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Abstract: The branches of fruit trees provide support for the growth of leaves, buds, flowers, fruits,
and other organs. The number and length of branches guarantee the normal growth, flowering,
and fruiting of fruit trees and are thus important indicators of tree growth and yield. However, due to
their low height and the high number of branches, the precise management of fruit trees lacks a
theoretical basis and data support. In this paper, we introduce a method for extracting topological and
structural information on fruit tree branches based on LiDAR (Light Detection and Ranging) point
clouds and proved its feasibility for the study of fruit tree branches. The results show that based on
Terrestrial Laser Scanning (TLS), the relative errors of branch length and number are 7.43% and 12% for
first-order branches, and 16.75% and 9.67% for second-order branches. The accuracy of total branch
information can reach 15.34% and 2.89%. We also evaluated the potential of backpack-LiDAR by
comparing field measurements and quantitative structural models (QSMs) evaluations of 10 sample
trees. This comparison shows that in addition to the first-order branch information, the information
about other orders of branches is underestimated to varying degrees. The root means square error
(RMSE) of the length and number of the first-order branches were 3.91 and 1.30 m, and the relative
root means square error (NRMSE) was 14.62% and 11.96%, respectively. Our work represents the
first automated classification of fruit tree branches, which can be used in support of precise fruit tree
pruning, quantitative forecast of yield, evaluation of fruit tree growth, and the modern management
of orchards.

Keywords: point cloud; quantitative structure models (QSM); sensitivity analysis; branch length and
branch number

1. Introduction

Fruit tree branches support the growth of leaves, buds, flowers, fruits, and other organs.
The appropriate number and length of branches are required to guarantee normal growth, flowering,
and fruiting of fruit trees. Fruit tree branch information (branches topology, length, number, etc.)
is an important indicator of tree growth and yield. Therefore, accurate extraction of fruit tree branch
information is of great significance for orchard production.
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Traditionally, tree branches are measured manually, which is slow, inaccurate, lacks a systematic
description of branch configuration parameters, and can lead to tree damage. The application of LiDAR
in forestry, especially backpack LiDAR and terrestrial laser scanning (TLS), which are high-precision
three-dimensional laser point cloud active remote sensing platforms, provides an effective technical
means for obtaining tree branch information. In recent years, there have been many studies on the
acquisition of tree parameters based on three-dimensional laser point clouds, mainly focusing on single
tree structures, single tree/population canopy parameters, and leaf distribution [1–5], but there has
been little quantitative research on the extraction of tree branch information.

To extract tree branch information accurately from laser point cloud data, it is necessary to
determine the branch topology and geometric structure of the tree, and carry out accurate modeling,
so that branch information including the length and number of branches can be extracted. For tree
topology reconstruction and branch information extraction, existing solutions can be divided into two
categories: (i) point cloud segmentation and (ii) skeleton extraction. Based on the method of point
cloud segmentation, the point cloud of a tree is divided into small clusters, and then these small clusters
are programmatically connected to reconstruct the branch topology of the tree. Geometric elements
such as cylinders and spheres are used to carry out three-dimensional reconstructions on the existing
topological relations, and then tree structure parameters can be extracted, including branch length and
number. Raumonen et al. [1] used the local method to segment the point cloud on the tree surface
into small connected cover sets to identify the branches topology relationship, and use a cylinder to
reconstruct the tree in three-dimensions, which can efficiently establish the topological relationship of
tall trees and the acquisition of basic parameters. Yan et al. [6] extracted the topological structure of
a tree based on the variational k-means clustering algorithm. Bucksch et al. [7] organized the input
point cloud data according to the octree structure and reconstructed a tree based on the skeleton lines
of trees generated from octree cells. Hackenberg et al. [8] developed a hierarchical cylindrical structure
to describe the parent–child relationship between tree branches, which can effectively extract different
tree components, such as branch topology, length, and number of branches. Unlike a point cloud
segmentation, skeleton extraction directly obtains the skeleton lines from the original input point
cloud, and then performs 3D reconstruction work. Scholars have carried out a lot of work in this area,
such as the algorithm based on three-dimensional curve extraction proposed by Verroust et al. [9],
the algorithm based on the distance minimum spanning tree (DMST) by Zhen et al. [10], the breadth-first
search (BFS) method proposed by Li et al. [11], and the minimum spanning graph and optimization
method proposed by Livny et al. [12]. To overcome the problems caused by point cloud quality,
several approaches have been attempted, such as the central axis skeleton extraction [13], L1-median
algorithm [14], generalized rotational symmetry axis (ROSA) [15], semi-automatic algorithm + prior
knowledge [16], Dijkstra algorithm [17], among others. When studying the physical and chemical
parameters of crops, skeleton extraction is still very important. For example, Wu et al. [18] successfully
extracted the skeleton of corn through the Laplace algorithm.

In general, although some existing skeleton extraction methods do not require a high point cloud
quality, most models only extract skeletons and do not make more in-depth research on tree parameter
extraction. Quantitative structural models (QSM) is a typical method in point cloud segmentation
and has great potential for obtaining tree structure parameters [2,19]. It can quantitatively describe
the basic topology (branch structure), geometry, and volume properties of the tree. These attributes
include the total number of branches and the branch order, the parent–child relationship and length of
the branches, the volume and angle of a single branch, and the branch size distribution. Models such
as SimpleTree [8], PypeTree [20], and TreeQSM [1] all belong to the category of QSM. Brede et al. [21]
compared the potential of UAV-LiDAR (Unmanned Aerial Vehicle, UAV) and TLS using QSM for 3D
reconstruction in forest volume estimation; TreeQSM has been used to estimate above-ground biomass
(AGB) of different tree species [22]. QSM has also been used in tree species identification [23] and in
forest radiation transmission simulation [5]. In addition, QSM also performed well in the extraction of
structural parameters such as tree diameter at breast height [3] and crown width [4].
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Among the three quantitative structural models (QSMs) mentioned above, PypeTree has high
hardware requirements that are hard to meet in the field; SimpleTree is time-consuming and cannot
obtain effective model results in a relatively short time; TreeQSM is mainly aimed at tall forest trees,
but it is no application on fruit trees with thin, dense, and overlapping branches. Therefore, extracting
branch information of fruit trees may require a higher-precision point cloud, which may make the
use of TreeQSM a challenge. At the same time, the feasibility of using TreeQSM to extract branch
information of fruit trees for different point cloud data such as TLS, backpack-LiDAR, and even
UAV-LiDAR remains to be studied.

In this study, we adapted TreeQSM to extract branch information from Fuji apple trees. In our
work, the QSM method is applied to the study of fruit tree structure for the first time, and the
hierarchical automatic extraction of fruit tree branches is realized. The potential of Backpack-LiDAR
data for accurate extraction of fruit tree branches was evaluated. It may be of great significance to
the quantitative and accurate management of orchards in the future. The specific objectives were
to: (i) clarify the feasibility of the TreeQSM model in extracting the topology, length, and quantity of
branches for non-tall trees, that is, fruit trees with a tree height of 3–5 m; (ii) evaluate the influence of
different carrying platforms (TLS and backpack-LiDAR) and different point cloud quality/point cloud
density on the results of branch information extraction.

2. Materials and Methods

2.1. Study Area and Data Collection

Shandong′s climate is a warm temperate monsoon climate type with sufficient sunlight resources.
It is one of the largest apple-producing areas in China. Our study site was at the BSD group Apple Base
(BoShiDa, BSD, an agrochemical group), Guanli Town, Qixia City, Yantai City, Shandong Province,
China (N37.186035◦ E120.701057◦) (Figure 1A). Here, we selected a typical orchard of Fuji apple trees
of 50 × 80 m, with an interval between individual fruit trees of about 3–5 m (Figure 1B). QSM is
more sensitive to noise points, and a large number of leaf noise points appear in the data collected
during the leaf-on period. Therefore, the data collection time for this study was the leaf-off period in
December 2019. At this time, the leaves had completely fallen off and the fruit branches had not been
pruned yet to avoid external factors causing errors in the experimental results. Data were acquired
during windless and sunny weather to avoid noise caused by the shaking of branches during the
collection process.

Experimental data were obtained with a backpack-LiDAR and TLS. We used the LiBackpack
DG50 (STD 16E) (Figure 2A), with scanning accuracy of 5 cm, a maximum distance of laser scanning
of 100 m, laser wavelength of 903 nm, scanning frequency of 600,000 pts/s, horizontal field of view
of 0–360◦ and vertical field of view of −90–90◦. In the process of data collection, a U-shaped path
(Figure 1B) was used to avoid repeated data.

The TLS equipment model was the FARO Focuss 350 (version 2019.0.1.1653, FARO Technologies,
Orlando, FL, USA) (Figure 2D), with a scanning distance of 4 m, scanning accuracy of 2 mm,
resolution/quality 28.0 Mpts/3x, laser wavelength of 1550 nm, horizontal and vertical viewing angles
of 0–360◦ and −60–90◦, respectively, scan size of 8129 * 3413 Pt, point distance of 7.7 mm/10 m; the
scan time per station was less than 2 min 54 s when collecting TLS point cloud data. Each tree was
required to set up 4–6 stations; the data of each station were stitched to obtain an accurate single point
cloud (Figure 2E).

We randomly selected ten fruit trees from the orchard and for each, we measured their branch
information with a soft ruler (Table 1). At the same time, one tree randomly selected from 10 sample
trees for TLS, is tree 6. (Figure 2F) (In situ measured branch information of tree 6 are shown-in Table 1).
In the process of collecting information on the branches, we followed the criteria of grading collection,
that is, we first determined the main trunk of the fruit tree, then identified the branches from the
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main trunk (first-order branches), and then the branches from the first-order branches (second-order
branches), so on.Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 
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(C) point cloud of a single tree based on backpack-LiDAR; (D) terrestrial laser scanning (TLS); (E) point
cloud stitching based on TLS; (F) point cloud of tree 6 based on TLS.
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Table 1. In situ measured branches information of sample fruit trees. (Length unit: m).

First-Order Second-Order Third-Order Fourth-Order Total

Trees Length Number Length Number Length Number Length Number Length Number

1 17.34 10 109.24 100 210.62 327 76.08 34 413.28 522
2 22.66 12 227.12 316 287.22 755 47.64 167 584.64 1250
3 21.04 10 89.18 75 208.84 308 85.64 144 403.7 537
4 22.37 10 256.93 350 259.43 655 15.38 48 554.11 1063
5 20.39 11 102.89 140 165.46 383 36.95 149 325.68 683
6 30.43 14 250.58 340 288.12 710 29.82 96 595.95 1160
7 25.85 11 175.01 247 282.54 721 73.88 262 562.67 1267
8 25.67 9 209.64 313 269.05 665 28.27 88 533.28 1078
9 21.16 9 137.53 214 150.75 363 28.84 81 338.54 668

10 27.98 13 197.57 391 208.56 627 18.79 63 452.9 1094

Max 30.43 14 256.93 391 288.12 755 85.64 167 595.95 1267
Min 17.34 9 102.89 75 150.75 308 15.38 34 338.54 471

mean 23.49 10.9 175.57 248.6 233.06 551.4 44.13 113.2 476.48 932.1

2.2. Point Cloud Data Processing Method

The grading processing of the branches classifies the branches according to the topological
relationship between the reconstructed model and the real tree. The branches of the apple tree are
characterized by many grades and serious crossover; the higher the grade, the thinner the branch
diameter. When a LiDAR point cloud is used to extract the branch topology information of the branches,
due to equipment accuracy and other reasons (such as serious crossover), the branches with high orders
may not be well reconstructed. Therefore, in this study, we adopted the method of grading fruit tree
branches. The grading of fruit tree branches has two main advantages: (i) to evaluate the applicability
of TreeQSM for extracting information from low and complicated fruit branches; (ii) to evaluate the
potential of extracting the grade of the branches from the backpack-LiDAR point cloud. In this study,
due to the accuracy of the equipment and the characteristics of the fruit tree branches, the order of
secondary branches was too high to be accurately reconstructed. Therefore, we evaluated the accuracy
of the extraction of the first-order branches. If the first-order branches of the fruit tree were extracted
with reliable accuracy, we assumed that it was feasible to use TreeQSM to extract the information of
the fruit tree branch grades.

Point cloud filtering. The main purpose of this step is to filter outliers and noise out, because
TreeQSM is highly sensitive to them. There are two choices for filtering: one is to use the filtering
function in TreeQSM to input appropriate filtering parameters, and the other is to filter the noise
with point cloud processing software, such as LiDAR360 (version v 4.1, GreenValley, BeiJing, China)
or CloudCompare (Open Source Project, version v 2.6.1, www.cloudcompare.org).

Point cloud down-sampling. When the modeling process takes too long, perhaps due to a large
amount of single tree point cloud data, or the accuracy of the required model does not need to be
particularly high in actual operation, the point cloud can be down-sampled [24]. In this paper, we used
the voxel method to down-sample the point cloud and the point cloud toolbox in MATLAB 2016a
(Mathworks, Natick, Massachusetts, USA) to down-sample the TLS data. TLS data was down-sampled
to 80%, 50%, 20%, 10%, 5%, 2.5%, and 1.25% to study the influence of different density point clouds on
the prediction of apple fruit tree branches information extraction.

2.3. QSM and Optimization Method

2.3.1. TreeQSM

TreeQSM is based on point cloud segmentation. First, the point cloud of the tree was clustered,
and the filtered point cloud was covered with cover sets matching the surface of the tree. The cover
sets here refers to the patches connected to the surface of the tree. Next, the neighborhood relationship
between each cluster was defined and the geometric characteristics between each cover set were

www.cloudcompare.org
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characterized. The neighbor relationship was used to determine the connectivity attributes between
each point cloud collection, and the geometric features were used to classify the point cloud of each
branch and tree trunk. Next, the point clouds that do not belong to the tree, such as the ground point
cloud, were deleted and each component (branch and its features) of the tree were defined to rebuild
the tree. Then, the branches of the tree were split. Segmentation can be used to derive topological
relations and information of the tree branches. In the segmentation process, the method of surface
growth was used to identify bifurcations by checking the local connectivity. The next step was to
approximate each segment as a cylinder with a different radius, length, and direction for reconstruction.
To complete the cylinder model of the entire tree, the algorithm needs to find the gaps between the
cylinders and fill them with additional cylinders. Finally, the statistics and other characteristics of the
tree can be calculated based on the completed cylinder model.

There are five input parameters (PatchDiam1, PatchDiam2Min, PatchDiam2Max, Lcyl, and FilRad)
in the TreeQSM algorithm, and the first three parameters define the size of set covers in the segmentation
process, but the specific functions are different. PatchDiam1 is mainly used to filter noise points such as
ground points, while the size of PatchDiam2Min and PatchDiam2Max determines the size of the fitting
cylinder to a certain extent, especially at the bifurcation of the parent branch and the child branch;
Lcyl defines the relative length of the fitting cylinder; FilRad represents the relative radius of isolated
filtered points.

2.3.2. Sensitivity Analysis Method

This study evaluated the impact of the five input parameters in the TreeQSM algorithm on the
extraction of the length and number of fruit tree branches and performed a sensitivity analysis on them.

Sensitivity analysis plays an important role in model development, calibration, uncertainty
analysis, scenario analysis, and decision-making [25]. Sensitivity analysis can generally be divided
into local and global. Local sensitivity analysis focuses on analyzing the influence of input factors
on the local model and belongs to the one-factor-at-a-time (OAT) methods. That is, a single input
parameter is usually changed, and other parameter inputs remain unchanged. This method requires a
small number of calculations, but it is not suitable for nonlinear models. The global sensitivity analysis
is mostly based on the Monte Carlo method. Global sensitivity analysis can be further subdivided
into variance-based methods, such as the Sobol method [26] and the Fourier amplitude sensitivity test
method (FAST) [27]; screening such as the Morris method [28]; regression-based, such as stepwise
regression analysis [29] and response surface method.

The Sobol method is a global sensitivity analysis method based on variance. When analyzing
the sensitivity of model results and input parameters, the interaction between parameters and model
results is considered. Therefore, the first-order sensitivity index or total sensitivity index of the
parameters obtained by the Sobol method can be used as a criterion for evaluating the influence of the
parameter on the model output. In this paper, the Sobol method was used to evaluate the five input
parameters of TreeQSM and the output branch information (length and number) was realized with the
Simlab (https://ec.europa.eu/jrc/en/samo/simlab) software.

2.3.3. Parameter Optimization

Choosing the best or good parameters in the actual meaningful range depends more on the
number of parameter inputs. To optimize the five input parameters, the following principles were
adopted:

1. We defined a series of values for each input parameter, from which a set of optimal input
parameters can be filtered for the following use:

• PatchDiam1: take any fixed value between 5–15 cm;
• PatchDiam2Min: within the range of 5–5 cm, take the value in 5 mm increments;
• PatchDiam2Max: within the range of 3–5 cm, take the value in 1 cm increments;

https://ec.europa.eu/jrc/en/samo/simlab
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• Lcyl: 1, 2, 3, 4, 5, 6;
• FilRad: Take 2.5 or 3.5.

Each group of different parameters was constructed 50 times. For the same parameter input
combination, the seed points selected by the cover sets may be different during each modeling run,
resulting in different model outputs.

We calculated the diameter of the trunk of the fruit tree or a certain segment of the trunk, performed
the least square fitting according to the point cloud, and compared it with the estimated diameter of
the cylinder that was reconstructed and fitted by TreeQSM at the corresponding position [30], and took
this as one of the selection principles for the optimal parameter [5,31]:

ddi f f =
min(cloudd, modeld)
max(cloudd, modeld)

, (1)

ddi f f < ddi f fmax ∗ 0.95. (2)

2. The sensitivity of five input parameters to branch information (length/number) was analyzed,
and the sensitivity parameters for branch information extraction were determined.

3. Regarding the values of the optimal parameters that have been screened out in step 1, combined
with the parameters that are sensitive to branch information determined in step 2, we took the
parameters that were not sensitive to branch information as fixed values, that is, the optimal value
of the corresponding parameter selected in step 1. Then, we determined a larger value range and
a smaller step size for the sensitive parameters, and further optimized them to determine the
values of the sensitive parameters more in line with the fruit trees in this study.

2.4. Accuracy Evaluation Method

In this paper, the relative root means square error (NRMSE) and relative error δ were used as the
main criteria for accuracy evaluation:

RMSE =

√
1
n

∑n

i = 1
(xi − fi)

2, (3)

NRMSE =
RMSE

x
× 100%, (4)

δ =

∣∣∣xi − fi
∣∣∣

xi
, (5)

where xi is the measured value of the branch length/number of the ith sample, x is the average of the
measured branch length/number of each tree, and fi is the value of the branch length/number of the ith

tree calculated by the model using point cloud, and n is the number of the fruit trees in this study.

3. Results

3.1. Sensitivity Analysis of Parameters

The parameter sensitivity analysis of the Sobol method involves the estimation of mathematical
expectations and the calculation of variance, which requires numerous model operations. The larger
the basic sample of input parameters, the more obvious the sensitivity index. The five basic input
parameters of the TreeQSM model were sampled within a meaningful value range (Figure 3) (variables
PatchDiam1, PatchDiam2Min, PatchDiam2Max are abbreviated as PD1, PD2Min, PD2Max, the same
below) to calculate the sensitivity of each parameter to branch information (length/number) under
different samples. In this paper, when the sensitivity index of a parameter is greater than 0.5, that is to
say, compared with the other four parameters, the contribution of PD2Min to the result is much greater
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than others. We expected that the parameter was sensitive to the output of the model. In addition,
our sensitivity analysis was also carried out on the first-order branches of the fruit trees. When a
certain parameter was sensitive to the extraction of first-order branch information, we assumed it was
sensitive to the extraction of all branch information.

The first-order sensitivity and total sensitivity of each parameter to the length and number of
fruit branches are shown in Figure 3; for branches length, the sensitivity of PD2Min was greater than
0.5 [32], which is the most sensitive to branch length; the other parameters were not sensitive to it
(Figure 4A). The number of branches has the same sensitive parameters as the length of branches
(Figure 4B). It shows that parameter PD2Min is the most sensitive to branch information. Our analysis
is consistent with that described in [24], in which PatchDiam2Max, PatchDiam2Min, and Lcyl are the
most meaningful parameters for the model, while PatchDiam1 and FilRad have little effect on the
final model.

To eliminate the influence of parameter samples on the final sensitivity analysis, three different
samples of 192, 384, and 768 were taken as controls (Figure 3). As the sample grows, the parameter
PD2Min was still the most sensitive to the output result. But the larger the sample size, the higher the
credibility of the sensitivity index.Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 17 
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3.2. The Feasibility of QSM for Applying to Apple Trees Based on TLS

Based on the TLS point cloud of tree 6, we evaluated the feasibility of the TreeQSM algorithm
for extracting the information (length/number) of the fruit tree branches. Since the branches of fruit
trees are more complicated than some forest tree species such as pine tree and cedar or crops such
as corn, except for the first-order branches, their branches are severely intersected and have a thin
radius, so they are prone to errors in the modeling process. In our study, although we have evaluated
the accuracy of each order of branch reconstruction, considering the characteristics of the model
reconstruction process and the lack of point clouds obtained from the fine-order branches, we assumed
that when the information extraction of the first-order branches was reliable, it was feasible to use
TreeQSM to extract information from the branches of low fruit trees.

3.2.1. Uncertainty Analysis of Parameter Based on TLS Data

Due to the randomness of the algorithm, there may be slight differences in the results of each
model run, so we modeled the point cloud 50 times, and then averaged the corresponding branch
information (retaining two decimal places) as the final result (Table 2). In addition, the model may
extract the information of some branches whose orders were higher than the fourth-order branch.
This information did not actually exist, so the information of these branches is not calculated and
counted. When the parameter PD2Min was set to different values, the 3D model generated by TreeQSM
is shown in Figure 5. We calculated the relative error of the first-order branch length when parameter
PD2Min was set to different values. If the relative error reached the minimum, we assumed that
parameter PD2Min had the optimal value.

As the value of PD2Min changed, the length of the first-order branches also changed. When PD2Min
= 0.6 cm, the relative error took the minimum value, which was the optimal parameter value (Figure 5).
On the other hand, we also visually inspected the reconstructed model. When PD2Min = 0.6 cm, the 3D
model that is most consistent with the real tree was reconstructed (Figure 5B); when PD2Min was too small,
the branches of the fruit tree were likely to be over-reconstructed, and some branches that were not part of
the real tree were included (Figure 6C); if PD2Min was too large, many branch details were likely to be
ignored (Figure 6D).



Remote Sens. 2020, 12, 3592 10 of 18

Table 2. In situ measured and quantitative structural models (QSMs) estimated branch information of
tree 6 based on TLS. In represents in situ measured; Models represent estimated QSMs. The standard
deviation of 50 attempts and relative error estimation of every order of branch information and total
information. Std represents the standard deviation; R represents relative error. (unit of length: m).

- First-Order Second-Order Third-Order Fourth-Order Total

- Length Number Length Number Length Number Length Number Length Number

In 30.43 14 253.58 340 288.12 710 29.82 96 598.95 1160
Models 32.69 15.68 211.11 307.14 184.87 540.96 62.87 253.60 507.07 1193.52

Std 2.49 2.81 11.25 18.45 5.41 25.04 7.58 24.77 6.34 47.66
R (%) 7.43 12.00 16.75 9.67 35.84 23.81 110.83 164.17 15.34 2.89
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Figure 5. Uncertainty analysis of parameter PD2Min based on TLS. The best value of PD2Min is 0.6 cm
for the TLS cloud point. PatchDiam1, PatchDiam2Min, and PatchDiam2Max are abbreviated as PD1,
PD2Min, and PD2Max, respectively.
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Figure 6. Comparison of QSMs when the sensitive parameter PD2Min is set at different values.
In this example, PD1 = 10 cm, PD2Max = 5 cm, Lycl = 3, FilRad = 3.5. (A) TLS point cloud of tree
6; (B) QSM when parameter PD2Min = 0.6 cm; (C) QSM when the parameter PD2Min = 0.3 cm;
(D) QSM when the parameter PD2Min = 4 cm. The color of QSMs indicates the branch orders:
Blue = trunk, Green = first-order branches, Red = second-order branches, etc.

3.2.2. Accuracy Evaluation and Application to Apple Trees

The relative errors of the length and quantity of the first-order branches were 7.43% and 12.00%,
respectively (Table 2). According to our settings, the extraction accuracy of the first-order branches’
information was reliable. Therefore, based on the TLS point cloud, the TreeQSM algorithm was
able to extract the information on fruit tree branches. In addition, we calculated the accuracy of the
second-order, third-order, and fourth-order branches lengths and the extraction accuracy of the total
branch length and number (here, total (branch information) = First-Order + Second-Order + Third-
Order + Fourth-Order). As the order of branches increased, the precision of branch length decreased,
namely First-Order > Second-Order > Third-Order > Fourth-Order; the precision of the number of
branches was Second-Order > First-Order > Third-Order > Fourth-Order; the relative errors of the
second-order length/number and third-order length/number were 16.75%, 9.67% and 35.84%, 23.81%,
respectively. The relative errors of total branches’ length/number were 15.34% and 2.89%.

Through the evaluation of the classification information of the fruit tree branches and the
total branch information, the first-order and second-order branches information was extracted
accurately, and their relative error was generally less than 15%, while for third-order and fourth-order
branches the extraction accuracy was poor due to the sharp decrease in their radius and their sharp
increase in number, as well as due to the scanning accuracy limitations of the equipment. Overall,
the performance of TreeQSM was acceptable and accurately identified first-order, second-order,
and total branch information.
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3.3. Branch Information Extraction Based on Backpack-LiDAR

3.3.1. Uncertainty Analysis of Parameters Based on Backpack-LiDAR Data

We evaluated the root means square error (RMSE) and relative root means square error (NRMSE)
of the first-order branch length for ten sampled trees, and determined the value of PD2Min that was
most suitable for the backpack-LiDAR to extract information about fruit branches.

Compared with in situ measured branch information (Table 1), the first-order branch length
error (RMSE/NRMSE) estimated by TreeQSM decreased with the decrease of PD2Min (Figure 7),
until PD2Min decreased to 1.2 cm, RMSE reached the minimum; then, as PD2Min continued to
decrease, the error increased again. Before our study, some scholars [22,33] calculated the AGB
through TreeQSM and analyzed the uncertainty law of this parameter. In this study, we obtained
the same parameter uncertainty law as previous studies by using the length of the fruit branches.
Therefore, PD2Min = 1.2 cm was considered to be the best value and may be used for further modeling
and analysis.
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3.3.2. Accuracy Evaluation and Potential Analysis of Backpack-LiDAR Data for Apple Trees

By modeling the backpack-LiDAR point cloud data of ten randomly selected trees and extracting
hierarchical branch information, we evaluated the potential for information extraction of hierarchical
branches by using the TreeQSM algorithm based on the backpack-LiDAR platform for 3–5 m high
apple trees. Similarly, after we obtained the best input parameters of TreeQSM for backpack-LiDAR,
we used these parameters to model each tree 50 times and averaged the branch information of each
order and the total branch information.

Figure 8 shows the relationship between the information of each graded branch extracted by the
model and the in situ measured value. Through the comparison between the QSM value and the
measured value, there is an obvious correlation between the length and number of first-order branches;
the correlation between length and number of second-order and fourth-order branches is not as good
as that of first-order branches, while that third-order and total branches are obviously underestimated.

The first-order branch length had R2 = 0.397, RMSE = 3.43 m, NRMSE = 14.62% (Figure 9A),
while the linear relationship between the remaining graded length and the total branch length and the
measured value was not significant, and their RMSE and NRMSE could not be evaluated. Similarly,
for the number of branches, only the number of first-order branches has a certain linear relationship
with the measured value, with R2 = 0.4351, RMSE = 1.30, NRMSE = 11.96% (Figure 9B), and there was
almost no correlation between the number of other orders branches and the total number of branches.



Remote Sens. 2020, 12, 3592 13 of 18

In other words, the use of TreeQSM to extract fruit tree branch information has certain quality
requirements for the point cloud used. The main trunk of the fruit tree is easy to identify, and a relatively
complete first-order branch point cloud of the fruit tree can be obtained with the backpack-LiDAR;
this means that the first-order branch can be reconstructed more completely, and the relative RMSE
of the extracted branch information reaches 14.62% and 11.96%, which provides a reference value
for evaluating the growth of apple trees and predicting their yield. The point cloud information of
other branches obtained by the backpack-LiDAR cannot be used in the TreeQSM algorithm, so it is not
feasible to extract the total branch information of each tree.
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3.4. The Influence of Different Point Cloud Densities on Branch Extraction by QSM Based on TLS

Based on TLS, we have evaluated the feasibility of the TreeQSM algorithm for grading and
extracting the information of apple branches, indicating that TLS can be used for extracting first-order,
second-order, and total branches of apple trees. In this section, on this basis, we further explored the
influence of different point cloud densities based on the extraction of apple tree branch information.

We down-sampled the TLS point cloud to 80%, 50%, 20%, 10%, 5%, 2.5%, and 1.25% of the
number of points, and extracted their respective branch information from QSMs (Figure 10 and Table 3).
When the sampling rate was 80%, 50%, 20%, 10%, and 5%, we obtained good accuracy in the branch
extraction of fruit trees by adjusting parameter PD2Min to the best through the parameter optimization
program, and both are 0.6 cm. The relative error of the length of their first, second, and third-order
branches were about 10%, 20%, and 30%; the relative errors of the number of their first, second,
and third-order branches were about 10%, 10%, and 20%. The total information is about 10%.
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Figure 10. The effect of point cloud sampling rate on the QSMs based on TLS; except for PD2Min,
all other parameters are set to fixed values. (A) Original point cloud (number of points is 4,068,641);
(B) when the sampling rate is 80%, the number of points is 3,254,912, PD2Min = 0.6 cm; (C) when the
sampling rate is 50%, the number of points is 2,034,320, PD2Min = 0.6 cm; (D) when the sampling rate is
20%, the number of points is 856,116, PD2Min = 0.6 cm; (E) when the sampling rate is 10%, the number
of points is 424,574, PD2Min = 0.6 cm; (F) when the sampling rate is 5%, the number of points is 247,076,
PD2Min = 0.6 cm; (G) when the sampling rate is 2.5%, the number of points is 112,288, PD2Min = 1.1 cm;
(H) when the sampling rate is 1.25%, the number of points is 54,659, PD2Min = 1.3 cm.



Remote Sens. 2020, 12, 3592 15 of 18

Table 3. The branch information for QSMs from down-sampling the point cloud. The TLS point cloud
was down-sampled to 80%, 50%, 20%, 10%, 5%, 2.5%, and 1.25% of itself. (Length unit: m).

- First-Order Second-Order Third-Order Fourth-Order Total

- Length Number Length Number Length Number Length Number Length Number

100% 32.56 15.27 235.25 314.47 214.30 574.11 62.77 216.15 544.88 1149.17
80% 32.41 15.50 234.69 315.18 208.69 564.81 63.86 235.84 543.15 1151.65
50% 33.23 15.48 227.21 310.83 208.69 536.48 60.66 229.10 528.63 1150.60
20% 33.41 15.72 222.47 299.00 192.93 512.27 54.62 213.50 527.79 1094.04
10% 33.72 16.10 217.39 300.97 190.04 487.13 57.63 193.72 504.02 1047.48
5% 32.69 15.68 211.11 307.14 184.87 540.96 62.87 253.6 507.07 1193.52

2.5% 33.37 16.5 195.36 273.12 159.96 424.64 51.97 181.92 452.57 944.82
1.25% 14.02 5.48 64.59 67.54 104.21 167.5 87.12 166.76 334.63 557.58

As the density of the point cloud decreased, the accuracy of branch information extraction also
decreased, especially for first-order, second-order, and total branches (Figure 11). In the first-order
branches and total branches information that this article focused on, the accuracy was still good
when the sampling rate was 2.5%: the length and number of first-order branches were 9.66% and
17.86%, respectively; the relative accuracy of total branch length and number were 24.44% and 18.55%,
respectively. But when the resampling rate was further reduced to 1.25%, the relative accuracy of the
branches was unreliable (Figure 11).

Furthermore, with the reduction of the sampling rate, the greater the loss in the point cloud
information was for the branches with the thinner radius, which leads to the QSMs not conforming
to the real tree structure (Figure 10G,H). After modeling point clouds with different sampling rates,
we found that a resampling rate of 5% can lead to the structure very close to the real tree yet (Figure 10F).
If the point cloud is too large, the computational efficiency is reduced. Therefore, it is necessary to
extract a large amount of branch information from fruit trees, and when the accuracy requirements are
not strict, the point cloud can be appropriately down-sampled to improve work efficiency.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 17 

 

Table 3. The branch information for QSMs from down-sampling the point cloud. The TLS point cloud 

was down-sampled to 80%, 50%, 20%, 10%, 5%, 2.5%, and 1.25% of itself. (Length unit: m). 

- First-Order Second-Order Third-Order Fourth-Order Total 

- Length Number Length Number Length Number Length Number Length Number 

100% 32.56 15.27 235.25 314.47 214.30 574.11 62.77 216.15 544.88 1149.17 

80% 32.41 15.50 234.69 315.18 208.69 564.81 63.86 235.84 543.15 1151.65 

50% 33.23 15.48 227.21 310.83 208.69 536.48 60.66 229.10 528.63 1150.60 

20% 33.41 15.72 222.47 299.00 192.93 512.27 54.62 213.50 527.79 1094.04 

10% 33.72 16.10 217.39 300.97 190.04 487.13 57.63 193.72 504.02 1047.48 

5% 32.69 15.68 211.11 307.14 184.87 540.96 62.87 253.6 507.07 1193.52 

2.5% 33.37 16.5 195.36 273.12 159.96 424.64 51.97 181.92 452.57 944.82 

1.25% 14.02 5.48 64.59 67.54 104.21 167.5 87.12 166.76 334.63 557.58 

As the density of the point cloud decreased, the accuracy of branch information extraction also 

decreased, especially for first-order, second-order, and total branches (Figure 11). In the first-order 

branches and total branches information that this article focused on, the accuracy was still good when 

the sampling rate was 2.5%: the length and number of first-order branches were 9.66% and 17.86%, 

respectively; the relative accuracy of total branch length and number were 24.44% and 18.55%, 

respectively. But when the resampling rate was further reduced to 1.25%, the relative accuracy of the 

branches was unreliable (Figure 11). 

Furthermore, with the reduction of the sampling rate, the greater the loss in the point cloud 

information was for the branches with the thinner radius, which leads to the QSMs not conforming 

to the real tree structure (Figure 10G,H). After modeling point clouds with different sampling rates, 

we found that a resampling rate of 5% can lead to the structure very close to the real tree yet (Figure 

10F). If the point cloud is too large, the computational efficiency is reduced. Therefore, it is necessary 

to extract a large amount of branch information from fruit trees, and when the accuracy requirements 

are not strict, the point cloud can be appropriately down-sampled to improve work efficiency. 

 

Figure 11. Relative errors of a different number of point clouds. (A) Relative errors of branches length; 

(B) relative errors of branches number. 

4. Discussion 

4.1. The Necessity of Downsampling High-Density Point Clouds 

We down-sampled the point cloud data of an apple tree in TLS. Through the modeling and 

accuracy analysis of different density point clouds, we can get some interesting conclusions. When 

using TLS to obtain data, a high-density point cloud can be obtained, especially at the bottom of a 

tree trunk where there is no branching or obstruction. However, with the increase of the point cloud 

density, the accuracy of the branch information extracted by QSMs can only be improved to a limit. 

The results are almost unchanged for the first-order, second-order, third-order, and the total branch 

information when the point cloud density is 5% higher than the original point cloud (Figure 11). 

Figure 11. Relative errors of a different number of point clouds. (A) Relative errors of branches length;
(B) relative errors of branches number.

4. Discussion

4.1. The Necessity of Downsampling High-Density Point Clouds

We down-sampled the point cloud data of an apple tree in TLS. Through the modeling and accuracy
analysis of different density point clouds, we can get some interesting conclusions. When using TLS to
obtain data, a high-density point cloud can be obtained, especially at the bottom of a tree trunk where
there is no branching or obstruction. However, with the increase of the point cloud density, the accuracy
of the branch information extracted by QSMs can only be improved to a limit. The results are almost
unchanged for the first-order, second-order, third-order, and the total branch information when the
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point cloud density is 5% higher than the original point cloud (Figure 11). Therefore, the increase in
point cloud density cannot effectively improve the results, but only takes up more computing resources.

4.2. The Challenge of Extracting Fruit Tree Branch Information Using QSM

QSM was originally used to extract the structural information of tall trees, but here we applied
it to fruit trees, with low height and more complex canopy structure, which introduces challenges
in the choice of equipment, model availability, and control of external factors. First, there are great
differences in the accuracy of LiDAR point cloud acquisitions based on different platforms. For example,
the highest accuracy of the TLS used in this paper is 2 mm, which provides an advantage in obtaining
complex and fine branches of fruit trees, while backpack-LiDAR can only obtain point cloud data of
fruit tree trunks and first-class branches with a large diameter. Second, the initial seed points selected in
TreeQSM reconstruction are random, and in the quantitative structure reconstruction, the segmentation
error and geometric structure error caused by the cylinder and the real branch or leaf shape lead to
additional deviations of the results [22]. Third, during data collection, due to unpredictable weather
conditions such as wind, there may be a large number of noise points (especially in a large number of
fine secondary branches in the crown), resulting in errors in the process of reconstruction.

QSM is often used to study the extraction of AGB or the angle and radius of first-order branches
of trees for the automatic identification of tree species [23] and few studies on the relatively simple
diameter at breast height of trees [34]. However, there are few studies on the fine structure of fruit trees
and a few applications in agriculture. In our study, we used QSM to extract first-order, second-order,
third-order, fourth-order, and total branch structure information of apple trees, indicating that QSM
shows great potential in the extraction of fine branch information of fruit trees. Because the branch
grade information of fruit trees is closely related to yield and growth, the work done in this paper can
be of great help to modern orchard management, such as accurate prediction of orchard yield and
automatic identification of fruit tree growth.

5. Conclusions

In this paper, the hierarchical branch information of Fuji apple trees with low height and complex
branch distribution was studied for the first time based on lidar data, and a method of hierarchical
extraction of branch information of fruit trees was introduced. We evaluated the feasibility of applying
the TreeQSM algorithm to fruit tree branch extraction based on TLS data. The relative errors of the
length and number of the first-order branches were 7.43% and 12%, respectively, the relative errors
of the length and number of the second-order branches were 15.75% and 9.66%, and the accuracy
of the total branch information reached 15.34% and 2.89%, indicating that the TreeQSM algorithm
is acceptable for the extraction of apple trees branch information, and can obtain extremely high
extraction accuracy with sufficiently accurate point clouds. We also analyzed the potential of the
algorithm based on backpack-LiDAR by comparing in situ measured branch information of ten sample
trees with QSMs estimates. This comparison showed that the information of other orders of branches
was underestimated to varying degrees, except for the first-order branches, for which the RMSE of
the length and number was 3.91 and 1.30 m, and the NRMSE was 14.62% and 11.96%, indicating that
backpack-LiDAR has great potential for extracting the first-order branch information of fruit trees.
Through the research of this paper, the length and number of fruit branches was accurately extracted
from QSM, which may be helpful to the modern management of the orchard. In the future, we will
forecast the output of fruit trees based on the branch length and number of fruit trees.
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