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Abstract: Evapotranspiration (ET) is an important component of the Earth’s energy and water cycle
via the interaction between the atmosphere and the land surface. The reference evapotranspiration
(ET0) is particularly important in the croplands because it is a convenient and reasonable method for
calculating the actual evapotranspiration (AET) that represents the loss of water in the croplands
through the soil evaporation and vegetation transpiration. To date, many efforts have been made
to retrieve ET0 on a spatially continuous grid. In particular, the Moderate Resolution Imaging
Spectroradiometer (MODIS) product is provided with a reasonable spatial resolution of 500 m and
a temporal resolution of 8 days. However, the applicability to the local-scale variabilities due to
complex and heterogeneous land surfaces in countries like South Korea is not sufficiently validated.
Meanwhile, the AI approaches showed a useful functionality for the ET0 retrieval on the local scale
but have rarely demonstrated a substantial product for a spatially continuous grid. This paper
presented a retrieval of the daily reference evapotranspiration (ET0) over a 500 m grid for croplands
in South Korea using machine learning (ML) with satellite images and numerical weather prediction
data. In a blind test for 2013–2019, the ML-based ET0 model produced the accuracy statistics with
a root mean square error of 1.038 mm/day and a correlation coefficient of 0.870. The results of the
blind test were stable irrespective of location, year, and month. This outcome is presumably because
the input data of the ML-based ET0 model were suitably arranged spatially and temporally, and the
optimization of the model was appropriate. We found that the relative humidity and land surface
temperature were the most influential variables for the ML-based ET0 model, but the variables
with lower importance were also necessary to consider the nonlinearity between the variables.
Using the daily ET0 data produced over the 500 m grid, we conducted a case study to examine
agrometeorological characteristics of the croplands in South Korea during the period when heatwave
and drought events occurred. Through the experiments, the feasibility of the ML-based ET0 retrieval
was validated, especially for local agrometeorological applications in regions with heterogeneous
land surfaces, such as South Korea.
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1. Introduction

Evapotranspiration (ET) is the transport of water vapor to the atmosphere through the evaporation
from soil and canopy surfaces and the transpiration from vegetation [1]. ET is an important component
of the Earth’s energy and water cycles via the interaction between the atmosphere and the land
surface in the form of latent heat using net radiation [2]. ET is affected by many agrometeorological
variables such as radiation, temperature, humidity, wind, precipitation, and soil moisture. The amount
of water transported by ET is generally greater than that by runoff in most agricultural fields [3].
Thus, the amount of irrigation water for the cropland can be determined by the cumulative amount
of ET.

Potential evapotranspiration (PET) is the possible amount of ET according to climatic and
meteorological conditions, assuming a sufficient supply of water [4]. Actual evapotranspiration
(AET) is a substantial amount of ET, as the result of the effects of many factors such as vegetation
type, the fraction of vegetation cover (FVC), phenological cycle, soil type, soil moisture, irrigation,
and drainage, in addition to meteorological conditions [2]. Water management in the croplands
includes the maintenance of a suitable level of soil moisture and the adjustment of irrigation water.
The accurate information of AET is essential to determine the amount of irrigation water because the
AET represents the loss of water in the croplands through soil evaporation and vegetation transpiration.
The in situ AET is usually obtained from the eddy covariance [5] that can be measured by the energy
and water exchanges between the land surface and the atmosphere on a micrometeorological tower [6].
It is the most scientifically reliable system for the in situ measurement of AET, but the installation and
operation of the eddy covariance instruments on the micrometeorological tower require high costs and
many efforts [7].

For the sake of convenience, the AET can be calculated by multiplying a crop coefficient (Kc)
by the reference evapotranspiration (ET0) defined as the ET of well-irrigated hypothetical grassland
under a specific meteorological condition [2]. Hence, the Kc is expressed as the ratio of AET to ET0.
The ET0 can have a similar physical quantity as PET, but is in a more agricultural context, assuming
the calculation of AET using the Kc [8]. The ET0 for a given point can be easily derived from the
Food and Agriculture Organization (FAO) version of the Penman–Monteith (PM) equation only using
meteorological parameters [3], without the hydrological and physiological factors such as soil moisture
and stomatal resistance. While the meteorological input data for the PM equation is usually obtainable,
the physiological and phenological properties of the crops are hard to quantify in detail. So, the Kc can
be a useful method for the estimation of AET in the croplands. Under considerations of the possible
use for the AET estimation, an efficient calculation of ET0 using meteorological data will be of help for
many agrometeorological studies.

Despite the usefulness of Kc in the AET estimation, it is usually confined to a specific point because
some of the input data are only obtainable from in situ point observations. However, individual point
observations cannot fully represent spatially continuous areas, although ET can vary spatially according
to the meteorological and cropland variables. To date, many efforts have been made to retrieve PET,
ET0, and AET over a continuous grid. Most of them tried to expand the point-based calculation of PET,
ET0, and AET to a continuous grid using satellite images and gridded meteorological data with the
linkage to the PM equation [9–17] or the Priestley–Taylor (PT) equation with the empirically derived
coefficients fitted for the study areas [18–28]. They also introduced additional factors to the retrieval
process for a more realistic simulation of ET0 or AET, such as soil structure [29], terrain effect [9],
stomatal conductance [10,13], diurnal temperature difference [24,30], and vegetation greenness [12,24].
Additionally, some previous studies estimated ET0 or AET using satellite-derived vegetation index and
net radiation data with a statistical model like linear regression [30,31]. Recently, artificial intelligence
(AI) approaches using the techniques like neural network (NN) or machine learning (ML) have tried to
take account of the nonlinearity between ET and the variables for meteorological and land surface
conditions, showing a possibility for the retrieval of the gridded ET0 or AET [32–35]. Because the PM
and PT equations and the AI techniques are already in a stable status, the construction of a reasonable
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database for the meteorological and land surface conditions is one of the critical points for the effective
retrieval of gridded ET0 and AET.

Currently, the operative gridded ET products are available from the Climatic Research Unit (CRU),
TerraClimate, and Moderate Resolution Imaging Spectroradiometer (MODIS). The ET0 products by the
CRU and the TerraClimate are the monthly reanalysis data suitable for long-term climate researches.
So, they cannot support examining daily or weekly changes for the applications in agriculture,
hydrology, and meteorology. On the other hand, the MODIS product (MOD16A2GF) has a reasonable
spatial resolution of 500 m and a temporal resolution of 8 days. However, the applicability to the
local-scale variabilities due to complex and heterogeneous land surfaces in countries like South Korea
is not sufficiently validated. Meanwhile, the AI approaches have rarely demonstrated a substantial
product for the daily gridded ET0 on the local scale, although they showed a useful functionality for
the ET0 retrieval on the local scale.

In this paper, we present ML-based modeling of daily local-scale ET0 that can be used for estimating
the crop AET, with the consideration of the complexity and nonlinearity between ET0 and input
variables, and thereby produce a daily 500 m ET0 in the croplands of South Korea. Vegetation data
from MODIS, precipitation data from Global Precipitation Measurement (GPM), and meteorological
data from Unified Model (UM) Local Data Assimilation and Prediction System (LDAPS) were used as
input features for the ML-based daily ET0 model. The in situ point-based ET0 data taken by the Korea
Meteorological Administration (KMA) were used for training and blind testing of our model for the
period between March and November 2013–2019. We also present the accuracy statistics followed by
the characteristics of meteorology, hydrology, and vegetation in the croplands of South Korea in recent
years using the daily ET0 retrieved over the 500 m grid.

2. Data

2.1. Overview

For the retrieval of the daily ET0 over the 500 m grid in South Korea, we used the following
input variables: normalized difference vegetation index (NDVI), leaf area index (LAI), and fraction
of photosynthetically active radiation (FPAR) from MODIS; standardized precipitation index for
three months (SPI3) from GPM; air temperature, land surface temperature, soil temperature, relative
humidity, and wind speed from UM LDAPS. The ML models were built using these input data and the
in situ ET0 data taken from KMA (Figure 1). The database was constructed for the period between
March and November of 2013–2019, excluding the winter season when evaporation from soil and
transpiration from vegetation are insignificant. For the data processing, we employed the MODIS
Reprojection Tool (MRT) and the R programming with Geospatial Data Abstraction Library (GDAL).
Additionally, R programming with the h2o library was conducted for the optimization of the ML
model and the creation of the ET0 data over the 500 m grid.

2.2. In Situ Reference Evapotranspiration Data

One effective method for quantifying the ET0 is to use the pan evaporation (Ep) and the pan
coefficient (Kp). The Ep is the in situ observation using an evaporation pan, and the Kp is defined as the
ratio of ET0 to Ep. Given an Ep and a Kp, one can directly obtain the ET0 even without meteorological
observations. In the case of KMA, the Kp was prepared in advance by fitting the linear relationship
between the observed Ep and the ET0 derived by the PM equation using in situ meteorological data.
Through this procedure, KMA provides the ET0 by the multiplication of Ep and Kp for the nine points
in South Korea (Figure 2). They are part of the Automated Surface Observing System (ASOS) stations
on the croplands having the equipment of evaporation pan. The ASOS meteorological data and the Ep
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data of the nine stations have almost no missing values during 2013–2019. We aggregated the KMA
ET0 data on a daily basis for the calibration/validation for the ML-based daily ET0 model.

ET0 =
0.408∆(Rn −G) + γ 900

T+273.15 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ∆ is the slope of the vapor pressure curve; Rn is the net radiation; G is the soil heat flux; γ is
the psychrometric constant; T is the near-surface air temperature; u2 is the two-dimensional wind
speed; es is the saturation vapor pressure; ea is the actual vapor pressure. The constant 0.408 is for
the conversion of the unit from MJ/m2/day to mm/day, and the constant 273.15 is for the temperature
conversion from Kelvin to Celsius. The constants 900 and 0.34 are the empirical coefficients for the
daily ET0 proposed by FAO [1].
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Figure 1. Input variables for the machine learning (ML) model to retrieve the gridded reference
evapotranspiration (ET0) in the croplands of South Korea, with the in situ point data from Korea
Meteorology Administration (KMA).

2.3. Satellite Images

The MODIS instrument is a satellite sensor operated by the National Aeronautics and Space
Administration (NASA) for Earth environmental monitoring onboard the Terra and Aqua satellites
with a sun-synchronous orbit. The satellites pass over a specific location at the same local time every
day. Terra crosses the equator from north to south (descending path) at approximately 10:30 AM local
time. Aqua crosses the equator from south to north (ascending path) at approximately 1:30 PM local
time. We obtained the NDVI, LAI, and FPAR products as the indicators of vegetation vitality, biomass,
and gross primary production (GPP), from the Aqua MODIS.

NDVI is a commonly used vegetation index that represents the vitality and greenness of vegetation.
We used the MYD13C2 monthly product that has a resolution of 0.05◦, instead of the MYD13A1 16-day
product with a 500 m resolution because the 16-day 500 m product has many missing pixels due to
clouds, particularly in summer. On the other hand, the monthly 0.05◦ product has almost no missing
pixels through the spatial and temporal smoothing. In general, vegetation greenness changes gradually
in the form of a cosine curve over a year, so we converted the monthly product to daily values using
the cubic spline method. The LAI, which is calculated using a crop-specific growth coefficient and
maximum GPP, can be used as a proxy of the leaf biomass. FPAR is the portion of photosynthetically
active radiation absorbed by green vegetation. We obtained LAI and FPAR from the MCD15A2H 8-day
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product with a resolution of 500 m, based on a combination of Terra and Aqua products, by choosing
the best pixel available from all acquisitions of both sensors within the 8-day period.
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To extract croplands in South Korea, we used the MODIS land-cover type product (MCD12Q1),
which was created by the supervised classification using the reflectance of multiple spectral bands,
with an annual update over the 500 m grid [36]. According to the classification criteria released by
the International Geosphere–Biosphere Programme (IGBP), we extracted the pixels associated with
croplands, including type 12 (croplands) and type 14 (cropland/natural vegetation mosaic).

The Global Precipitation Measurement (GPM) mission comprises an international satellite network
that provides the next-generation global observations of rain and snow to elucidate Earth’s water
and energy cycles [37]. We used the TRMM_3B42_Daily version 7 product, which provides better
rainfall estimates than previous versions, with significantly lower bias over complex topography [38].
Precipitation is the supply of water to the land surface, which can be infiltrated and evaporated by soil
or transpired by vegetation. Because cumulative precipitation is generally more closely associated
with ET0 than daily precipitation, we used SPI3, which is calculated from the z-score of the empirical
cumulative distribution function (ECDF) of 3-month accumulated precipitation.

z =
xi − µ

σ
(2)

where xi is the ECDF of i-th day; µ is the mean of the entire ECDF; σ is the standard deviation of
the ECDF.
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2.4. Numerical Weather Prediction Data

The LDAPS is the numerical weather prediction model operated by the KMA that is a locally
optimized version of the UM from the MetOffice of the United Kingdom (UK). The UM LDAPS
provides a 3-hourly weather forecast over a 1.5 km grid using three-dimensional variational data
assimilation (3DVAR) with optimized parameterizations for the physical processes such as radiation,
boundary layer, convection, and the land–atmosphere interactions. The land surface variables are
produced by the UK MetOffice Surface Exchange Scheme (MOSES), which computes the momentum,
thermal energy exchange, water flux, and CO2 flux, based on the land–atmosphere interaction scheme
in the land surface model (LSM). We extracted the variables air temperature, land surface temperature,
soil temperature at 10 cm depth, relative humidity, and wind speed at noon local time every day from
2013 to 2019.

3. Methods

3.1. Spatial and Temporal Matchup

The 9 variables collected for the retrieval of ET0 have different spatial and temporal resolutions,
as summarized in Table 1. For use as input features for the ML-based ET0 model, the variables should
be spatially and temporally co-located to construct a matchup database. The MODIS LAI and FPAR
data use a sinusoidal projection; the GPM precipitation data use a geographic projection; the LDAPS
meteorological variables use a Lambert Conformal Conic (LCC) projection. In addition, the datasets
have various spatial resolutions. We converted all datasets into the geographic projections based on
latitude and longitude with a 500 m (15 arc-second) grid to construct a matchup database for the
various data sources. The transformation of the coordinate reference system (CRS) was performed
using the MRT and GDAL. The adjustment of spatial resolution was carried out using the bilinear
interpolation that is based on the distance between the center points of each pixel. For temporal
resolutions, we adjusted all datasets to an interval of 1 day. MODIS NDVI was converted through
cubic spline interpolation, assuming the gradual change over a year. MODIS LAI and FPAR data from
the 8-day composite were rearranged to daily values using the nearest neighbor method under the
assumption that they do not usually change within 8 days. LDAPS meteorological variables such as air
temperature, land surface temperature, soil temperature, relative humidity, and wind speed at noon
were treated as representative values for the day.

Table 1. Spatial and temporal resolutions of the data used as input features for the ML-based ET0 model.

Data Source Variable Spatial Resolution Temporal Resolution

MODIS 1 NDVI 2 0.05◦ 1 month
LAI 3 500 m 8 days

FPAR 4 500 m 8 days

GPM 5 SPI3 6 0.25◦ 1 day

LDAPS 7 Air temperature 1.5 km 3 h
Land surface temperature 1.5 km 3 h

Soil temperature 1.5 km 3 h
Relative humidity 1.5 km 3 h

Wind speed 1.5 km 3 h
1 Moderate Resolution Imaging Spectroradiometer; 2 normalized difference vegetation index; 3 leaf area index;
4 fraction of photosynthetically active radiation; 5 Global Precipitation Measurement; 6 standardized precipitation
index (for three-month accumulated precipitation); 7 Local Data Assimilation and Prediction System.

3.2. Random Forest and Its Extensions

RF is an ensemble machine learning model that conducts classification and regression using the
bootstrap and bagging methods [39]. The RF generates many decision trees with different input features
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through random sampling of training data. Resampling is conducted via bootstrapping if necessary,
to achieve a suitable distribution of training samples. As an extension of the RF model, the gradient
boosting machine (GBM) and the extreme gradient boosting (XGBoost) adopt a boosting method
instead of bagging. The boosting considers the prediction performance of each sample during the
iteration of training. The XGBoost uses more regularized trees than the GBM for the adjustment of the
weighting scheme [40]. We used the three ensemble machine learning methods (RF, GBM, and XGBoost)
and compared the test results to select the most suitable model. The number of decision trees (ntree)
and the number of variables for splitting the tree branches (mtry) are the critical hyperparameters for
the optimization of the three models [41]. We set the ntree parameter to 100 (Figure 3), and the mtry
parameter to the number of input features divided by three, based on optimization experiments.
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3.3. Training and Blind Test

Statistical models are usually optimized through a calibration/validation process for parameter
adjustment using a training dataset extracted from the whole database. Data that were not included in
the training dataset were used for blind testing of the optimized model. We constructed 16,125 matchups
for the ML-based daily ET0 modeling in the croplands of South Korea for the period between March
and November of 2013–2019. We first divided the whole matchups into 80% (12,941 records) for
training and 20% (3184 records) for the blind test. This sampling was performed with consideration
of the monthly distribution of data so that the ML-based ET0 model could learn from the temporally
representative dataset. Using the training dataset, we first conducted a 10-fold calibration/validation
to optimize the ML-based ET0 model (Figure 4). Then, we conducted a blind test using the remaining
data and derived the accuracy statistics, including mean bias error (MBE), mean absolute error (MAE),
root mean square error (RMSE), and correlation coefficient (CC).
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3.4. Comparison with Operative Product

A comparison with an operative product was also conducted to more objectively evaluate our
ML-based ET0 retrievals. The MODIS PET product (MOD16A2GF) is a year-end gap-filled 8-day
composite with a 500 m resolution. The retrieval algorithm was based on the PM equation and used
daily meteorological reanalysis data along with MODIS products such as vegetation, albedo, and land
cover [43].

4. Result and Discussion

4.1. Retrieval of Daily Reference Evapotranspiration

The optimization of the three ML models (RF, GBM, and XGBoost) was conducted through the
training process, followed by the blind test for the optimized models. The accuracy statistics of the three
models were very similar, although the RF showed slightly better performance (Table 2). We chose the
RF model because it is a commonly used machine learning model of which maintenance and rebuilding
are more convenient.

Table 2. Accuracy comparison of the three machine-learning (ML) models.

Model MBE MAE RMSE CC 1

Random forest (RF) 0.007 0.790 1.038 0.870
Gradient boosting machine (GBM) 0.010 0.820 1.068 0.862

Extreme gradient boosting (XGBoost) 0.000 0.786 1.039 0.869
1 p-value < 0.001.

Figure 5 shows the accuracy statistics of the blind test of the RF model. The MBE was 0.007 mm/day,
including unbiased predictions without over- or under-estimation. The MAE was 0.790 mm/day,
the RMSE was 1.038 mm/day, and the CC was 0.870, indicating quite a strong accordance with the
KMA in situ data. A scatterplot also shows that the test retrieval for the 3,184 cases was successful,
with few deviations from the 1:1 line.
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Figure 5. Scatterplot for the Korea Meteorological Administration (KMA) in situ daily ET0 vs. estimated
daily ET0 in the blind test of the RF model in the croplands of South Korea, 2013–2019, with the accuracy
statistics in terms of the mean bias error (MBE), mean absolute error (MAE), root mean square error
(RMSE), and correlation coefficient (CC).

The importance of 9 variables was evaluated based on permutation feature importance (PFI) [41]
(Table 3). Relative humidity, land surface temperature, and air temperature accounted for about 70%
of the importance of all variables. The transport of water vapor from the soil and vegetation to the
atmosphere is mainly controlled by the heat transfer between the land surface and the atmosphere [44].
Relative humidity (PFI = 33.2%) is directly associated with the vapor pressure deficit (VPD) (es − ea)
in the PM equation, which represents the capacity of the diffusion of water vapor to the atmosphere.
Under the conditions of sufficient soil moisture, a high VPD and low relative humidity result in high
evapotranspiration (Figure 6a). Although the degree of stomatal opening, which is associated with
the transpiration rate, can be decreased under extremely dry conditions of very high VPD, the plant
transpiration is generally increased by the high evaporative capacity [45]. The land surface temperature
(PFI = 25.1%) and the air temperature (PFI = 11.9%) can influence the relative humidity. Indeed, the land
surface temperature had a positive relationship with ET0 (Figure 6b), as mentioned in the previous
studies [46]. The evaporation can increase if high thermal energy is available to convert the liquid
water to water vapor under a sufficient supply of water.
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Table 3. Importance of the input variables of the ML-based daily ET0 model in the croplands of South
Korea, 2013–2019.

Rank Variable PFI (%) 1

1 Relative humidity 33.170
2 Land surface temperature 25.052
3 Air temperature 11.932
4 Soil temperature 8.480
5 SPI3 6.106
6 NDVI 4.487
7 Wind speed 4.243
8 LAI 3.516
9 FPAR 3.014

Sum 100
1 Permutation feature importance (PFI) is defined to be the decrease in the model score when the values of a single
feature are shuffled in the matchup database, indicating how much the model depends on the feature [41].Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 
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ET0 is not directly controlled by rainfall or vegetation phenology, according to the definition of
ET0. However, the high-priority variables of the ET0 model can have direct or indirect relationships
with the other variables, such as rainfall and vegetation (NDVI, LAI, and FPAR). Hence, the variables
with lower importance should not be considered unnecessary for the AI modeling of ET0 to cope with
the nonlinearity between the variables. Figure 7 shows that the estimation errors were not significantly
influenced by wind speed. Further, the errors were decreased when the wind was strong because the
aerodynamic resistance, which is generally governed by wind speed, has less fluctuation against the
wind speed under strong winds [47].
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4.2. Spatial and Temporal Characteristics of the Accuracy Statistics

For a more detailed examination of the daily ET0 retrieval, the accuracy statistics were summarized
according to location, year, and month. Table 4 shows the accuracy associated with the nine stations
in the croplands of South Korea used for in situ measurements. Station 177 was associated with the
highest accuracy, with the MAE of 0.703 mm/day, the RMSE of 0.955 mm/day, and the CC of 0.896,
whereas station 254 results were the least accurate, with the MAE of 0.878 mm/day, the RMSE of
1.144 mm/day, and the CC of 0.833. The overall accuracy of the daily ET0 was similar among the nine
stations because the ET0 is not affected by the local condition of the land surfaces. Figure 8 shows
scatterplots for the nine stations, in which data trends are generally in accordance with the 1:1 line.

Table 4. Accuracy statistics of the nine stations in the croplands in South Korea, 2013–2019.

Station No. MBE MAE RMSE CC 1

129 0.381 0.795 1.016 0.857
177 −0.037 0.703 0.955 0.896
251 0.158 0.734 0.951 0.900
252 −0.150 0.795 1.053 0.862
254 −0.072 0.878 1.144 0.833
258 0.018 0.765 1.001 0.870
263 0.015 0.838 1.098 0.850
264 −0.234 0.809 1.058 0.884
283 −0.124 0.761 1.029 0.898

1 p-value < 0.001.

The temporal characteristics of the accuracy statistics according to year were also examined.
The MAE for each year ranged between 0.745 and 0.834 mm/day; RMSE ranged from 0.996 to
1.092 mm/day; the CC ranged between 0.852 and 0.893. No significant differences among years were
found, indicating that the accuracy statistics were stable across years (Table 5; Figure 9) because the
input features from the satellite images and numerical reanalysis product well reflect the meteorological
and land surface conditions according to the time-series of the seven years.
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Table 5. Accuracy statistics of the ML-based ET0 model in the croplands in South Korea, according
to year.

Year MBE MAE RMSE CC 1

2013 0.143 0.789 1.021 0.870
2014 −0.092 0.790 1.015 0.868
2015 −0.017 0.834 1.092 0.893
2016 0.025 0.784 1.050 0.852
2017 −0.034 0.813 1.071 0.856
2018 −0.004 0.778 0.996 0.875
2019 0.030 0.745 1.015 0.873

1 p-value < 0.001.

We investigated the seasonal characteristics of the accuracy statistics according to the month
between March and November. The MAE and the RMSE were somewhat lower in colder months
(September to March) than in warmer months (April to August). Because soil evaporation and
vegetation transpiration levels are low in the cold season, the amount of ET is relatively small (Table 6),
and accordingly, the errors are also small (Table 7). However, this result does not mean that the
accuracy was better in the cold season than in the warm season. We also calculated the normalized
root mean square error (NRMSE), which is the RMSE divided by the mean of the observation values to
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account for seasonal variations in the value ranges. Table 7 shows the accuracy statistics by month,
including the NRMSE. In contrast to the RMSE, the NRMSE values were similar across all months,
indicating that the ET0 retrievals were stable irrespective of the month (Figure 10). The accuracy was
lowest in August, presumably because the quality of satellite data is lowered in the cloudier season.
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Table 6. Comparison of observed vs. estimated daily ET0 in the croplands in South Korea, with their
min, max, and mean.

Month

Observed ET0 Estimated ET0

Min
(mm/day)

Max
(mm/day)

Mean
(mm/day)

Min
(mm/day)

Max
(mm/day)

Mean
(mm/day)

March 0.494 8.555 3.572 0.840 7.582 3.600
April 0.599 9.621 4.493 0.826 8.395 4.479
May 0.771 11.087 5.933 1.001 9.640 5.674
June 0.698 10.145 5.124 1.299 8.437 5.013
July 0.570 10.852 4.492 1.001 8.325 4.442

August 0.476 9.243 4.576 1.022 7.827 4.749
September 0.264 8.183 3.786 0.868 6.881 3.907

October 0.584 6.679 3.109 1.000 6.517 3.208
November 0.384 5.615 2.257 0.673 4.934 2.351

Table 7. Accuracy statistics of the ML-based ET0 model in the croplands in South Korea, according
to month.

Month MBE (mm/day) MAE (mm/day) RMSE (mm/day) NRMSE 1 CC 2

March 0.027 0.701 0.892 0.250 0.815
April −0.015 0.875 1.150 0.256 0.851
May −0.260 0.969 1.234 0.208 0.853
June −0.111 0.934 1.180 0.230 0.825
July −0.051 0.876 1.103 0.245 0.851

August 0.174 0.853 1.241 0.271 0.770
September 0.121 0.808 1.058 0.279 0.774

October 0.100 0.603 0.771 0.248 0.790
November 0.094 0.444 0.561 0.249 0.808

1 Normalized root mean square error, which is the RMSE divided by the mean observation. 2 p-value < 0.001.

A comparison with the operative MODIS PET product (MOD16A2GF) was conducted for a more
objective assessment of our ET0 retrievals because the PET can be considered the same physical quantity
as ET0. Since MOD16A2GF comprises 8-day composite data, we aggregated the daily ET0 and in situ
data into 8-day bins for these comparisons. Table 8 shows the accuracy statistics of the ML model and
MODIS product against the in situ data collected during 2013–2019. Both 8-day composite datasets
led to good model performance due to the effects of temporal smoothing. However, the results of
the ML model were much better than those from the MODIS product for croplands in South Korea
(Figure 11). The RMSE of our retrievals was 73% smaller than that of MODIS PET ((1.142−0.304)/1.142),
and the ML model produced an almost perfect CC of 0.982. This difference in performance is because
our ML model was locally optimized for South Korea, whereas the MODIS PET algorithm was not
specifically designed for South Korea. This finding also indicates that the arrangement of the input
features for the ML model was spatially and temporally appropriate. The 8-day LAI/FPAR and the
daily NDVI created through time-series interpolation appeared suitable for the estimation of daily ET0,
as described previously [48,49].
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croplands of South Korea, according to month.

Table 8. Comparison of the accuracy statistics of the ML model and Moderate Resolution Imaging and
Spectroradiometer (MODIS) product using 8-day composite data for croplands in South Korea for the
2013–2019 period.

Retrieval MBE (mm/day) MAE (mm/day) RMSE (mm/day) CC 1 n

This study −0.001 0.234 0.304 0.982 1883
MODIS 0.337 0.867 1.142 0.769 1883

1 p-value < 0.001.
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Figure 11. Scatterplots of the ML-based ET0 vs. KMA in situ data (a) and the MODIS PET vs. KMA in
situ data (b) for the 8-day composite for croplands in South Korea for the 2013–2019 period.

4.3. Agrometeorological Characteristics in Recent Years

ET0 is a useful indicator to examine the impacts of the meteorological drought on vegetation
conditions. Using the daily ET0 retrieved over the 500 m grid for the period between March and
November of 2013–2019, a case study was analyzed to clarify the hydrological and meteorological
characteristics of croplands in South Korea. We focused on the July and August of 2016–2018, during
which heatwave and drought events occurred. From 12 July to 12 August, the land surface temperatures
in 2016 and 2017 were typical (midday average, 32.4 ◦C and 32.2 ◦C, respectively). By contrast, the land
surface temperatures in 2018 were remarkably high (midday average, 36.6 ◦C) (Figure 12). During that
period, the average rainfall was 3.6 and 7.5 mm/day in 2016 and 2017, respectively, but only 0.8 mm/day
in 2018. Because of the high temperatures and low rainfall, soil moisture decreased in 2018 (average,
29.9%) compared to 2016 and 2017 (average, 35.3% and 36.9%, respectively). The ET0 values were
higher in 2018 (average, 6.0 mm/day) than in 2016 and 2017 (average, 4.7 mm/day and 5.0 mm/day,
respectively). The combination of high land surface temperature and ET0 with low rainfall and soil
moisture resulted in a reduced NDVI in 2018 (average, 0.72) than in 2016 and 2017 (average, 0.75 and
0.76, respectively). Figure 13 illustrates the NDVI from August 21 to 28 in 2017 and 2018, showing
NDVI values with a different pattern. Insufficient rainfall leads to a deficit in the water supply to the
land surface. When the higher ET0 is combined with severe meteorologically dry conditions due to a
heatwave, it can cause excessive water loss from the land surface that exceeds the water supply from
rainfall and irrigation. Therefore, considering the well-developed irrigation systems used in croplands
in South Korea, a small degradation in the greenness of croplands can be regarded as indicating a
critical deficit of water supply and excessive water consumption in the croplands.
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The NDVI in 2018 was lower than in 2017 due to a heatwave, low rainfall, decreased soil moisture and
increased ET0. The red dashed line denotes the major agricultural areas in South Korea.
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5. Conclusions

In this paper, we presented an ML-based retrieval of daily ET0 over a 500 m grid for croplands
in South Korea using satellite images and NWP data. In a blind test for 2013–2019, the ML-based
ET0 model produced highly accurate results, with an RMSE of 1.038 mm/day and the CC of 0.870.
The results of the blind test were stable irrespective of location, year, and month. This outcome is
presumably because the input data of the ML-based ET0 model were suitably arranged spatially
and temporally, and the optimization of the model was appropriate. In addition, the performance
comparison with the operative MODIS PET product was conducted using 8-day composite data.
Our ML model outperformed the MODIS product for croplands in South Korea because the ML
model was locally optimized for South Korea, whereas MODIS PET was not. Our ET0 retrieval is
expected to be an official product of the National Meteorological Satellite Center (NMSC) of South
Korea since 2021 for the applications of agriculture, hydrology, and meteorology. Using the daily
ET0 data produced over the 500 m grid, we conducted a case study to examine agrometeorological
characteristics in July and August of 2016–2018. We found that low rainfall and high ET0 can damage
the surface water balance when combined with a heatwave, resulting in reduced vegetation greenness.
Through the experiments, the feasibility of the ML-based ET0 retrieval was validated, especially for
local agrometeorological applications in regions with heterogeneous land surfaces, such as South
Korea. However, a more detailed examination is required to test if the 500 m grids created from various
spatial resolutions are statistically stable. The AI approaches using satellite images with NWP data can
be a viable option for studying interactions between the land surface and atmosphere.
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