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Abstract: Cloud computing and freely available, high-resolution satellite data have enabled recent
progress in crop yield mapping at fine scales. However, extensive validation data at a matching
resolution remain uncommon or infeasible due to data availability. This has limited the ability
to evaluate different yield estimation models and improve understanding of key features useful
for yield estimation in both data-rich and data-poor contexts. Here, we assess machine learning
models’ capacity for soybean yield prediction using a unique ground-truth dataset of high-resolution
(5 m) yield maps generated from combine harvester yield monitor data for over a million field-year
observations across the Midwestern United States from 2008 to 2018. First, we compare random
forest (RF) implementations, testing a range of feature engineering approaches using Sentinel-2
and Landsat spectral data for 20- and 30-m scale yield prediction. We find that Sentinel-2-based
models can explain up to 45% of out-of-sample yield variability from 2017 to 2018 (r*> = 0.45),
while Landsat models explain up to 43% across the longer 2008-2018 period. Using discrete Fourier
transforms, or harmonic regressions, to capture soybean phenology improved the Landsat-based
model considerably. Second, we compare RF models trained using this ground-truth data to models
trained on available county-level statistics. We find that county-level models rely more heavily on just
a few predictors, namely August weather covariates (vapor pressure deficit, rainfall, temperature)
and July and August near-infrared observations. As a result, county-scale models perform relatively
poorly on field-scale validation (r> = 0.32), especially for high-yielding fields, but perform similarly
to field-scale models when evaluated at the county scale (r> = 0.82). Finally, we test whether our
findings on variable importance can inform a simple, generalizable framework for regions or time
periods beyond ground data availability. To do so, we test improvements to a Scalable Crop Yield
Mapper (SCYM) approach that uses crop simulations to train statistical models for yield estimation.
Based on findings from our RF models, we employ harmonic regressions to estimate peak vegetation
index (VI) and a VI observation 30 days later, with August rainfall as the sole weather covariate in our
new SCYM model. Modifications improved SCYM'’s explained variance (r? = 0.27 at the 30 m scale)
and provide a new, parsimonious model.

Keywords: crop yields; yield mapping; US Corn Belt; Landsat; Sentinel; agricultural monitoring;
machine learning

1. Introduction

Agricultural yield data provide insights to heterogeneity across space and time, which can help
identify yield gaps, inform farm management strategies, and guide sustainable intensification [1,2].
More specifically, modern precision agriculture can use high-resolution yield maps to vary management
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at a subfield scale, with potential for closing yield gaps while improving input efficiency and
environmental outcomes [3,4]. While some studies use satellite data to provide accurate, fine-scale
yield estimation for limited spatial extents (e.g., [5,6]), many satellite-based yield mapping efforts result
in county- or state-level products, limiting the usefulness for farm-level management (e.g., [7]).

Furthermore, studies that do produce higher resolution yield maps rarely validate their predictions
with extensive, accurate ground truth data. In general, such widespread ground truth data are private,
costly, or otherwise infeasible to obtain. As a result, the accuracy of field- or subfield-scale predictions
either are not explicitly tested [8,9], tested only in a small contiguous region [5], or tested over a limited
sample size [6,10]. However, farmers increasingly utilize combine harvesters with yield monitors that
record yields at very fine scales (i.e., 1-5 m), particularly in large commercial systems. These data can
inform management directly and have also driven research on yield response to various physical and
soil characteristics [11,12]. Incorporating these data into satellite yield estimation studies provides
opportunities for extensive, high-resolution validation, comparison between modeling approaches,
and improved understanding of key satellite features.

One common approach to yield estimation is training machine learning models on yield data
and satellite imagery. A significant body of work highlights the strength of random forests for crop
type mapping [13-17] and yield estimation using remotely sensed data [5,6,18,19]. Random forests can
capture highly nonlinear relationships by repeatedly splitting the parameter space yet remain robust
to overfitting by taking an averaged prediction from many individual trees, each fit with a random
subset of predictors and bootstrapped training data [20]. Yield estimation efforts across agricultural
systems have employed random forests, including maize in the US Midwest and Middle East [6,19,21],
wheat in the UK, China, India, and Australia [5,18,22,23], and soybean in Brazil [24]. Compared to
other machine learning approaches, random forests have achieved more robust results in this yield
estimation context with high-dimensional, often collinear inputs [21-23,25].

Building these empirically based yield relationships requires extensive, high quality ground data
and may not generalize well to alternate settings. Empirically trained models are useful for regions and
time periods with available training data but are often not feasible where reliable data are scarce. Crop
simulations present an alternative strategy to overcome this ground-data obstacle. These simulations
capture key relationships between climate, management, and crop cultivars; when parameterized for a
target region, they can be used to generalize the relationship between crop leaf area, weather, and yield.
For example, the satellite-based Scalable Crop Yield Mapper (SCYM) approach trains a parsimonious
(and thus scalable) model on simulated crop yield data, then applies that statistical model to observed
satellite and gridded weather data [26]. SCYM has been implemented across agricultural systems in
North America, Africa, and India [9,17,27,28].

Among global agricultural staples, soybean is a crop for which high-resolution yield mapping has
not been fully explored. Several recent soybean yield prediction efforts at the scale of aggregated political
units (e.g., counties in the United States) have applied deep learning frameworks to multi-spectral
imagery for soybean yield mapping [7,29], while others compared a series of machine learning models
and feature engineering approaches [8,24]. At the pixel scale, Lobell et al. (2015) considered regional
soybean yield estimation at Landsat resolution using multiple linear regression models trained on
simulations from crop models rather than ground data [26]. Initial efforts for soybeans in the US
Midwest explained about one-third (32%) of soybean yield variability, leaving substantial room for
improvement [26].

Of the many possible remote sensing approaches to yield estimation, we focus here on two widely
used and publicly available sources of imagery (Landsat and Sentinel-2) and two relatively common
approaches: random forests and simulation-based models. Landsat has captured 30-m-resolution
multispectral data for more than three decades and is widely used, especially for studies that aim to
understand historical changes [30,31]. Sentinel-2 is a newer set of sensors that offers higher spatial,
temporal, or spectral resolution than Landsat since 2015 [32]. In particular, Sentinel-2’ s Multi-Spectral
Instrument (MSI) has shown promise for improved estimation of leaf area index (LAI) in crops [33],
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a key predictor of crop yield. Sentinel-2 MSI's inclusion of bands in the “red edge” region, at 705,
740 and 783 nm, enables formulation of robust vegetation indices (VIs) that linearly relate to LAl even at
high canopy density for which common VIs, like NDVI, saturate [34-36]. Past work has suggested the
importance of these red-edge bands for remote-sensing of soybean crops, which have dense canopies
that produce high LAI values [35,37].

Here, we utilize a unique harvester yield monitor dataset of over a million field-year soybean
yield maps between 2008 and 2018 in the central United States to investigate the capacity of machine
learning models to explain subfield yield heterogeneity, using both Sentinel-2 and Landsat satellite
imagery (Table 1). Although Landsat provides a much longer record with which to evaluate models,
we also include Sentinel-2 in order to assess the potential contribution of Sentinel-2’ s spectral precision,
more frequent return time, and the availability of new red-edge VIs. First, we employ a flexible machine
learning algorithm with and without pre-formulated vegetation indices to establish a baseline accuracy
for this task and to infer the most relevant predictors. Second, we assess harmonic regressions’ ability
to capture soybean phenology and test a series of harmonic-based metrics. Third, we build models
trained with publicly available county-level data and compare to models trained on the harvester
dataset, examining the differences in performance and learned parameters. Finally, we draw on
these results to update the SCYM simulation-based approach for soybean, leveraging our extensive
ground-truth data to quantitatively compare multiple alternative implementations and produce an
improved annual time series of high-resolution yield maps from 2008 to 2018.

Table 1. Model definition and overview. The four main modeling approaches tested in the paper,
presented in terms of their input satellite data, their training and testing response variables (pixel, county,
or simulated yields) and the motivating research question for their exploration. “Harvester” in the
first column refers to combine harvesters, from which our pixel yield data comes (Section 2.2).
SCYM = Scalable Crop Yield Mapper (Section 2.5.4).

Training Testing Machine
Model Satellite Data  Response Response Learning Research Question
Variable Variable Algorithm
How well can a machine
Landsat 30 m 30 m harvester Random learning model, trained
harvester 30 m Landsat harvester yields AND Forest using pixel-scale harvester
trained yields county yields yields, perform both at the
pixel- and county-scale?
Does the additional
spectral precision of
Sentinel-2 . 20 m 20 m harvester Random Sentinel-2 help compaljed
harvester 20 m Sentinel-2  harvester ields Forest to the same years/test sites
trained yields y using Landsat? Do
red-edge vegetation
indices add signal?
How does a model trained
Landsat, . wi.th aggregated, freely
County-trained sampled and Count County yields Random available data compare to
y P y : :
model aggregated to Yields AND 30 m Forest i by
harvester yields pixel-scale data in

t 1 .
county scate performance at both pixel

and county scales?
How does a model trained
with simulated data

Simulations-based Simulated 30 m harvester =~ Multiple  perform on pixel-scale test

30 m Landsat crop yields AND Linear data? Do insights from the
SCYM Model yields county yields  Regression 30 m harvest-trained
model improve SCYM

methodology?
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2. Methods

2.1. Study Area

In the United States, farmers planted over 90 million acres of soybean in 2017; in 2018, soybean
planted acreage outpaced corn for the first time in decades [38]. Soybean is the United States” most
lucrative agricultural export [38], driven by increasing demand for animal feeds associated with rising
meat consumption around the world. The vast majority, nearly 80%, of United States’ soybean acreage
lies in the Midwest, making it an ideal study site for soybean yield mapping efforts [39]. According to
USDA Agricultural Census data, three-quarters or more of US soybean production comes from large
farms that plant over 250 hectares [40]. Over the 11-year study period, 2008-2018, average yields were
46.5 bushels/acre or 3.1 metric tons per hectare [41]. Here, we focus on a 9-state region in the Midwest
(Figure 1). We gathered 4-km-resolution Gridmet weather data from June through September [42].
Opver this four-month period, total precipitation averaged 419.25 mm per year. Average minimum daily
temperatures were 16 °C in June, 17.4 °C in July, 15.7 ° C in August, and 11.9 °C in September; average
maximum daily temperatures were 28.8 °C in June, 29.7 °C in July, 27.8 °C in August, and 25.4 °C
in September.
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Figure 1. Study Area. (a) Average county yields across the period 2008-2018 from the National
Agricultural Statistics Service (NASS) [41]. (b) Study area states (blue) in context of the continental
United States.

2.2. Yield Data

We employed two types of yield data: harvester yield monitor data and county-level data.
The yield monitor data came via collaboration with Corteva Agriscience. Combine harvesters with
yield monitors collect point yield data as the farmer drives throughout the field by integrating
measurements of combine width and speed with grain weight and moisture levels [43]. We processed
raw point measurements into standardized 5-m yield maps for each field by filtering to remove field
edges and faulty values, adjusting yields to a standard grain moisture content, rasterizing to a 5-m grid,
and smoothing using a 15-m moving window average. This resulted in over a million field yield maps
spanning the study area and time period; some fields had yield maps for multiple years, while other
fields had yield data for only one year. Yield maps were unevenly distributed in space and time.
To create a balanced dataset, we discretized the region into 50-km? grid cells and randomly sampled
up to 150 unique fields in each of the resulting 318 grid cells, each year. If a grid cell contained less
than 150 field maps in a year, we used all available fields. This resulted in 402,840 observations
over the 11-year period, ranging from 32,343 to 39,029 fields per year (Table 1). From each field-year
observation, we randomly sampled one point and extracted the yield value at both 20-m and 30-m
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resolution for Sentinel-2 and Landsat analyses, respectively. Finally, outlier measurements less than
0.1 or above 7 metric tons per hectare (t/ha) were removed, leaving approximately 380,000 fields.
Hereafter, we refer to these datasets as 20 m and 30 m harvester yield data, and more generally as
“pixel scale” data.

We obtained county-level yield data from the United States Department of Agriculture (UDSA)
National Agricultural Statistics Service (NASS), which reports average yield values for each county
and year with sufficient data [41]. County means from the full harvester yield monitor dataset agreed
reasonably well with NASS county yields for 20082018 (r? = 0.72). The mean difference was 0.5 tons
per hectare, indicating that the yield monitor data came from fields that systematically achieve above
average yields.

2.3. Satellite Data

We collected monthly time series data for Landsat and biweekly time series data for Sentinel-2
due to each sensor’s typical return interval. Using Google Earth Engine [44], we retrieved all available
Landsat Tier 1 Surface Reflectance observations overlying each point-year in our sample, drawing
from Landsat 5 Thematic Mapper, 7 Enhanced Thematic Mapper Plus, and 8 Optical Land Imager.
The nominal resolution is 30 m, and the 3 sensors produce compatible observations for our purposes [45].
To produce a cleaned dataset with a consistent number of observations, we then filtered for clear pixels
using the cloud mask from the “pixel_qa” band and extracted one monthly observation per point for
May-September (Figure 2), based on the maximum green chlorophyll vegetation index value, or GCVI
(NIR/green—1) [46]. Points which lacked a clear observation in any month between May and September
were discarded, resulting in 186,160 points (Table 2).
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©® Biweekly
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91 e Monthly
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GCVI

3

0
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Figure 2. Satellite Processing Methods. Illustration of data processing for two pixels in 2018. Top Row:
to create a standardized data set, we selected the satellite image with the highest vegetation index (VI)
in each monthly (Landsat) or biweekly (Sentinel-2) period during the growing season. Bottom Row:
harmonic fits applied to the cloud-masked time series. The black points show all observations before
filtering. We used the first fit for Landsat and 10th recursive fit for Sentinel-2, due to residual noisiness
from its less reliable cloud mask (see Methods). SR = surface reflectance; TOA = top of atmosphere;
GCVI = Green Chlorophyll Vegetation Index.
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Table 2. Distribution of sampled points. The sampling design created a balanced sample across space
and time. The “Point Sample Distribution” column provides the number of points by year. The “Points
after Landsat Filter” column provides the final number available for the Landsat analysis after filtering
on the condition that each point must have one clear observation each month from May to September.
The “Points after Sentinel Filter” column provides the final number available for Sentinel-2 analysis
after filtering on the condition that each point must have one clear observation in each biweekly period

from May to September.
Year Point Sample Distribution Points after Landsat Filter Points after Sentinel Filter
2008 32,343 15,745
2009 28,385 13,653
2010 37,163 17,946
2011 29,761 18,086
2012 35,772 1792
2013 34,884 16,057
2014 37,823 18,442
2015 32,940 15,766
2016 39,029 25,134
2017 38,647 24,412 15,436
2018 35,108 19,127 24,142

Sentinel-2 MSI data were obtained at the 20-m scale. We analyzed Sentinel-2 over just the period
2017-2018 as they are the first two years in which both sensors were operating. We resampled bands
for which the native resolution is 10 m to the 20-m scale in order to match the resolution of the
three red-edge bands. Because surface reflectance data or processing routines were unavailable for
data prior to December 2018 on Google Earth Engine at the time of this study, we used Level 1C
(top of atmosphere) data. Although methods exist for manually performing atmospheric correction,
deploying them at the scale of our study presents a significant obstacle. Past work has shown that
vegetation indices computed with top of atmosphere reflectance perform adequately in capturing crop
phenology and land cover classification [17,47,48]. In particular, for relevant land cover classes—highly
vegetated or cropland—and wavelengths (>650 nm for examining red, red-edge, and NIR values),
atmospherically-corrected reflectance values and Sentinel 2 Level 1C reflectance values appear quite
similar (see Figure 2 in [47] and Figure 3 in [48]). Additionally, studies have demonstrated that
the Level 1C product possesses high r? (>0.9) with field spectrometry results across bands as well
as good agreement for vegetation indices (NDVI) on vegetated land covers [49]. Though top of
atmosphere absolute band values will not match atmospherically-corrected ones, we chose not to
correct using a simple linear correction since our model of choice, the random forest, is not sensitive to
monotonic transformations of predictor variables [50]. To improve data quality given Sentinel-2’ s less
reliable cloud mask [51], we leveraged the high temporal resolution (five-day return time) and selected
observations based on maximum VIin a series of 2-week periods (Figure 2). This approach standardized
the number of observations and improved their quality, since clouds tend to be highly reflective in
the visible spectrum and suppress vegetation indices [51]. In total, we began with ~72,000 sampled
20-m pixels of yield data (Table 2). Of those, ~40,000 possessed at least one observation in each 2-week
period (Table 2). In conjunction with the Landsat monthly filter described in the previous paragraph,
these two data processing methods will be referred to as “monthly/biweekly” data henceforth.
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Figure 3. Pixel Scale Random Forests Comparison. Validation statistics for models trained on pixel yield
data on held-out pixel-level validation data. Legend refers to the input satellite data, spatial resolution
of yield and satellite data, and the temporal extent (Table 1, Section 2.5). The implementations here all
employed random forests based on our three main feature engineering approaches: monthly/bi-weekly
time series (for Landsat and Sentinel-2, respectively), harmonic fits, and VI-metrics (Section 2.4).
For Sentinel, the preferred model is based on biweekly time series of all bands, while for Landsat the
harmonic coefficients perform the best.

2.4. Harmonic Regressions and Feature Engineering

While the monthly or biweekly processing described above provides a consistent data structure,
it reduces temporal resolution and discards potentially helpful data. As an alternative approach,
we applied a harmonic regression (discrete Fourier transform) to the observed satellite data, for both
Landsat and Sentinel (Figure 2). Fitting a harmonic regression in this context provides a smoothed,
continuous function that can help capture the magnitude and timing of crop development and is key
to agricultural outcomes (Ghazaryan et al., 2018; Wang et al., 2019). In particular, we fit a two-term
harmonic regression:

f(t) = c+aq cos(2 mwt) + by sin(2nwt) + ap cos(4nwt) + by sin(4nwt) (1)

Here, t is the time step in days and w is the frequency, which we set to 1.5, based on improved fit
to the phenology of corn and soybeans in the US [14]. Additionally, we employed a recursive fitting
approach for Sentinel to help capture the peak, due to the noisiness of the time series [52] (Figure 2)
Of the fitted parameters, c represents the intercept, a; and a; are cosine coefficients, and by, by are sine
coefficients. We used these fitted parameters for each individual band and, separately, GCVI as inputs
to our machine learning models.

To quantify the fit of harmonic regressions on the satellite data in this study, we report r?> for GCVI
observations. For Landsat, the median r? of the harmonic regressions was 0.86 for GCVI. For Sentinel-2,
the median r? of harmonic regressions and observed GCVI (after using the biweekly filter to remove
cloudy observations missed by the cloud mask) was 0.80. Notably, though, r? for Sentinel-2 was
considerably higher in 2018 (r> = 0.84) compared to 2017 (r* = 0.70).

Based on the harmonic predictions for GCVI (a daily time series), we constructed additional
predictors, hereafter termed “VI metrics”, based on recent work demonstrating their potential [8,53].
Specifically, we compared two basic metrics—peak GCVI (“Peak”) and the peak GCVI along with
GCVI 30 days later (“Peak + 2nd Window”)—alongside two cumulative VI-metrics—the sum of the
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30 days following peak GCVI (“30-day sum”) and the sum of the thirty days on either side of the peak
(“60-day sum”).

2.5. Modeling Approach

Our modeling approach encompassed three broad categories: (1) empirical models using pixel
ground data; (2) empirical models using county level data from both ground data and agricultural
statistics; and (3) models based on crop simulations (Table 1). At a high level, we trained a series
of models on their respective training sets, selected the best model using evaluation metrics from
performance on unseen validation data, then output an estimate of generalization error using the
held-out test set for this preferred model.

We report both root mean squared error (RMSE) (2) and mean absolute error (MAE) (3), the latter
being less sensitive to outlier values. RMSE and MAE are defined, respectively, as

v,
RMSE = ;;(yi—yi)z @)

n

1
MAE = ZZ

i=1

vi— yi| 3)

where 1 is the number of observations, # is the predicted value, and y is the observed value. The error
values for RMSE and MAE are in t/ha, the same units as measured yields. Additionally, we report the
squared Pearson’s correlation coefficient (r?) for our validation data and predictions as an estimate of
explained variance.

2.5.1. Training, Validation, and Test Data

Broadly, we applied 80/10/10 splits to our data to assign observations to training, validation,
and test sets, respectively. In order to apply a consistent split to both pixel- and county-level data,
we considered each county-year as an observation for random assignment and assigned all pixel-scale
observations within that county-year accordingly. As a result, our data splits were non-overlapping
for a given year and county. We used two main data splits. One set, on which we evaluated Landsat
harvester-trained models and compared to county-trained models, encompassed 11 years (2008-2018).
The other set, on which we evaluated and compared Sentinel-2 and Landsat harvester-trained models,
encompassed just the period 2017-2018. For the Landsat 11-year data, 186,160 soybean points
(i.e., single pixel yield observations from unique field-years, see Section 2.2) possessed at least one clear
Landsat observation each month (Table 2). Of those, 149,168 points went into a training set based on
the county-year splits above. Of the remaining points, 18,333 went into the validation set and 18,659
went into the test set. For our analogous split on the Sentinel-2 data from 2017 to 2018, the training set
had 31,791 observations, with 3629 in validation and 4140 in test. The Landsat data for 2017-2018 had
the same split as for Sentinel.

2.5.2. Pixel Scale Random Forest Models

For our pixel-scale models, we established baseline model performance by passing all satellite
bands and weather covariates to a random forest algorithm, using default parameters in the sklearn
package in Python [54]. As in Section 2.1, we utilized 4-km gridded weather data from Gridmet [42].
For each month, we gathered average minimum and maximum daily temperatures, total precipitation,
total solar radiation, and average vapor pressure deficit (VPD). For Landsat, predictors for red, green,
blue, near-infrared (NIR), and short-wave infrared bands from each monthly period were used,
in addition to a variable representing year. We also tested models based on the monthly time series
of a single VI, along with weather covariates. Here we tested the performance of GCVI, based on
demonstrated robustness to saturation at soybean’s high leaf area [37]. This type of model will be
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referred to as “Landsat Harvester Trained” (Table 1). For the Landsat-based random forest models,
we trained two versions: one using all years (2008-2018), and one using only data in the period
2017-2018 to enable comparison with Sentinel-2.

Analogously, we established baseline performance for Sentinel-2 using the biweekly time series
for all bands and monthly weather covariates, including the three additional red-edge bands (Table 1).
Then, we explicitly tested a series of VIs based on prior work, either for soybean LAI estimation or wheat
and maize yield prediction elsewhere [46,55-62]. Table 3 provides a list of VIs tested, which include
several red-edge VIs in order to assess the added value of these bands in yield prediction. In these
comparisons, we still used the biweekly time series approach and weather covariates. Models trained
using Sentinel-2 data in this way will be referred to as “Sentinel-2 Harvester Trained” (Table 1).

Table 3. Vegetation Indices. All vegetation indices tested, source for their derivation, and equation
(RDED = red edge). Sentinel-2 analyses tested all vegetation indices. Landsat analyses tested GCVL

Vegetation Index Citation Equation
Simple Ratio (SR) Jordan, 1969 [55] %
Normalized Difference Vegetation NIR-RED
Index (NDVI) Rouse et al., 1973 [63] NIRTRED
Green Chlorophyl Vegetation . NIR
Index (GCVI) Gitelson et al., 1996 [56] crReen — 1
Near Infrared Reflectance of NIR-RED

vegetation (NIRv) Badgley et al., 2017 [57] NIRTRED X NIR

Optimized Soil Adjusted

NIR-RED
Vegetation Index (OSAVI) Rondeaux et al., 1996 [58] 1.16 iR RED 016
Sentir;el—Z LAI—GlreCe}rll1 Ind}flexl(Se;I) Pasqualotto et al., 2019 [59] %
MERIS Terrestria orphyl Index NIR-RDED1
(MTCI) Dash and Curran, 2004 [60] ROEDI-RED

Modified Chlorohyl Absorption in (RDED1-RED)-0.2(RDED1-GREEN))+ 2BEDL

Reflectance Index (MCARI) Daughtry et al., 2000 [61] 1.16(NIR-RDED1) (NIR+RDED1+0.16)
Chlorophyl Index, Red-Edge (Cir) Gitelson et al., 2003 [46] ﬁgggi‘ -1
Normalized Difference Red Edge

: RDED2-RDED1

Index, 1 (NDRE1) Gitelson and Merzlyak, 1994 [62] RDED2TRDED!
Normalized Difference Red Edge . RDED3-RDED1
Index, 2 (NDRE?) Gitelson and Merzlyak, 1994 [62] RDEDS-RDEDI

Additionally, we tested a series of feature engineering approaches based on the harmonic
regressions for both Landsat and Sentinel-2 data (Section 2.4). First, we used the harmonic regression
coefficients for all bands (“All Bands Harmonic Fits”), and then for GCVI only (“GCVI Harmonic Fit”).
These decompositions encode the magnitude and timing of crop spectral signatures, with demonstrated
effectiveness for crop classification and yield prediction [14,53]. Second, we used the VI-based metrics
described in Section 2.4 (Peak GCVI, Peak GCVI + 2nd Window, 30-day sum GCVI, 60-day sum GCVI).
To compare these approaches, we tested individual random forests given one of the six VI-based
metrics along with monthly weather covariates.

2.5.3. County Scale Random Forest Models

In order to better understand the differences between training on our pixel yield data and more
commonly used county-level yields, we trained a random forests model using county-level data
(“County trained”, Table 1). To do so, we sampled 50 random points classified as soybean based
on USDA'’s Cropland Data Layer (CDL) in each county [64]. As above (Section 2.5.2), we derived a
monthly Landsat and Gridmet weather time series for each of these points. We then aggregated to a
single training example per county-year by averaging each of our spectral and weather covariates.
We employed the same baseline model implementation described in Section 2.5.2, with monthly
Landsat observations for all bands and monthly weather covariates. The response variable was USDA’s
NASS county-level average yield.
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For this analysis, we split the available county-year observations into only a training set and a
test set (80/20) by combining the county-years in the validation and test sets defined in Section 2.5.1.
We do so since we only examined the baseline model and thus did not carry out model selection for
both harvester-trained and county-trained models. This relatively simple random partitioning of
county-years into training and test sets enabled consistency with the full Landsat harvester-trained
random forest analysis and thus was elected over alternative out-of-sample error estimation approaches
(i.e., cross validation).

Most often, models are trained with county statistics since those data are freely available.
In order to understand how a county-trained model might perform on fine-scale yield data, we tested
our county-trained model on the 30-m harvester yield data, and compared performance with the
baseline Landsat harvester-trained model (Section 2.5.2) across both scales and on the period 2008-2018.
First, we took the model trained with 30-m harvester data, applied it to the county-aggregated
data, and evaluated with NASS county yield data in the combined validation/test set defined in the
previous paragraph. Then, we applied the county-trained model to 30-m harvester yields in these
same county-years (predictions from the Landsat harvester-trained model were also on the same
validation set).

To put our county-level results in context, we compared performance to that of a null model
in which county predictions were made based on that county’s yield trend over the 11-year study
period. In other words, for each county in our sample, we fit a linear regression predicting yield
with year, and used this simple model to make predictions for all counties (2008-2018). Furthermore,
we used this null model to help differentiate spatial and temporal variability. To do so, we calculated
the distribution of r? by both county and year for the null model and the harvester- and county-trained
models. In order to have a robust enough sample to do so, we calculated these metrics on the full
sample of county-years to have as many counties with the full 11 years of data as possible. This means
that the by-county and by-year r? estimates are positively biased because they include predictions on
data from the training set. Thus, while the absolute values should not be interpreted as an estimate of
generalization error, the relative distributions help describe the capacity of the random forest models
to capture temporal variability.

Finally, we leveraged one of the strengths of random forests, their ability to output relative variable
importance, as a way to explore differing results when modeling with empirical data of different scales.
Specifically, we compared variable importance measures in sklearn based on predictors that have the
largest effect on decreasing variance within a “node” or split in the decision tree. Feature importance
can offer information as to which covariates are most predictive of soybean yields.

2.5.4. Pixel Scale Simulations-Based Model

In order to build simulations-based models, we employed the satellite-based Scalable Crop Yield
Mapper, or SCYM [26]. Specifically, this process takes LAI, biomass, and yield output from the
Agricultural Production Systems sIMulator (APSIM) [65] and fits a multiple linear regression using
a subset of weather covariates and VI (estimated from simulated LAI) to predict end-season yield.
The simulations vary management parameters—e.g., sowing date, sowing density, and fertilizer
application—across realistic ranges to produce a distribution of potential outcomes. We converted LAI
from APSIM to GCVI via a linear regression based on field experiments conducted in Nebraska [37]:

GCVI = 1.1 + 1.4 x LAI'3 (4)

The statistical relationships to predict yield from VI and weather are then deployed at scale
to observed satellite and weather data using Google Earth Engine. SCYM has been used to create
30-m resolution soybean yield maps across 3 of the 9 states in our study area (Indiana, Illinois,
and Iowa) [26,66]. The initial implementation used maximum observed GCVI in two time windows,
early and late season, and employed a regression model trained specifically for the pair of observation
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dates available at each pixel. To do so, regressions were derived for all possible combinations of early
and late season observation dates. Here we updated the SCYM methodology to better capture yield
variability across the nine-state region, informed by our validation data and variable importance from
the random forests models.

To begin updating the SCYM methodology, we returned to the APSIM simulations. Since we
were evaluating over a larger area than the initial implementation, we added two new training sites in
the more northern latitudes, one in South Dakota and one in Minnesota (Table 4). We retained the six
original training sites, spread across lowa, Illinois, and Indiana. For each of the eight sites, we gathered
Gridmet weather data at a daily time step exported using Google Earth Engine [42]. We largely
maintained management parameters as in the original implementation (Table 4). We employed two
cultivars in the simulations, Pioneer93M42 3.4 and Pioneer_94B01 4.0, with their default parameters
in APSIM. We chose similar cultivars to past work using APSIM-Soybean [67], and maturity groups
appropriate for a large swath of our geographic extent. For soil, we used the same basic soil profile as
in previous implementations based on a Johnston, Iowa study site (coordinates 41.73N, 93.72W) [9,26]
and varied nitrogen application and soil water at sowing (Table 4). Crop specific water and nitrogen
responses were controlled by the default soybean parameters from APSIM.

Table 4. Summary of Agricultural Production Systems sIMulator (APSIM) settings for crop simulations.
Comments note changes from Lobell (2015) baseline parameters [26].

Factor Values Used Units Comments
Year 2007-13
Newton, IA (-93.1°E, 41.7°N)
Marshalltown, IA (-92.9°E, 42.1°N)
Clinton, IL (—89.0°E, 40.1°N)
Site Chenoa, IL (—-88.7°E, 40.7°N) Latter two sites
Marion, IN (—85.7°E, 40.6°N) added from baseline
Munice, IN (-85.3°E, 40.2°N)
Benson, MN (—95.6°E, 45.3°N)
Aberdeen, SD (—98.5°E, 45.5°N)
Fertilizer Rate 0, 25,50 kg of urea N per ha
Sowing Density 3,57 Plants per m?
. Reduced from
Row Spacing 380 mm baseline as per [67]
. . Pioneer93M42 3.4, Pioneer_94B01 Similar cultivars as
Cultivar Choice
4.0 [67]
Soil Water At Sowing 0.8,1.0 h/o Of. total wa’se r
olding capacity
Added April 25th
Sow Date April 25, May 5, May 20, June 14 date for additional
variability

Based on successful implementation in maize SCYM [9], we tested whether predicting plant
biomass, scaled by a constant harvest index to output yield, improves model performance versus
directly estimating yield. We expect that complex grain-filling mechanics are challenging to capture in
crop simulations; employing a more reliable estimation of biomass as the dependent variable in our
regressions, then, could help yield estimation when applied to observed imagery. We held the harvest
index constant across years, selected to minimize RMSE on validation data.

Drawing on the modeling work above, we tested a series of SCYM regressions using both the
suite of VI metrics defined in Section 2.4 and subsets of weather covariates. Specifically, we tested each
of the six VI metrics without weather, with the 4 baseline weather covariates, and with new sets of
weather covariates based on random forest variable importance. The baseline approach’s weather
predictors were based on seasonal radiation and rainfall, July VPD, and August max temperature.
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Since SCYM models train only on simulated data, we allocated the 30-m harvester training set
for model selection. We report error at the pixel (30 m) scale using the combined harvester data
set of county-years from unseen validation and test sets, as with county-scale analysis described in
Section 2.5.3. Additionally, we report validation at the county scale to compare with past work in this
area using these same held-out county-years. This is the same validation set of county-years used to
compare error for the baseline Landsat harvester-trained and county-trained (Section 2.5.3). To do so,
we averaged the models 30-m outputs in a given county-year.

3. Results

3.1. Pixel Scale Random Forest Models

The pixel-scale random forest model applied to Landsat imagery from 2008-2018 was able to
explain 44% of the yield variability against the test dataset (r> = 0.44, RMSE = 0.85 t/ha). When focusing
just on 2017-2018, the 20-m Sentinel-2 model performed similarly (r?> = 0.45, RMSE = 0.82 t/ha)
and slightly better than the Landsat model compared against data from the same 2017-2018 period
(r? = 0.41, RMSE = 0.84 t/ha). The preferred Sentinel-2 model included all available bands using
biweekly time series; for Landsat, a model with all harmonic regression coefficients for each band,
except for blue, outperformed a model with monthly observations (Figure 3). This improvement
in performance suggests that Landsat, with its lower temporal resolution, can benefit from the
harmonic’s ability to capture magnitude and timing of phenology. On the other hand, despite
residual noisiness in the biweekly Sentinel-2 time series (Figure 2), the models did not improve with
harmonic fits, whether for individual bands or GCVI. This may be due to the relatively worse fit
of harmonic regressions on Sentinel-2 data compared to Landsat, particularly in 2017 (Section 2.4).
The all-bands harmonic fit performed the worst for Sentinel-2 (Figure 3), which may have resulted from
higher dimensionality (15 additional predictors from the three red-edge bands compared to Landsat
implementation) in addition to the lower harmonic performance.

Variable importance measures for the baseline Landsat harvester-trained model indicated that the
models relied more on spectral observations near the peak for VIs, in late July and August (Figure 4).
Placing relatively little weight on early or late spectral observations, for which cloudy observations
are much more likely, minimizes the interference from those noisy periods. It may also be that these
periods are simply less informative for yield prediction, since our data should have relatively little
interference from clouds after filtering. Overall, the random forest models performed better with
individual bands than pre-calculated VIs or VI-related metrics. This finding reflects the ability of
machine learning models to discover interactions between bands that are useful for predictions, even in
a high-dimensional setting.

The VI-based metrics derived from harmonic regressions (peak, peak+ 2nd-window, cumulative)
performed similarly for Landsat and Sentinel (Figure 3). In both cases, VI-based metrics explained
between 75 and 85% of the variability captured by the preferred models (Figure 3). Corresponding
increases in RMSE between 5 and 10% (moderately increased bias) suggest that compressing VI-related
signal into one or two predictors can still result in similar error, when also given weather data as our
models were. Between the four VI-based metrics, cumulative VI metrics did not capture substantially
more variability than simpler metrics like peak VI for soybean (Figure 3).

In testing a series of Sentinel-derived VIs at the 20-m scale, the red-edge VIs performed similarly
to the most robust VIs using wavelengths available on other sensors (e.g., NIRv and GCVI; Table 5).
Overall, NIRv performed the best, but many red-edge VIs performed nearly as well (Table 5).
The canopy/chlorophyll-related VIs generally outperformed “structural” VIs such as MCARI or MTCI
(Table 5). With the caveat that we employed top-of-atmosphere data, red-edge VIs did not add a
significant amount to the traditional bands. Moreover, we found that including the three red-edge
bands’ biweekly time series in a random forest model did not improve or hurt RMSE or r? compared
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to a model without them (but with the other bands); it seems that any information gained was largely
cancelled out by the cost of increased dimensionality.
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Figure 4. Variable Importance from County- and Harvester-Trained random forest (RF). The figure
displays variable importance, measured by increase in node purity (decrease in variance), from random
forest models trained at the pixel-scale using harvester yield data and the county-scale using NASS
data. Both models were trained on data from 2008 to 2018 using monthly Landsat and weather data.

Table 5. Sentinel-2 Vegetation Index Performance. Validation statistics reported from performance on
held-out validation set for a suite of vegetation indices.

Vegetation Index r? RMSE (t/ha) MAE (t/ha)

SR 0.42 0.841 0.648
NDVI 0.42 0.840 0.648
GCVI 0.43 0.832 0.641
NIRv 0.45 0.822 0.634
OSAVI 0.42 0.839 0.648
SeLl 0.44 0.828 0.638
MTCI 0.39 0.863 0.665
MCARI 0.29 0.932 0.720
Cir 0.44 0.829 0.638
NDRE1 0.43 0.835 0.643
NDRE2 0.44 0.829 0.637

3.2. County-Scale Random Forest Models

The county-trained random forests explained over 80% of variance in unseen county-years (r* = 0.82,
RMSE = 0.24 t/ha, Table S1). Since our interest here was to assess the difference in feature importance
and generalization between models trained at fine and coarse scales (see Methods Section 2.5.3), we also
compared validation across scales. Using the Landsat harvester-trained model to predict average yields
in new county-years explained nearly as much variability in NASS county yield statistics (r*> = 0.79,
RMSE = 0.65 t/ha, Figure 5, Table S1). Although variation explained (r?) in held-out NASS county yield
data was quite high, the harvester-trained model did display a strong positive bias. This might be
expected based on the higher average yields in the yield monitor dataset, discussed in Section 2.2.
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Figure 5. County- and Pixel-Scale Random Forest Validation. The figure shows validation statistics
on held-out data for random forests trained at the pixel-scale (Harvester Trained) and county-scale
(County Trained). Both models employ a monthly time series of Landsat and weather data. RMSE and

MAE are reported in t/ha.

The null model (county trend) described in Section 2.5.3 achieved an overall % of 0.70 (RMSE = 0.33 t/ha,
MAE = 0.26 t/ha) across all county-years. This null model displayed very low bias, likely due to the
removal of spatial variability by training within county. Compared to this null model, both the harvester-
and county-trained random forests explained more variation in NASS county yields across the study
period (12 of 0.79 and 0.82, respectively; Figure 5).

To examine temporal versus spatial variability captured by the models, we examined by-county
and by-year 12 on the full data set (Section 2.5.3). The median r* by county for the null model
was 0.43; the median 12 by county was 0.74 for the Landsat harvester-trained model and 0.96 for the
county-trained model. The median r2 by year was 0.70 for the null model; because the model predicts
using by-county trend lines, it quite effectively captures spatial variability. Comparatively, the 12 by
year was 0.69 for the Landsat harvester-trained model and 0.95 for the county-trained model. Together,
these results indicate that the random forest approaches do effectively capture temporal and spatial
variability, particularly so for the county-trained model.
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Furthermore, we tested the county-trained model at the pixel scale, using the 30-m harvester
data. Applying the county-trained model to fine scale data resulted in a large decrease in performance
relative to the Landsat harvester-trained model (> = 0.32 vs. 0.43, Figure 5). Although at very different
levels of aggregation, applying Landsat harvester-trained model to the county data decreased r? by
3 percentage points while applying county-trained to the harvester data decreased r? by 11 percentage
points relative to models trained and tested at those scales.

County-level models relied more heavily on a small subset of variables, learning a simpler function
that did not generalize to the pixel scale (Figures 4 and 5). In particular, the county-trained model placed
alarger emphasis on August weather variables (VPD, precipitation, maximum temperature), while using
almost exclusively the NIR in July and August out of the spectral bands. The Landsat harvester-trained
model also emphasized the July and August NIR, but otherwise distributed importance more widely
across inputs. To test whether a county-trained model was indeed learning a simpler function, we
trained and tested models at both scales given only the six covariates with greatest importance scores
from the county-trained model (NIR in July and August, August precipitation and VPD, and SWIR2 in
May and August). On the pixel-scale validation data, variance explained decreased by 11 percentage
points (r2: 0.43 — 0.32, RMSE: 0.92 t/ha — 0.98 t/ha) for the harvester-trained model but only by
4 points (r2: 0.32 — 0.28, RMSE: 1.22 t/ha — 1.26 t/ha) for the county-trained model. At the county scale,
the harvester-trained model explained far less variance (r?: 0.79 — 0.50, RMSE: 0.65 t/ha — 0.92 t/ha),
while the county-trained model actually improved (r?: 0.82 — 0.93, RMSE: 0.24 t/ha — 0.16 t/ha).
The county-trained random forest seemed to benefit from reduced dimensionality at its native scale,
while the harvester-trained model performed considerably worse at both scales.

Based on these results, it appears county-trained models depended highly on a small subset
of weather covariates that lacked signal at the pixel scale. This cross-scale experiment highlights
the importance of fine-scale validation data for understanding the performance of yield mapping
algorithms. As demonstrated, algorithms that rely on county-scale yield labels for training may not be
able to capture the underlying population model at a subfield, pixel scale.

3.3. Simulations-Based Models (SCYM)

Validated on 30-m harvester data, the biomass SCYM model using harmonic “Peak + 2nd Window”
performed the best (Table 6, Figure 6). At this scale, the preferred SCYM model explained 27% of
yield variability on a held-out test set (r*> = 0.27). Applying this method to the full set of available soy
CDL points for our validation county-years resulted in 12 of 0.63 and RMSE = 0.4 t/ha at the county
scale (Table S1). The median r? by county was 0.63 as well; compared to the null model presented in
Section 3.2 above, the SCYM model outperformed in terms of capturing temporal variability (median r?
by county based on the county trend was 0.43). Additionally, the median r? by year was 0.53.

Though ultimately a somewhat naive approach, predicting biomass and scaling by a constant
harvest index led to a more robust model than predicting yields directly. Despite ignoring some
variability from late-season (post-August) weather effects, eliminating other sources of error improved
performance. Relative to work in maize [9], implementing the biomass X harvest index approach
did not improve performance as much in soybean. This might be due to a weaker relationship in
soybeans between high LAI or biomass and end-season yields. Using APSIM simulations in maize
and soybean over a suite of management scenarios, maize yield and biomass exhibited a much
stronger linear relationship (r*> = 0.95, r? = 0.50 for soybean). The looser yield-biomass relationship in
soybean may occur for a variety of reasons, including increasing water stress and decreasing light use
efficiency at high LAIs, making for a less predictable response [67,68]. In addition to netting only a
small improvement in 12, switching to the biomass-based approach seemed to reduce the variance
of predictions. As a result, SCYM tended to overpredict in low-yielding counties and underpredict
in high-yielding ones. This phenomenon likely stemmed from a combination of the limited weather
effect and the constant biomass scaling, meaning that SCYM was unable to differentiate fields which
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achieved high LAls and average yields from fields with high LAls and outstanding yields. In this area,
in particular, there remains opportunity to improve the soybean SCYM methodology in future work.

Table 6. SCYM Model Performance across Implementations. Baseline 2-Window refers to implementation
from Lobell et al. 2015 [26]. “No met” means weather covariates not included. “Met” indicates the
original four weather covariates (Methods). “Aug rain” models include only August rainfall as
weather covariate.

SCYM Model r? RMSE (t/ha) MAE (t/ha)
Baseline 2-Window 0.24 1.09 0.86
Peak GCVI, Met 0.25 1.00 0.77
Peak GCVI, Aug Rain 0.26 0.96 0.74
Peak GCVI, No Met 0.24 0.98 0.75
Peak GCVI, DOY, Met 0.18 1.11 0.85
60d Sum, No Met 0.23 1.42 1.15
60d Sum 0.24 1.05 0.83
60d Sum, Aug Rain 0.24 1.12 0.90
30d Sum, No Met 0.24 1.00 0.80
30d Sum, Met 0.25 0.98 0.75
30d Sum, Aug Rain 0.24 1.00 0.76
Peak + 2nd Window, No Met 0.26 0.97 0.76
Peak + 2nd Window, Met 0.27 1.01 0.79
Peak + 2nd Window, Aug Rain 0.27 0.96 0.75
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Figure 6. SCYM Performance at the Pixel and County Scale. Figure displays SCYM performance
against pixel- and county-scale validation yields, across 2008-2018. Data are shown for the same
county-years which were held out from model selection. County validation, at right, is shown based
on averaged predictions across all soybean CDL pixels for that year, not just fields for which we had
harvester data. RMSE and MAE are reported in t/ha.

In general, the SCYM regressions were unable to effectively incorporate additional meteorological data.
Including sets of four weather covariates, both from the baseline implementation [26] and based on random
forest variable importance, generally did not improve model performance on our validation set. However,
as the random forests and the literature consistently pointed to August precipitation as highly impactful,
we tested a model with August precipitation as the only weather input [69,70]. This specification performed
the best on our validation set (Table 6). Comparison to the random forests revealed further evidence of
SCYM'’s limited ability to incorporate additional signals from weather data. The random forests” partial
dependence on peak GCVI showed that the underlying response function was essentially linear, and a
random forest with only GCVI data performed quite similarly to SCYM (r? = 0.27, RMSE = 0.96 t/ha).
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Together, these indicate that linear SCYM models captured the effect of GCVI on yield, but struggled to
gain additional information from weather—beyond what APSIM built into the simulated LAlIs.

4. Discussion

4.1. Pixel-Scale Yield Prediction

Direct comparison with other field-scale yield estimation studies is difficult because of inherent
differences in crop type, spatial and temporal extent, and heterogeneity of soil and other factors.
Nonetheless, we note that our work here compares favorably with models using spectral and
weather inputs but underperforms for more data-intensive approaches drawing on either extremely
high-resolution hyperspectral imagery or additional soil/environmental covariates. Our ability to
estimate field-scale yield using random forests is similar to work over smaller spatial extents
in maize (r> = 0.50) and soybean in Brazil (MAE = 0.28) [6,24]. On the other hand, our models
achieved significantly lower accuracy than work using Sentinel-2 and random forests in British
wheat systems, using a data set of 39 fields over a limited spatial extent [5]. Though accessing
additional soil moisture data, that work’s much higher r2 (0.91) indicates either that wheat is
easier to map using random forests and spectral imagery, or simply that our larger spatio-temporal
extent (1000-10,000x as many fields) significantly increased the estimation challenge by increasing
heterogeneity. Data assimilation approaches that incorporate remotely sensed data into crop simulations
achieved moderately higher mean absolute percentage error (MAPE, 17% vs. 21-23%) predicting
subfield-scale yields in Midwestern maize [10]. MAPE is defined as

Yi— yi‘ 5)

1 n
MAPE = —
TZZ yi

i=1

where n represents the number of observations, # the predicted value, and y the observed value.
Finally, deep learning models with very high-resolution hyperspectral data from an unmanned aerial
vehicle outperform our models here (r? = 0.72) on sub-10-m-scale yields, though they were evaluated
on a small series of plots in a single season [71]. Overall, these studies generally have a reduced
spatio-temporal extent compared with our study, ranging from 1 to ~700 fields.

4.2. County-Scale Yield Prediction

The county-level random forest, built by aggregating pixel-level Landsat predictors (as opposed to
aggregating pixel-level predictions), explained over 80% of variance in unseen county-years (r> = 0.82,
RMSE =0.24 t/ha). This relatively simple implementation matched the performance of many county-scale
approaches proposed in the literature, including complex deep learning models, which have resulted in
RMSE between 0.3 and 0.4 t/ha on the same study area, over a smaller subset of years [7,29].

The two random forest models, one trained at the pixel scale and one at the county scale, overall
agreed with regard to weather covariate importance (Figure 4). Their variable importance reflected
similar patterns as in past work on soybean yield determinants. Analysis of historical yield trends in
the Midwest, 1960-2006, emphasized the importance of August rainfall for soybean, with deviation
above/below the mean by 1.5 inches changing yield outcomes by 0.1-0.25 t/ha [70]. Analogously,
another study analyzing soybean yield responses also concluded that August precipitation had a large
positive effect on yield outcomes, with an equivalent change in precipitation associated with between
0.2 and 0.6 t/ha increase in yield [69]. The effect was significant in only three out of the nine Midwestern
states analyzed here, however. Both of these historical analyses examined yields aggregated to the
state level in the Midwest, using linear regression to infer impacts of weather on soybean yields.
These findings align with the random forests models, both of which determined August rainfall to
be the weather covariate most predictive of yield. At the same time, placing emphasis on the NIR
measurements near peak LAI for soybean makes intuitive sense, as NIR is sensitive to leaf structure [72],
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and its interactions with other spectral bands can effectively capture crop LAI and canopy chlorophyll,
signals of plant health [37,73].

4.3. Scalable Yield Mapping

As detailed above, based on held-out 30-m harvester data, the preferred SCYM model used
biomass x harvest index predictions with the harmonic “Peak + 2nd Window” implementation
(Table 6, Figure 6). Although the harmonic implementation only slightly outperformed the previous
two-window method (Table 6), the harmonics methodology will likely translate much better to regions
across the world given that the percentage of clear (cloud-free) growing-season observations in many
equatorial regions, such as Sub-Saharan Africa or India, is much lower than the US Midwest [74].
For these regions, harmonic regressions have proved effective in the context of small-holder yield
prediction [17,75].

The relatively small difference between peak and cumulative VI-metrics (Table 6), particularly
without weather covariates, differed from previous work showing that cumulative VI metrics explained
more than twice as much variability in wheat yields compared to simple peak or two-window
observations in models without weather data, and ~30% more when models included weather [53].
Here, we observe that cumulative metrics improve performance slightly compared to a single peak VI,
but worsened it when compared with a harmonic-based two-window approach. In a more similar
context, our finding aligns with other work on Midwestern soy yields for which cumulative VIs only
marginally improved explained variability compared to peak VI, when using multiple satellite fusion
to gain the requisite temporal resolution [8].

5. Conclusions

Using an extensive ground-truth data set of high-resolution yield data, we found that random
forest models could explain up to 45% of pixel-level yield variability using satellite imagery and
weather data. For Landsat-based models, applying harmonic regressions in this machine learning
context markedly improved performance. Overall, pixel-based random forest models were not
very sensitive to feature engineering approaches. Comparing these pixel-scale models with models
trained on county data, we found that pixel-scale models performed similarly at the county-scale.
On the other hand, county models performed relatively poorly on pixel-scale data by learning a
simplified response function that did not effectively model fine-scale yields. Translating features
which performed well in the random forests context did not significantly improve performance of the
simulations-based SCYM model, which performed similarly to county-based random forest models
at explaining pixel-scale yields. Due to potential shortcomings of the model simulations or linear
regression approach, the simulations-based models output low variance estimates that performed
poorly farther away from the mean. Additional work on these shortcomings is needed, in order to
build a highly accurate—in addition to scalable—model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/21/3471/s1,
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