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Abstract: A lack of long-term soil wind erosion data impedes sustainable land management in
developing regions, especially in Central Asia (CA). Compared with large-scale field measurements,
wind erosion modeling based on geospatial data is an efficient and effective method for quantitative soil
wind erosion mapping. However, conventional local-based wind erosion modeling is time-consuming
and labor-intensive, especially when processing large amounts of geospatial data. To address this
issue, we developed a Google Earth Engine-based Revised Wind Erosion Equation (RWEQ) model,
named GEE-RWEQ, to delineate the Soil Wind Erosion Potential (SWEP). Based on the GEE-RWEQ
model, terabytes of Remote Sensing (RS) data, climate assimilation data, and some other geospatial
data were applied to produce monthly SWEP with a high spatial resolution (500 m) across CA
between 2000 and 2019. The results show that the mean SWEP is in good agreement with the
ground observation-based dust storm index (DSI), satellite-based Aerosol Optical Depth (AOD),
and Absorbing Aerosol Index (AAI), confirming that GEE-RWEQ is a robust wind erosion prediction
model. Wind speed factors primarily determined the wind erosion in CA (r = 0.7, p < 0.001), and the
SWEP has significantly increased since 2011 because of the reversal of global terrestrial stilling in
recent years. The Aral Sea Dry Lakebed (ASDLB), formed by shrinkage of the Aral Sea, is the most
severe wind erosion area in CA (47.29 kg/m2/y). Temporally, the wind erosion dominated by wind
speed has the largest spatial extent of wind erosion in Spring (MAM). Meanwhile, affected by the
spatial difference of the snowmelt period in CA, the wind erosion hazard center moved from the
southwest (Karakum Desert) to the middle of CA (Kyzylkum Desert and Muyunkum Desert) during
spring. According to the impacts of land cover change on the spatial dynamic of wind erosion,
the SWEP of bareland was the highest, while that of forestland was the lowest.

Keywords: wind erosion modeling; RWEQ; GEE; central Asia; spatial-temporal variation;
land degradation

1. Introduction

During the past few decades, global climate change and human disturbance have meant that
land degradation has become one of the most serious environmental problems of the 21st century [1].
Despite the lack of strong political will, the land degradation problem has attracted much attention
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throughout the world [2]. As of today, over 120 countries have committed to the Land Degradation
Neutrality (LDN) Target Setting Programme, which strives to achieve a land degradation neutral
world before 2030 [2]. Soil erosion is the major global soil degradation threat to land, freshwater,
and oceans [3]. More than 83% of the global extent of land degradation is caused by soil erosion [4].
Because of human activities and climatic variations, the soil erosion can cause topsoil loss, which leads
to land degradation requiring centuries to recover, such as soil productivity loss and the thinning out
of vegetative cover [5,6].

In the arid land, wind plays a more important role than water in removing the fertile topsoil,
which requires centuries to build up [1]. The escalating loss of topsoil by wind erosion is a potential
threat to sustainable agriculture, which is closely related to food security [7]. The soil organic matter
and several other soil nutrients in the topsoil easily blow away due to strong near-surface wind, and in
turn, the soil fertility and plant productivity are decreased. According to a report from the European
Soil Data Center (ESDAC), about 28% of the global land degradation area suffers from the wind-driven
soil erosion process [8]. Therefore, wind erosion is considered a significant threat to food security and
human health, especially in arid and semi-arid regions of the world [9,10]. In addition, the hazard of
sand and dust storms is one of the most severe consequences of wind erosion. Wind-blown soil particles
and chemicals that lead to air pollution can affect the human respiratory system [11]. Therefore, the
ability to accurately simulate and predict soil wind erosion is essential for land degradation control,
suitable agricultural management, and sandstorm prevention, especially in arid regions.

As one of the largest land-locked arid regions, Central Asia (CA) has a critical need to combat
desertification [12]. Moreover, CA has suffered from the most frequent sandstorms due to the frequent
strong wind, limited rainfall, low vegetation coverage, and intense human disturbance [13]. Among
those factors, it is generally accepted that the near-surface wind speed plays a vital role in wind
erosion dynamics [14]. The need to investigate the soil wind erosion potential over CA is of great
importance and brings unique challenges of large-scale wind erosion modeling and insufficient ground
measurements [15,16]. Researches on the near-surface wind speed have revealed that there has been
a global declining trend of the near-surface wind speed since the 1970s, which is known as global
terrestrial stilling [14,17–19]. Affected by global terrestrial stilling, Li, et al. [20] found that the soil
wind erosion modulus exhibited a declining trend across CA between 1986 and 2005. However, recent
studies found a reversal in global terrestrial stilling around 2010 [21–23]. Furthermore, little is known
about the wind speed variability across CA after 2010, let alone the impact of the reversed stilling on
the wind erosion dynamic [20,24]. Additionally, existing researches cannot produce continuous high
spatial-temporal resolution near-real-time (NRT) wind erosion products of the entire CA, especially for
recent years [20,25]. These kinds of wind erosion maps are critical for ecological protection and land
use practice in CA.

Wind erosion is a complex physical process controlled by both natural factors and human
activities, and normally includes the wind speed, soil characteristics, surface roughness, vegetation
cover, agricultural activities, and so on [14,26–30]. It is well-established that three conditions including
strong enough wind, susceptible soil surface, and no surface protection by vegetation cover or snow
cover, are required for soil wind erosion to occur [31]. The measurement of wind erosion has always
been a major obstacle in wind erosion research. According to the literature, two categories of prominent
methods, including the 137Cs tracing technique and wind tunnel experiment, can estimate wind
erosion more precisely [32,33]. However, they have limitations in that the measurement involves
labor-intensive work and hardly describes the spatial variation of wind erosion. Additionally, due to
the complex physical processes and driving mechanisms of wind erosion, it is still difficult to monitor
the process and conduct quantitative measurements on wind erosion on a large-scale. Over the past
few decades, substantial efforts have been made in terms of investigating the mechanism and driving
factors of wind erosion. Based on small-scale regional field studies and wind tunnel experiments,
several quantitative assessment models of wind erosion have been developed [34–38]. Since the
scientific investigations of Bagnold [38] on the wind erosion prediction technology in 1941, soil wind
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erosion models ranging from empirical-based to physics-based models, have been put forward.
The most accepted models developed to quantify soil wind erosion include Wind Erosion Equation
(WEQ) [39], Revised Wind Erosion Equation (RWEQ) [37], Wind Erosion Prediction System (WEPS) [40],
Single-event Wind Erosion Evaluation Program (SWEEP) [41], Erosion Productivity Impact Calculator
(EPIC) [42], Agricultural Policy/Environmental eXtender (APEX) [43], Texas Erosion Analysis Model
(TEAM) [44], and Wind Erosion on European Light Soils (WEELS) [45]. Due to the limited parameters
and data that can be obtained, it is difficult for this kind of wind erosion model to simulate soil loss
by wind erosion at a larger geographic scale. In contrast with others, the RWEQ model proposed
by Fryrear, et al. [37] employs a set of mathematical equations to input weather, soils, crops, and
tillage data. Additionally, the RWEQ model has been validated with filed erosion data from 45 site
years in several US states [37]. Due to the limitations of RWEQ input data acquisition, the original
RWEQ was designed to calculate wind erosion loss at a field scale [36]. Zobeck, et al. [46] evaluated
the feasibility of scaling up from fields to regions to estimate the soil wind erosion potential by a
geographic information system (GIS)-based field scale wind erosion model in Texas, US. Chi, et al. [47]
used the RWEQ model to calculate the soil wind erosion modulus based on field sampling point data
regression and remote sensing data over China. Borrelli, et al. [48] developed the GIS-RWEQ model to
evaluate the soil loss potential due to wind erosion in the European Union (EU). Although the RWEQ
model has achieved some success in large-scale applications, a large amount of detailed local geodata
and field work are still required [46–50]. With the development of Remote Sensing (RS) technology and
cloud computing, Near Real-Time (NRT) wind erosion data have become more valuable for guiding
agricultural production in specific areas. The challenge is to integrate global climate reanalysis data
and remote sensing data into the RWEQ model so that it can provide essential knowledge about where
and when wind erosion occurs. Another challenge is to consider processing terabyte geospatial data in
continent-wide wind erosion quantitative mapping. Moreover, considering the limited computing
resources and big data scenarios, it is difficult to use conventional software or programming languages
to conduct computation.

The Google Earth Engine (GEE) platform, which has cloud computing capabilities and a
multi-petabyte catalog of geospatial data, is a perfect tool for executing wind erosion models [51].
In this platform, the open-source geospatial data include RS data, ground observation data, model
simulation data, assimilation data, and so on [52]. GEE’s public data archive includes more than
40 years of historical imagery and scientific datasets, which almost cover the geospatial data needed to
build the RWEQ model; for example, climate data (wind speed, snow depth, soil moisture, and so
on), vegetation cover, soil characters, elevation, etc. These datasets are easily accessible and can
be processed and computed in the Cloud, which means that it is not necessary to download data
locally. In fact, GEE has shown great potential in change detection, mapping trends, and quantifying
differences over the past few years [52]. To date, several studies have been conducted on the GEE
platform from regional scales to global scales, such as large-scale land cover classification, vegetation
monitoring, soil salinity mapping, disaster management, and so on [53–56].

As we discussed above, GEE is a novel and powerful tool for the quantitative mapping of wind
erosion. However, to the best of our knowledge, almost no research has been done to simulate the
soil wind erosion potential by using GEE, especially in CA. Additionally, in the context of the global
terrestrial stilling reversal, it is important to figure out the wind speed variability in CA for the study
of wind erosion in recent years. In view of this, the purposes of this study are (1) to evaluate the
near-surface wind speed trend in CA from 2000–2019, based on multiple source climate data; (2) to
quantify mapping the soil wind erosion potential (SWEP) in CA based on the RWEQ model by using
the GEE platform; and (3) to analyze the monthly and seasonally change of soil wind erosion and the
response of soil wind erosion dynamics to land cover change (LCC). This is the first study to execute
the wind erosion model on the GEE platform. This provides new ideas for the construction and use
of empirical models based on batch geospatial data and high-performance computing. The main
conclusions could be beneficial for desertification control and land resource management in CA.
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2. Study Area and Dataset

2.1. Study Area

The most common definition of CA is the official one of the Soviet Union, which includes the
five former Soviet republics of Kazakhstan (KZ), Uzbekistan (UZ), Turkmenistan (TK), Kyrgyzstan
(KG), and Tajikistan (TJ). The total area of CA is nearly 4 × 105 km2, which is mainly covered with
bareland and sparse vegetation. The landform types of CA are mainly plains and hills. Additionally,
the mountains (Tianshan Mountain, Pamir Mountain, and Altai Mountain), which are known as the
“Water Tower of Central Asia”, are mainly distributed in the southeast [57]. As the Tianshan Mountain
and Pamir Mountain block rain clouds that should enter CA from the east and south, CA is one of
the largest land-locked arid regions in the world [58]. Most of CA lies in an arid climatic zone, which
has low annual precipitation (less than 300 mm), a high air temperature, and strong evaporation.
Five large temperate deserts (Karakum Desert, Kyzykum Desert, Muyunkum Desert, Sarresi-Atyray
Desert, and Aralkum Desert) are distributed from the southwest to middle east (Figure 1). Additionally,
desertification caused by large-scale agriculture practices has been an issue since 1960 and enhanced
climate change presents many economic, social, and environmental problems in CA [15,24,59,60].
The most notorious example is the Aral Sea Crisis, which has been considered to be one of the planet’s
worst environmental disasters of the 21st century [59]. The large-scale construction of irrigation canals
has reduced runoff from Syr Darya river and Amu Darya river into the Aral Sea, which in turn reduced
the Aral Sea surface area from 68,000 square kilometers in 1960 to less than 7000 square kilometers
in 2016 [60]. Meanwhile, a new anthropogenic desert known as Aralkum Desert in the eastern dry
basin appeared in 1960. Salt and dust storms, which are caused by wind erosion occurring in Aralkum
Desert, represent one of the most serious problems for human health and agricultural activities in
CA [16].
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Figure 1. The study area (background image: Moderate-Resolution Imaging Spectroradiometer
(MODIS) NDVI in 2019). It consists of the five former Soviet republics of Kazakhstan (KZ), Uzbekistan
(UZ), Turkmenistan (TK), Kyrgyzstan (KG), and Tajikistan (TJ).
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2.2. Data Collection and Source

The meteorological data included the wind speed, soil moisture, and snow depth, which were
derived from Global Land Data Assimilation System 2.1 (GLDAS2.1) integrating satellite and
ground-based observational products [61]. Three other sets of climate assimilation data, including The
Fifth Generation ECMWF Atmospheric Reanalysis Data (ERA5), NCEP Climate Forecast System
Reanalysis (CFSR), and the Famine Early Warning Systems Network (FEWS NET) Land Data
Assimilation System (FLDAS), were used to investigate the wind speed variability across CA (Table 1).
The soil mechanical composition, soil organic matter, and several other soil properties were obtained
from the Harmonized World Soil Database (HWSD) and OpenLandMap (OLM), which are based on
machine learning predictions from a global compilation of soil profiles and samples. A total of six
standard depths (0, 10, 30, 60, 100, and 200 cm) were divided in the OLM dataset (Table 1), due to the
lack of soil calcium carbonate content data in GEE datasets and based on the finding that a nonlinear
positive correlation exists between the soil pH and soil calcium carbonate [62,63]. Huang, et al. [62]
found that the relationship between the calcium carbonate content and pH value of surface soil in
East Central Asia has the highest R2 when they simulated the factors with an exponential equation.
Liu, et al. [63] found that the soil pH and CaCO3 content have a non-linear positive correlation during
a study conducted in China. Based on more than 15,000 different soil mapping units, we proposed an
exponential equation (Equation (1)) to quantify the relationship between the soil pH and soil calcium
carbonate (CaCO3).

pH = 4.576×CaCO3
0.09089 + 2.378, (1)

where pH is the soil pH of different soil types in HWSD and CaCO3 is the soil calcium carbonate content
in HWSD (%).

Table 1. Data collection and sources.

Data Source Time Spatial
Resolution

Temporal
Resolution

Wind Speed

NOAA GSOD ground
measurement wind speed

(GMWS)
2000–2019 - Daily

GLDAS2.1 * 2000–2019 0.25 degrees 3 h
ERA5 * 2000–2019 0.25 degrees Daily
CFSR * 2000–2019 0.2 degrees Monthly

FLDAS * 2000–2019 0.1 degrees Monthly
Visibility NOAA GSOD 2000–2019 - Daily

Soil
Properties

OLM * - 250 m -

HWSD - 30 arc
seconds -

NDVI MODIS Vegetation Indices
(MOD13Q1) * 2000–2019 250 m 16 days

AOD MODIS MAIAC Land Aerosol
Optical Depth (MCD19A2) * 2000–2019 1000 m Daily

AAI Sentinel-5 Precursor
NRTI/L3_AER_AI * 2019 0.01 arc

degrees Daily

DEM NASA-SRTM * - 90 m -
Land Cover ESA_CCI 2000–2018 300 m Yearly

Note: * means that the dataset can be accessed on GEE.

NDVI was derived from the NASA Terra Moderate-Resolution Imaging Spectroradiometer
(MODIS) Vegetation Indices (MOD13Q1). The National Aeronautics and Space Administration Shuttle
Radar Topographic Mission (NASA-SRTM) provided Digital Elevation Model (DEM) data, which
were used to calculate the slope data. The land cover data were provided by the European Space
Agency (ESA)-based Climate Change Initiative (CCI) 300 m global land cover data products developed
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using the GlobCover unsupervised classification chain and by merging multiple available Earth
observation products.

Ground observation wind speed data (2 m height) were derived from NOAA Global Surface
Summary of Day (GSOD), which includes global data obtained from the United States Air Force (USAF)
Climatology Center. We collected the daily ground measurement wind speed data from more than
400 weather stations in CA. Due to political or other reasons, weather stations in the former Soviet
Union were abandoned and several new weather stations were established between 1990 and 2010 [60].
Most weather stations currently working were established in the 1960s. Therefore, we integrated
ground observations of the wind speed based on 204 weather stations from 2000 to 2019 (Figure 1).
The average wind speed data of all-weather stations were used to study the temporal variation
characteristics of the wind speed in CA. The visibility, data which could be employed to calculate the
Dust Storm Index (DSI), were derived from GSOD. Additionally, the RS technique has provided a
new perspective on the validation of soil wind erosion. Aerosol data included the Aerosol Optical
Depth (AOD) and Absorbing Aerosol Index (AAI), which were used to compare and validate the wind
erosion in this research. AOD was derived from MODIS based on the Multi-angle Implementation of
Atmospheric Correction (MAIAC). Moreover, AAI was derived from the Sentinel-5 Precursor, which
launched on 13 October 2017. Details on the research data are listed in Table 1.

3. Methodology

3.1. GEE-RWEQ

The comprehensive assessment of wind erosion in a large-scale region like CA is complex and
challenging. Dozens of parameters are employed to calculate the soil wind erosion modulus by
using field-scale models, such as WEPS. GEE is a cloud computing platform specially designed to
process raster data, including satellite images, climate assimilation grids, and other geospatial data.
The advantage of the GEE platform lies in the instant access, manipulation, visualization, and real-time
analysis of large amounts of geospatial data [52]. Therefore, the advent of GEE made it possible to
launch global-scale environmental mapping and monitoring programs [53]. This is of great potential for
integrating an environmental model on the GEE platform to build a GEE-based production framework.
Furthermore, most developing countries where resources are limited have suffered from various
environmental problems, including droughts, flooding, deforestation, soil degradation, and dust
storms caused by wind erosion [16,53,64,65]. These countries often lack monitoring sites and networks
for environmental problems, making these problems more serious [64–67]. In this study, by using
multisource geospatial data, we present a fully automated algorithm for mapping NRT monthly wind
erosion dynamics at a global scale using the GEE platform.

Although the computational efficiency should not be a concern in the GEE platform, the limited
ground observation data present a big challenge for simulating soil wind erosion. Therefore, it is
necessary to build a simplified and more practical model that can estimate the SWEP at a large scale
on the GEE platform. Although it has a lower accuracy than mechanistic wind erosion models, this
relatively simple model is not limited by the input data, location, and scale of the study area. RWEQ
has been extensively tested, and good agreements between model results and field measurements
were found in previous studies. In this study, a GEE cloud computing-based RWEQ model was
developed to conduct quantitative mapping of soil wind erosion in a ground measurement limited
area. As mentioned above, based on the progress of Earth observation and numerical modeling,
several parameters that used to be filed, measured, or calculated can be easily acquired on the GEE
platform. Although most of the input parameters are retained in GEE-RWEQ, the soil roughness
factor (K’) is difficult to estimate during farming production on a regional scale. Ouyang, et al. [68]
replaced the soil ridge roughness with the roughness caused by topography, and it was calculated
by the Smith–Carson equation. Because this equation has been widely used in many regions [68–71],
it can applied when the study area is scaled up from a field to a region. Due to the limitations of wind
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erosion estimation based on RS on regional scales, the combined crop factor (C) was simplified based
on previous findings [48–50,68,72].

The GEE-RWEQ involved basic equations, as follows [37]:

SWEP =
2x
s2 Qmaxe−(

x
s )

2
, (2)

Qmax = 109.8×WF× EF× SCF×K′ ×C, (3)

s = 150.71× (WF× EF× SCF×K′ ×C)−0.3711, (4)

where SWEP is the amount of soil wind erosion potential per unit area (kg/m2); Qmax is the maximum
transport capacity (kg/m); x is the distance from the upwind edge of the field (m), set to 55 m for
the study area; s is the critical field length (m); WF is the weather factor (kg/m); EF is the erodible
fraction (dimensionless); SCF is the soil crust factor (dimensionless); K′ is the soil roughness factor
(dimensionless); and C represents combined crop factors (dimensionless).

The weather factor can be calculated as

WF =
SW × SD×

∑N
i−1 u2(u2 − ut)

2
×Nd ×

ρ
g

500
, (5)

where SW is the soil wetness (dimensionless), SD is the snow cover factor (dimensionless), u2 is the
wind speed at 2 m (m/s), ut is the threshold wind speed at 2 m (assumed 5 m/s), N is the number of
wind speed observations (u2 > ut) in the period, Nd is the number of days in the period, ρ is the air
density (kg/m3), and g is the acceleration due to gravity (m/s2).

The erodible fraction (EF) and soil crust factor (SCF) can be calculated as

EF =
29.09 + 0.31Sa + 0.17Si + 0.33 Sa

Cl − 2.59OM− 0.95CaCO3

100
, (6)

SCF =
1

1 + 0.0066(Cl)2 + 0.021(OM)2 , (7)

where Sa is the sand content (%), Si is the silt content (%), Sa/Cl is the sand to clay ratio (%), OM is the
organic matter (%), CaCO3 is the calcium carbonate (%), and Cl is the clay content (%).

The soil roughness factor (K′) can be calculated as [70]

K′ = cosα, (8)

where α is the slope gradient (degree), which can be calculated by the Digital Elevation Model (DEM).
The combined crop factor (C) can be calculated as [70,73]

C = e−0.0483(SC), (9)

SC = (NDVI −NDVIsoil)/(NDVImax −NDVIsoil), (10)

where SC is the vegetation coverage (%), NDVIsoil is the NDVI value of a bare soil pixel, and NDVImax

is the maximum NDVI value of the study area.

3.2. Model Performance Evaluation

Because of the diverse land cover types and large area, it is extremely difficult to measure wind
erosion for a whole region. Additionally, in the past two decades, almost no research has conducted
field measurements on wind erosion in CA. Therefore, validation methods that can evaluate the
reliability of wind erosion model results need to be proposed. Considering that the ground observed
dust storm can indicate the frequency and intensity of wind erosion events, DSI was used to validate
the spatial variation of SWEP.
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DSI was calculated based on the meteorological record-visibility, which can represent the frequency
and intensity of wind erosion events. DSI was first proposed by McTainsh [74] in the National
Collaborative Project on Indicators for Sustainable Agriculture (NCPISA). Based on the relationship
between meteorological records and DSI, O’Loingsigh, et al. [75] used daily visibility data acquired
from 180 long-term meteorological stations to investigate a long-term national wind erosion record
(1965–2011) in Australia. DSI is a methodology employed for monitoring wind erosion based on
long-term daily meteorological observations. At present, it is generally accepted as an indicator of
broad-scale wind erosion rates in Australia, Iran, and Northeast Asia [75,76]. Based on weather codes
relating to wind erosion or visibility, wind erosion events were divided into three categories: (a) Severe
Dust Storms (SDS); (b) Moderate Dust Storms (MDS); (c) Local Dust Events (LDE). The DSI was
calculated using the following equation [75]:

DSI =
n∑

i=1

[(5× SDS) + MDS + (0.05× LDE)]
i

, (11)

where i is ith value of n stations for i = 1 to n, SDS is a severe dust storm (visibility < 200 m), MDS is a
moderate dust storm (200 m < visibility < 1000 m), and LDE is a local dust event (1000 m < visibility <

20,000 m).
Due to the lower population and urban density, soil mineral particles produced by wind erosion

are the main source of atmospheric aerosols in CA [24]. Therefore, the satellite-derived AOD data were
used to evaluate the reliability of SWEP simulated by the RWEQ model. There are several satellite-based
aerosol products, which have different spatial and temporal resolutions, such as CALIPSO Lidar
Tropospheric Aerosol Profiles All sky data, VIIRS/SNPP Deep Blue L3 daily aerosol data, OMI/Aqua
Multi-wavelength AOD Daily data, MODIS MO(Y)D08_M3 Terra (Aqua) Atmosphere Monthly data,
MODIS MCD19A2 Terra & Aqua MAIAC Land Aerosol Optical Depth Daily data, and Sentinel-5P
NRTI AER AI. However, most satellite-based aerosol products have a low spatial resolution and
cannot meet the requirements of quantitative spatial comparisons [77–79]. In this study, we used the
MODIS MCD19A2 dataset at the 0.47 µm blue band, along with the parameter Optical_Depth_047,
which has a spatial resolution of 1 km [79]. Another aerosol dataset named the Absorbing Aerosol
Index (AAI), with a 0.01-degree spatial resolution, was extracted from the Sentinel-5P NRTI AER AI
product. Because the Sentinel-5P was launched on 13 October 2017, the aerosol dataset was released in
10 July 2018 [80]. Therefore, we used the 2019 annual average AAI to compare with the 2019 SWEP in
this study.

3.3. Technical Flowchart of this Study

The Land Cover Change (LCC), which is influenced by both climate change and human activity,
usually affects wind erosion on surface roughness and soil physical and chemical characteristics.
Therefore, we studied the SWEP of different land cover types and SWEP changes caused by the
conversion of different land cover types. In this study, we chose ESA-CCI 300 m global land use
land cover data products developed using the GlobCover unsupervised classification chain and by
merging multiple available Earth observation products. Based on the United Nation Land Cover
Classification System’s (LCCS) plant functional types (PET), the CCI-LC map is classified into 22
land types. According to the study area land characteristics, the land cover types are reclassified into
nine categories based on the look-up table-conversion of CCI-LC classes to PET in the product user
guide [81].

Based on the objective of this study, this manuscript is organized as presented in the technical
flowchart (Figure 2). The research consists of four main steps: First, based on a time-series decomposition
model, the wind speed variability of ground measurement data and reanalysis data was explored;
second, by using multi-source geospatial data, the monthly SWEP across CA was generated based on
GEE-RWEQ, and we explored the spatiotemporal variation of SWEP between 2000 and 2019; third,
based on DSI and satellite-based AOD, validation was conducted to test the reliability of annual SWEP;
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and finally, we investigated the responses of wind erosion to ground measurement wind speed change
and land cover change.
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The ArcGIS10.6 software was implemented for land cover type reclassification in this research.
The Pearson correlation coefficient (r) was calculated in R 3.6.3. The time-series decomposition model
based on the “tseries” package was also run in R 3.6.3. The exponential fitting of the soil pH and soil
calcium carbonate was performed in MATLAB 2018a.

4. Results, Analysis, and Validation

4.1. Variability of the Daily Average Wind Speed across CA

As the key factor of wind erosion, wind speed variability plays a vital role in wind erosion
dynamics. A host of studies have reported that there was a declining trend in the global near-surface
wind speed from 1970 to 2010 [14,17–19]. However, a recent study described an increase in the
global wind speed during a particular year. Zeng, et al. [22] found that, after several decades of
global terrestrial stilling, the wind speed has increased rapidly across the globe since 2010. Although
Zeng, et al. [22] have investigated the global temporal variation of the wind speed, further studies are
required because of the sensitivity of CA to global climate change [60].

To better understand the temporal variations of wind speed, it is possible to decompose wind
speed time series data into sub-components by a time-series decomposition model. In this study,
we used a multiplicative decomposition model, which is more effective when a seasonal value changes
over time [82]. The calculation of this model included the following three steps [83]. The trend
component was first determined and removed from time series by using the moving averages method.
Secondly, the seasonal component was calculated and centered by averaging all periods for each
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time unit. In this study, a time-series decomposition multiplicative model was applied to Ground
Measurement Wind Speed (GMWS) data. Figure 3 shows that the time series data were decomposed
into various sub-components (the trend component, seasonal component, and random component).
According to the trend component of the GMWS time series, we found that there was a significant
decrease during the time period of 2000–2009 and a significant increase trend in the time period of
2009–2014. Moreover, GMWS exhibited steady fluctuations or a slight upward trend after 2014. From
the perspective of quantitative analysis, we calculated the decade change rate of GMWS in these three
time periods based on a linear regression analysis of ordinary least squares (OLS). The analysis shows
that the daily average GMWS decreased significantly at a rate of−0.16 m s−1 decade−1 during the period
of 2000–2009 (p < 0.001). After the turning point of 2009, the increasing rate of 0.42 m s−1 decade−1 was
significantly higher than the decreasing rate during the period of 2009–2014 (p < 0.001). Although the
GMWS shows a slight trend in recent years, the result is not statistically significant (p > 0.05). The time
series of seasonal components indicated that the highest values for the daily average wind speed
occurred during the spring, while the lowest values occurred during the autumn. The relationship
between the daily average wind speed in different seasons is spring > winter > summer > autumn.
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In order to ensure the consistency of the reanalysis data input by the model and the actual
observation data in CA, the trends of four reanalysis data (GLDAS2.1, ERA5, CFSR, and FLDAS)
were introduced to conduct comparisons with GMWS. The comparison result showed that the daily
average derived from GLDAS2.1 has the highest correlation with the ground measurement wind
speed (Supplementary Materials Figure S1). Furthermore, in order to better compare the relationship
between the wind speed in trend and seasonal components, we decomposed the GLDAS2.1 wind
speed time series into trend component, seasonal component, and random component. Additionally,
we calculated the correlation coefficient (r) of the daily average wind speed and components between
ground measurement data and reanalysis data. The trend component had the highest correlation
coefficient (r = 0.829), followed by the seasonal component (r = 0.552), daily average wind speed
(r = 0.125), and random component (r = −0.007). On the other hand, according to the trend component,
the turning point for the GLDAS wind speed (GLDASWS) time series occurred around 2011 (Figure 4).
Moreover, the changing rate of the daily average wind speed is more significant. The result of linear
regression shows that the daily average GLDASWS decreased significantly at a rate of −0.34 m s−1

decade−1 during the period of 2000–2010 (p < 0.001). The increasing rate of 1 m s−1 decade−1 is
significantly higher than the decreasing rate during the period of 2010–2014 (p < 0.001) after the
turning point of 2010 (Figure 4). The seasonal components of two wind speed data have a broadly
similar pattern.
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Figure 4. The time series decomposition of the average Global Land Data Assimilation System wind
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component indicate different seasons (blue: Winter (Dec., Jan., Feb.), green: Spring (Mar., Apr., May),
red: Summer (Jun., Jul., Aug.), and yellow: Autumn (Sept., Oct., Nov.)).
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4.2. The Spatiotemporal Variation of Wind Erosion across CA

Figure 5 shows the distribution of the annual mean SWEP in CA over the most recent 20 years
(2000–2019). SWEP exhibits significant spatial variation, which has a range of 0–256 kg/m2. The SWEP
in the southwest CA is higher than that in the southeast and north CA, where the vegetation coverage
and soil moisture are higher. During the past 20 years, the Aral Sea dry lake bed (ASDLB), which is
one of the most active dust sources, was the most severe wind erosion area in CA (47.29 kg/m2/y),
followed by Kyzylkum Desert (10.64 kg/m2/y), Karakum Desert (10.58 kg/m2/y), and Muyunkum
Desert (6.81 kg/m2/y). Due to the dramatic shrinkage of Aral Sea from the second half of the 20th
century, the ASDLB, also known as the Aral Sea Desert, was covered with the original salts and
chemicals of the water [24]. The toxic sediments of the Aral Sea were blown away by strong winds and
formed white sandstorms. These toxic particles from the dry Aral Sea lake bed had been found in
Japan, Norway, Greenland, and even in the South Pole [84].
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From 2000 to 2019, the annual mean value of SWEP was 3.45 kg/m2, with the lowest value
occurring in 2010 and the highest value occurring in 2015. As mentioned above, the wind speed
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exhibited a significant increase around 2011, and the area and intensity of wind erosion have also
increased significantly since 2011. However, the SWEP gradually decreased by −6.85 kg/m2/y, over
ASDLB, from 2011 (Figure 5). This reversal may have been caused by the recovery of the water body of
the Aral Sea since 2010 [85]. This means that more dry lake beds are covered by water bodies and less
bareland suffers from wind erosion. The Amu Darya River (ADR) and Syr Darya River (SDR), which
are the two largest rivers across CA, are the principal water suppliers of the Aral Sea. Since the 1960s,
many irrigation canals have been constructed in the middle and lower reaches of ADR and SDR [60].
Therefore, according to ESA land cover data, more than 43% of the irrigation cropland of CA survived
on these canals, especially in Amu Darya Delta (ADD) and Syr Darya Delta (SDD). The main land
cover type of these two deltas is irrigated cropland, which accounts for more than 20% of the total
irrigated cropland in CA. Because of the high vegetation coverage, according to Figure 5, the ADD and
SDD regions have a lower SWEP than the surrounded area. Similarly, on the edge of the Kyzylkum
Desert, oasis agriculture that relies on irrigation also greatly reduces SWEP.

The seasonal variation characteristics of SWEP in CA are shown in Figure 6. Although it is usually
consistent with the spatial distribution of the annual mean SWEP, the spatial pattern of SWEP varies
in different seasons. As we can see in Figure 6, more land suffered from severe wind erosion in CA
during the spring than in other seasons (spring: 1.48 kg/m2 > summer: 0.70 kg/m2 > winter: 0.69 kg/m2

> autumn: 0.59 kg/m2). Additionally, obvious wind erosion exists in several famous desert regions,
such as the Karakum Desert, Kyzylkum Desert, and Aralkum Desert during spring. Due to the impact
of snow cover, less wind erosion exists in north CA during the winter. However, the wind speed of
the Aral region in winter markedly exceeds that in other seasons, especially in December. Therefore,
the ASDLB region has higher SWEP in the winter. Figure 6 shows that the north Kazakhstan region,
Kyrgyz, Tajikistan, has been slightly affected by wind erosion. Additionally, in summer, SWEP shows a
significant high value in the middle reaches of Amu Darya (Figure 6). As shown in Figure 7, the SWEP
displays significant monthly temporal variability, especially in ASDLB. March is the most severe month
of wind erosion in the ASDLB. Alternatively, due to strong winds and dry surface soil in December,
January, and February, sandstorms frequently occurred in ASDLB. We can confirm this from the true
color image of MODIS (Supplementary Figure S2). Due to the difference in the solar radiation energy
received by different latitudes, the melting time of snow cover varies in different regions. Figure 6
shows that the center of wind erosion moves from southwest to northeast during the spring (March,
April, and May). These factors can explain why significant wind erosion in other famous deserts
occurs in different months. The most severe month of wind erosion in Karakum is April, and that in
Kyzylkum Desert and Muyunkum Desert is May. However, in general, Central Asia has suffered from
the most severe wind erosion in April and the most widespread wind erosion in May.
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4.3. Responses to Wind Speed Change and Land Cover Change

4.3.1. Impacts of Ground Measurement Wind Speed Changes on the SEWP

Based on the research results mentioned above, the wind speed was found to be the dominant
factor of wind erosion. Therefore, in this study, we analyzed the influence of wind speed as a factor of
climate change on wind erosion. Based on the ground measurement wind speed data, we investigated
the influence of wind speed changes on wind erosion. Figure 8 shows the strong and significant positive
correlation (r = 0.700, p < 0.001) between the average GMWS and average ground SWEP. According to
the trend line of these two sets of time-series data, the turning point roughly occurred between 2010
and 2011. The average GMWS showed a slowly decreasing trend (−0.07 ms−1 decade−1) before the
turning point in 2011, while it displayed a significant increasing trend during the period of 2011–2019
(+0.6 ms−1 decade−1, p < 0.001). The recent increasing rate is almost tenfold the decreasing rate in the
first decade. The average ground SWEP also showed a slightly decreasing trend during the period of
2000–2010 (−0.027 kgm−2 decade−1), while it displayed a significant increasing trend (+0.37 kgm−2

decade−1, p < 0.001). Shao, et al. [86] found that the global monthly mean dust concentration decreased
from 2000 to 2012. This shows that the end of the quiet period of dust activities in Central Asia or
globally marks the beginning of an active period of dust activities. Based on current research, it seems
reasonable to relate the dust trend to the climate trend, especially the reversal in global terrestrial
stilling [22].
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Additionally, the highest monthly average SWEP, which appeared in May 2014, was more than
2.4 kg/m2. The seven months with the strongest wind erosion (SWEP > 1.5 kg/m2) were March (2), April
(2), May (2), and December (1). There were nine months (May: 3, March: 3, April: 2, Decembeer: 1)
with an average wind speed greater than 3.5 m/s. Moreover, the highest monthly average wind speed,
with a value of 3.79 m/s, appeared in Decembr 2015. Overall, a similar tendency of wind speed and
wind erosion was observed for the past two decades. Both show a distinguishable declining trend,
and then a sudden remarkable increase, and before slowly declining or finally stabilizing. During the
study period, the wind speed (+0.38 ms−1 decade−1, p < 0.001) and SWEP (+0.34 kgm−2 decade−1,
p < 0.001) increased very quickly from 2000 to 2019, indicating a more serious soil degradation and air
pollution problem in CA.
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4.3.2. Divergence of SWEP from Different Land Cover Types

According to the land characteristics of the study area, the ESA CCI land cover types can be
reclassified into nine categories (cropland irrigated, cropland rain-fed, forestland, shrubland, grassland,
sparse vegetation land, bareland, urbanland, and waterbody). The last subplot of Figure 9 shows
the areas of different land cover types across CA in 2018. Figure 9 shows that the monthly average
SWEP and its change rate of different land cover types were substantially different. The monthly
average SWEP of bareland was more than 0.836 kg/m2, followed by shrubland (0.572 kg/m2), sparse
vegetation land (0.203 kg/m2), grassland (0.073 kg/m2), irrigated cropland (0.043 kg/m2), rainfed
cropland (0.033 kg/m2), and forestland (0.017 kg/m2). This relationship is basically consistent with
previous research conducted in CA and surrounding regions [20,87]. We also compared the soil wind
erosion modulus with respect to regions with similar conditions or the use of different methodologies
(Table 2). Li, et al. [20] assessed the soil wind erosion modulus variation in CA (including Xinjiang,
China) between 1986 and 2005. Zhang, et al. [87] investigated the RWEQ-based soil wind erosion,
which was validated by 137Cs in Inner Mongolia (IM), during the time period of 1990–2015. Compared
to other arid or semiarid regions, CA has relatively higher rates of soil wind erosion, which may be the
result of the widespread distribution of deserts and wind speed increase in the past decade. Grassland
has a relatively lower soil wind erosion rate, because it is mainly distributed in northern CA, which has
a more humid climate and less erodible underlying surface condition [12]. Although the time periods
and dataset sources were different, from the perspective of the wind erosion diversity of land cover,
the wind erosion result of our research is reliable.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 27 
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Figure 9. Monthly change of the average SWEP of different land cover types and the area of different
land cover types across CA in 2018.

There was a significant increase in SWEP in CA in the past two decades. However, the change rate
of wind erosion varied among regions with various types of land cover. Specifically, the change rate of
wind erosion was the highest for bareland (0.0978 kg/m2/y), followed by shrubland (0.0730 kg/m2/y),
sparse vegetation land (0.0206 kg/m2/y), grassland (0.0062 kg/m2/y), irrigated cropland (0.0045 kg/m2/y),
rainfed cropland (0.0038 kg/m2/y), and forestland (0.0016 kg/m2/y). Combined with the areas of different
land covers, we could calculate the total amount of soil wind loss for different land covers in the period
of 2000–2019. More than 2.8255 × 1011t soil was eroded by the wind across CA during the past few
decades. The soil wind erosion of bareland (1.838 × 1011t) contributed more than 65% soil loss by the
wind in CA, followed by shrubland (0.3907 × 1011t), sparse vegetation land (0.3380 × 1011t), grassland
(0.1812 × 1011t), rainfed cropland (0.0517 × 1011t), irrigated cropland (0.0223 × 1011t), and forestland
(0.0028 × 1011t).
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Table 2. Soil wind erosion rate studies in CA and other regions with similar conditions.

Authors Locations Method
Study
Period

Soil Wind Erosion Rate (×10−1 kg/m2/y)

Bareland Grassland Forestland Cropland

This Study CA RWEQ 2000–2019 103.56 8.76 2.04 5.16(3.96)

Li, et al. [20] CA (Included
Xinjiang, China) RWEQ 1986–2005 45.08 15.56 3.44 4.74

Zhang, et al.
[87] IM, China RWEQ 1990–2015 101.96 24.21 2.96 11.31

Lin, et al. [50] Hexi, China RWEQ 1982–2015 85.19 40.07 9.48 21.43

Chi, et al. [47] Arid land,
China RWEQ 2000–2010 57.61 6.73–28.07 16.03 17.66

Hu, et al. [32] IM, China 137CS 2003 NA 18.08–42.7 NA 79.90
W. Cole, et al.

[42]
New Mexico,

USA WEE/EPIC 50-years NA NA NA 0.13–71.3

Hagen [88] Arid land, USA WEPS 1989–1997 NA NA NA 0–39.8

According to the continuous changes in the land cover area in CA during the period of 2000–2018,
the cropland, forestland, urbanland, and shrubland showed an increased trend, while bareland and
grassland showed a decreased trend (Supplementary Table S1). More than 2.67 × 10 km2 land had
undergone land cover change, including from bareland to grassland, sparse vegetation land to grassland,
grassland to cropland (rain-fed), sparse vegetation land to cropland (rain-fed), and waterbody to
bareland. In order to remove wind speed variability effects on SWEP, we calculated the annual SWEP
of 2018 based on the wind speed data of 2000 to compare it with the annual SWEP of 2000. We found
that the LCCs with the strongest inhibitions of wind erosion activity were bareland into shrubland
(−0.782 kg/m2), sparse vegetation land into forestland (−0.106 kg/m2), and grassland into forestland
(−0.073 kg/m2). In comparison, the conversions of land cover which accelerated wind erosion the most
were waterbody into bareland (+3.784 kg/m2), sparse vegetation land into bareland (+1.124 kg/m2),
and grassland into bareland (+0.490 kg/m2).

4.4. Validation of the GEE-RWEQ Model

Due to lack of long time series and wide range of ground-measured wind erosion data in CA,
validation of the GEE-RWEQ model is challenging. Furthermore, due to the large area and complex
terrain conditions, almost no previous research has conducted wind erosion field measurements in
CA. Considering that most of the local dust storms are caused by surface wind erosion in CA [24],
the dust storm index (DSI) can be used as a proxy to evaluate the wind erosion model performance [75].
Therefore, we used the DSI based on weather station visibility records to evaluate the reliability of
the SWEP spatial distribution. Figure 10 displays the annual mean DSI across CA from 2000 to 2019.
This map was interpolated by the annual average DSI of more than 200 weather stations based on
Natural Neighbor Interpolation method. From Figure 10, we can see that the southwest desert region
of CA has a high DSI, which means very frequent dust storms. However, there are some high values
in the southeastern parts of CA, where there is a lower wind erosion risk. According to the research
of Liu, et al. [89], affected by the strong southwest winds, the dust particles were transported from
the western desert to eastern mountains and valley. Moreover, dust episodes were observed in these
regions. Additionally, the southeastern parts of CA are the most densely populated areas in CA. Most
of the weather stations across CA are located around densely populated cities. The anthropogenic
pollutants will also be recognized as dusty weather due to reduced visibility. The spatial distribution
of DSI is generally consistent with the spatial pattern of the annual SWEP. Although visibility records
based on weather stations are a valuable and useful data resource for wind erosion monitoring, several
limitations still exist. The low spatial density of weather stations is a challenge for conducting highly
accurate wind erosion mapping, especially in the southeastern part of CA. Therefore, we need to
obtain higher spatial resolution and more continuous SWEP verification data. It should be pointed out
that satellite-based atmospheric aerosols, which refer to solid and liquid particles suspended in the
atmosphere, have strong spatial correlations with wind erosion.
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Figure 10. The location of weather stations that provide visibility records and the annual mean Dust
Storm Index (DSI) for the period 2000 to 2019 across CA.

Figure 11 shows the spatial pattern of the annual AOD (a) and average AAI in 2019 (b), as well as
the comparisons with SWEP in the Aral Sea region (ASR). From Figure 11, we can see that the Aral Sea
region and its southwest surrounding area has the highest value in CA. This is because the dust of the
Aral Sea is transported to the southwest under the action of the dominant wind-northeast wind [90].
Therefore, we chose ASDLB as a research hotspot area to compare with SWEP. Linear relationships
between SWEP and aerosol parameters (AOD and AAI) were found, as shown in Figure 11. The results
show that they had moderate positive linear relationships, with r values of 0.5623 (p < 0.001) and 0.5660
(p < 0.001), respectively. Ultimately, although it is difficult to verify the SWEP value, the comparison
results obtained from the perspective of spatial and temporal distribution patterns showed that the
RWEQ-based SWEP data in CA were reliable.
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5. Discussion

In this study, our results show that there are significant spatial and temporal differences in the
wind erosion in CA. Controlled by the latitude zonality and vertical zonality, higher SWEP values are
primarily distributed in the southwestern part of CA, which has low vegetation coverage and more
fragile surface soil [91], while lower SWEP is mainly concentrated in the northern part of CA. Based on
the land cover map of 2018, more than 89% of rain-fed cropland and 78% of forestland are distributed
in these regions. Furthermore, due to latitude zonality and vertical zonality, the precipitation in these
areas is higher than in other places of CA, and the temperatures in these areas are lower. Therefore,
the higher soil moisture caused by lower evapotranspiration will reduce the wind erosion to a certain
degree. Affected by the restoration of the Aral Sea in recent years, the vegetation coverage and
other underlying surface factors of ASDLB are getting better [85]. Although the SWEP showed a
decreasing trend in ASDLB (−6.85 kg/m2/y), this region was still the most severe wind erosion area in
CA. In addition, our results show that the SWEP has a clear seasonal and monthly variation. The land
threatened by wind erosion has the largest range in spring, especially in May. Due to the difference
in solar radiation heat at different latitudes and altitudes, the snowmelt period varies in different
regions of CA [92]. The higher soil moisture caused by snowmelt and the snow cover both affected
the movement of the wind erosion center across CA during spring [37]. Therefore, considering the
major deserts of CA are located in different latitudes and altitudes, the severe wind erosion regions
in CA will also migrate over time. The severe wind erosion regions move from the southwest CA
(Karakum Desert) to the middle CA (Kyzylkum Desert and Muyunkum Desert) during the spring
(MAM). However, due to the special meteorological conditions in certain areas of CA, such as the
middle reaches of the ADR, severe wind erosion occurs in summer, but not spring, respectively [24].
We calculated the monthly average wind speed of four weather stations in this region. A comparison
was made for the monthly average wind speed of all the weather stations in CA and the four weather
stations in this region (Supplementary Figure S3). The most extreme value of the surface wind speed
in CA appeared in March, while the most extreme value of the wind speed in the middle reaches of
the ADR appeared in July. This result demonstrates that wind speed plays the key role in the spatial
distribution of SWEP.

As the most dominant factors of wind erosion, wind speed variability, such as wind stilling or
wind stilling reversal, account for the majority of the spatial-temporal variation of wind erosion in CA.
Although global terrestrial stilling has been confirmed by many pieces of research, most studies have
only looked at global or regional wind speed changes from the 1980s to 2010, and few have involved
recent (after 2010) wind speed changes [14,17–19]. According to several climate assimilation datasets
(GLDAS, ERA5, CFSR, and FLDAS) and a ground measurement dataset (GSOD), we found a turning
point of wind speed stilling during the period of 2009–2012 in CA. This finding is supported by other
studies that have reported that global terrestrial stilling has rebounded over the past few decades and
has increased rapidly since 2010 [21–23]. Our research proves that the increase rate of the average
wind speed in CA (0.6 m s−1 decade−1) is higher than the increase rate of the average global wind
speed (0.24 m s−1 decade−1) over the same period, which means that stronger wind erosion occurred
in CA. Indeed, the result shows a strong and significant positive correlation (r = 0.7) between the
average GMWS and average SWEP (p < 0.001). A number of studies have demonstrated that CA is
more sensitive to climate change compared to the global average [12,20,57,60,91,93]. While it is widely
acknowledged that the global wind speed rebound is beneficial to the wind power industry for the
near future [22], this study suggests that more severe wind erosion activity happened in CA.

According to the significant differences in natural conditions, such as the air temperature and
precipitation, and the disturbance of human activities such as irrigation, the land cover in CA exhibited
strong spatial differentiation. We found that SWEP differs greatly in different land cover types.
This result is roughly consistent with a previous study on wind erosion in CA and surrounding
regions [20,87]. Most of the shrubland in CA is made up of deserts and xeric shrublands in which
Haloxylon ammodendron, Calligonum aphyllum, and Ephedra lomatolepis, as well as grasses such as



Remote Sens. 2020, 12, 3430 20 of 26

Agropyron fragile, grow [94–96]. These kinds of vegetation have good windproof and sand fixing
functions in CA. In addition, LCCs are closely related to wind erosion activity and affect each other.
From 2000 to 2018, more than 2.6 × 105 km2 of land has changed land cover types (Supplementary
Table S1). We compared the SWEP for the land with the LCC from 2000 to 2018, in which the effect
of the wind speed variability was removed. The conversion of bareland to shrubland helped reduce
wind erosion by −0.782 kg/m2/y. Furthermore, due to the shrinkage of the Aral Sea, the conversion of
waterbody to bareland increased wind erosion by +3.784 kg/m2/y. The restoration of the Aral Sea has
not only superficially reduced the possibility of wind erosion in ASDLB, but also increased the increased
vegetation coverage of ASDLB caused by the higher groundwater level, making the long-distance
transport of dust difficult. Although the wind speed has shown an increasing trend in the past 10 years,
the wind erosion risk in the Aral Sea area is gradually decreasing due to the continuous recovery of the
Aral Sea area. In the past 30 years, a large number of engineering projects have attempted to improve
the Aral Sea environment, directly or indirectly. Although Aral sea restoration is the most effective
way to restrain wind erosion in ASDLB, the complex political relations among countries in the Aral Sea
basin make cross-border water management difficult [84]. Besides, in other parts of CA, more effective
measures should be taken for wind erosion artificial control, for example, increasing the grassland area
in regions with a suitable temperature and precipitation, developing cropland by using limited water
resources, and planting cold- and drought-resistant shrub vegetation in bareland.

In this study, the RWEQ model was adopted as a wind erosion model in the GEE cloud computing
platform. Compared with the local computing platform, GEE can process large amounts of geospatial
data in a short time, which means that its processing power is completely unconstrained by time and
space. Therefore, we do not need to spend a lot of time on downloading, preprocessing, and model
running of a large amount geo-spatial data, which can greatly shorten the time required for long-term
wind erosion mapping. As mentioned above, GEE-RWEQ provides the possibility of wind erosion
monitoring in developing regions lacking on-site monitoring data. Meanwhile, the GEE platform
makes it easier for researchers to publish their results for decision makers, and even the public [55].
Therefore, our research has a broader application value for decision makers than previous studies on
wind erosion. In the future, we will interactively develop Earth Engine App to explore our result,
which can then be used by experts and non-experts alike.

The RWEQ is a process-based, field-scale, empirical model that can quantitatively estimate wind
erosion. However, the RWEQ was initially developed for the middle western area of the United
States [37]. Therefore, it still presents some limitations in other regions [37,50,72,97]. Although the most
important input parameters were retained in this study, the dataset required by some parameters was
unavailable on GEE platforms. Therefore, several factors were simplified to simulate the global-scale
wind erosion more effectively and more accurately. The soil moisture data were used to simulate how
the surface wetness influences the wind speed required to erode the soil. Additionally, the cosine of
the slope gradient which was calculated by DEM represented the soil roughness factor. On the other
hand, we only used wind erosion-related data such as visibility data and remote sensing data for the
verification of wind erosion in CA, but this still has uncertainties on a global scale. Central Asia, which
is one of the most severe wind erosion regions, is restricted in terms of wind erosion modeling studies
due to the lack of wind erosion measurement data for this region. Therefore, more ground soil loss
measurement data on a global scale should be acquired to conduct more verification studies.

6. Conclusions

In this study, we developed a fully automated algorithm for quantitatively mapping wind erosion
based on the Google Earth Engine, processed terabytes of geo-spatial data, and retrieved spatial and
temporal patterns of monthly SWEP in CA, over 20 years (2000 to 2019). Several conclusions were
reached in our study, as follows:

(1) With respect to the conventional methods, GEE-RWEQ does not require any ground
measurement data, which need lots of manpower and resources, especially in developing countries
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or sparsely populated regions. However, based on the Cloud computing platform, GEE-RWEQ uses
climate assimilation data, soil property data, vegetation data, terrain data, and other underlying data
to automatically generate high spatial resolution NRT soil wind erosion potential products. After
verification using ground observation-based DSI and satellite-based AOD, the results still reach an
acceptable accuracy and can be used for quantitative wind erosion mapping. This methodology
provides new ideas for the construction and use of empirical models based on batch geospatial data
and high-performance computing;

(2) According to the comparison of GMMS and SWEP, the wind speed is the main driving factor of
wind erosion (r = 0.7, p < 0.001). Affected by the wind speed variability, the SWEP decreased first and
increased remarkably during 2011. From the perspective of the temporal and spatial distribution, due
to the sparse vegetation distribution and special meteorological conditions, the deserts in southwestern
Central Asia are most affected by wind erosion, especially in ASDLB (47.29 kg/m2/y). The severe wind
erosion period of CA occurred in spring (MAM), especially in May. We also found that the SWEP
distribution has obvious latitude zonality due to the distribution of snow cover and the start time of
snow melt, and the wind erosion hot spot in spring moves from the southwest to central area across CA;

(3) Land cover change has strong effects on the soil wind erosion in CA, with the most obvious
being the conversion of bareland into the water body in ASDLB. Affected by the restoration of the Aral
Sea, the SWEP in this area has shown a downward trend (−6.85 kg/m2/y) since 2011. Additionally,
the conversion of bareland to shrubland helped reduce wind erosion by −0.782 kg/m2/y. According
to the SWEP variation based on LCC, more effective measures should be taken to maintain wind
erosion artificial control, for example, restoring the Aral Sea water area to prevent more bareland from
being exposed to wind erosion, increasing the grassland area in regions with a suitable temperature
and precipitation, developing cropland by using limited water resources, and planting cold- and
drought-resistant shrub vegetation in bareland.
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Figure S1: Comparisons of the wind speed trend for different datasets (FLDAS, CFSR, ERA5, GLDAS2.1, and
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wind speed of CA and the other four weather stations in the middle reaches of Amu Darya; and Table S1: The
areas of different land cover types in Central Asia during the period of 2000–2018.
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