeed, as shown in Figure 13,
we could well distinguish areas (white, in the absence of data) where the crop seemed not to be
present. In November, this area was higher than in the following months. Being in the month of
November at the initial stages of growth, many plants, probably still too small, were not identified
by the classification software, and also given the structure of the epigeal part of the onion, especially
in this phase, would have required a resolution equal to or higher than 4 cm. In fact, in the month
of December, many of the voids present in November were filled. However, some areas of the field,
where the crop remained absent, were circled in black. These voids persisted in the month of January
and were probably indicative of a problem of stunted growth due to several possible causes. These
causes might be attributable to the action of abiotic agents, such as water stagnation, nutrient deficiency,
or maybe the presence of a disease. In essence, beyond the values assumed by the index, the UAV had
risen usefully and was able to identify the individual plants. Where this had not happened, we found
voids. These voids could be explained either by the complete absence of the plants or by plants that
were poorly cultivated or have had difficulty growing. So, this vigor map indirectly provides an
indication to the farmer. This information could be used, for example, for localized fertilization or the
grubbing up of diseased plants.

When comparing the strength maps of the different platforms, the satellites, considering the
altitude in which they are located, provide images characterized by a coarser resolution but applicable
for monitoring large areas and still able to recognize the variation in vegetation growth and health
crop status [91]. In addition, as shown in this study, they are often characterized by a higher spectral
variability and greater temporal and spatial reliability in the range of values assumed by the index,
also taking into account a consolidated (in the case of Sentinel-2) calibration method. In addition,
the SWIR band with which Sentinel-2 is equipped allows the calculation of other indices useful for
monitoring, such as the normalized difference moisture index (NDMI) [92].

On the other hand, low altitude RS by using UAV is confirmed to be a useful tool in PA. In PA,
considering agricultural monitoring, repeatable and timely information on variability within the field
has a specific utility [3,93] as it allows to optimize production efficiency through sustainable and
spatially explicit management practices [94,95]. In the present case study, some details of Figure 13
were made evident only by the vigor map derived from the UAV images. This is evident, given the
inability of satellites to discriminate against specific details of the field, such as inter-row paths, as also
shown in [49,66,96], which implies that the value of a VI within a pixel is necessarily derived from
the average of the crop and inter-row information. It is also necessary to take into account the limits,
due to their spatial resolution, which prevent satellites from highlighting problems located in areas
whose area is less than the minimum identifiable by them.

4. Conclusions

This article dealt with a comparison between images of onion crops derived from three different
platforms—a UAV and two satellites—one free medium resolution platform and the other low-cost,
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high-resolution platform. The comparison was mainly based on the analysis of the spatial resolution
differences and the effects they may have on data quality in a PA context. For this reason, vigor maps
were generated using the SAVI index and resampled at the lowest resolution of the satellite Sentinel-2.

Regarding the comparison between UAVs and satellites, the introduction of relatively new
platforms, including nano-satellites, equipped with sensors that provide high or ultra-high resolution
images, less than 3 m and 1 m, respectively, makes satellites increasingly competitive with UAVs in PA
applications. The feature that makes the latter unique is that they can mount several types of sensors
simultaneously [13]. Otherwise, considering all the platforms available, there is probably not yet one
that can provide high spectral, spatial, and temporal resolution images [97]. Actually, simultaneous
requirements for ultra-high spatial resolution images (<10 m) with almost daily time resolution can
only be met by targeted acquisition via commercial programmable multi-sensor systems, such as
WorldView, with an MS resolution of about 1 m. At the same time, Sentinel-2 is currently the finest
resolution MS imaging mission in open source image data. In the case study, taking into account the
characteristics of the crop, a resolution of less than or equal to one meter was preferable for more
accurate data collection.

This article confirmed the results of other studies that have highlighted the role of high-resolution
satellites in crop monitoring on a large scale. On the other hand, some limitations and uncertainties
emerged in this case study where there is a need to discriminate localized conditions of inhomogeneity
in the field, determined by abiotic or biotic stresses. This can be important in order to plan remedial
interventions, such as localized application of pesticides, herbicides, and fertilizers. In this case,
the images provided by UAVs made the difference, proving to be useful in guiding agronomic localized
operations, such as fertilization and phytosanitary treatments. In the present case study, the monitoring
regarded a crop, such as onion, characterized mainly in the early stages of the crop cycle by the
small size and a non-homogeneous soil cover capacity. It is necessary to specify that better results in
monitoring with UAVs could be obtained with higher resolution images than the one used; therefore,
below 4 cm. As for a more accurate comparison of the quality of the data provided on the vegetation
index values, it would be interesting to make a further comparison, in the same context, by including
higher-priced cameras. Considering the overall results of the comparison carried out, it emerges that
the contribution made by each platform must be regarded as complementary to that made by the other
and not sufficient by itself in the accurate monitoring of the crop under study. This is true in light of
the limitations shown by each platform.

Considering contexts similar to the one presented, the frequent use of the UAV for weekly
monitoring could be uncomfortable and expensive if executed in several fields, perhaps not too large
and spaced out from each other. In this regard, in these cases, it would be easier to use satellite
images to check the general conditions of the field, interspersed with the use of more detailed UAV
images at critical moments in the crop cycle. The advisable solution is not the use and preference of
one platform over another. Therefore, a combination of different platforms, taking into account the
level of information quality that each one can give, is desirable when the proper technical knowledge
is available. In order to overcome the limitations of all the platforms described above, it would be
desirable to combine UAV images (preferable with higher than 4 cm of resolution) with high-resolution
satellite images to improve the overall quality of the final products. To be able to deepen the aspect
related to the comparison between the different platforms, it would also be interesting to test the
proposed approach on other crops.
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