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Abstract: With the rapid process of urbanization, anthropogenic heat generated by human activities
has become an important factor that drives the changes in urban climate and regional environmental
quality. The nighttime light (NTL) data can aptly reflect the spatial distribution of social-economic
activities and energy consumption, and quantitatively estimate the anthropogenic heat flux (AHF)
distribution. However, the commonly used DMSP/OLS and Suomi-NPP/VIIRS NTL data are restricted
by their coarse spatial resolution and, therefore, cannot exhibit the spatial details of AHF at city
scale. The 130 m high-resolution NTL data obtained by Luojia 1-01 satellite launched in June 2018
shows a promise to solve this problem. In this paper, the gridded AHF spatial estimation is achieved
with a resolution of 130 m using Luojia 1-01 NTL data based on three indexes, NTLnor (Normalized
Nighttime Light Data), HSI (Human Settlement Index), and VANUI (Vegetation Adjusted NTL Urban
Index). We chose Jiangsu, a fast-developing province in China, as an example to determine the
best AHF estimation model among the three indexes. The AHF of 96 county-level cities of the
province was first calculated using energy-consumption statistics data and then correlated with
the corresponding data of three indexes. The results show that based on a 5-fold cross-validation
approach, the VANUI power estimation model achieves the highest R2 of 0.8444 along with the
smallest RMSE of 4.8277 W·m−2 and therefore has the highest accuracy among the three indexes.
According to the VANUI power estimation model, the annual mean AHF of Jiangsu in 2018 was
2.91 W·m−2. Of the 96 cities, Suzhou has the highest annual mean AHF of 7.41 W·m−2, followed
by Wuxi, Nanjing, Changzhou and Zhenjiang, with the annual mean of 3.80–5.97 W·m−2, while the
figures of Suqian, Yancheng, Lianyungang, and Huaian, the cities in northern Jiangsu, are relatively
low, ranging from 1.41 to 1.59 W·m−2. This study has shown that the AHF estimation model developed
by Luojia 1-01 NTL data can achieve higher accuracy at city-scale and discriminate the spatial detail
of AHF effectively.

Keywords: anthropogenic heat flux; Luojia 1-01; nighttime light data; Jiangsu Province

1. Introduction

With the rapid development of urbanization, urban built-up areas have expanded dramatically.
A number of natural landscapes have been replaced with various artificial surface, which causes
sensible heat increases and latent heat decreases, resulting in an urban heat island (UHI) [1,2]. At the
same time, the number of urban populations has continued to surge. According to the statistics from
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the United Nations Population Division, the proportion of world’s urban population has surged
from 30% in 1950 to 55.3% in 2018, and which is expected reach 68% by 2050 [3]. Intensive human
activities consume a lot of energy resources, and eventually release not only greenhouse gases, aerosols,
and other harmful substances into the atmosphere, but also large amounts of anthropogenic heat [4].
A large amount of anthropogenic heat emissions affects the energy exchange between the land surface
and atmosphere within the cities and aggravates the temperature rise in urban and surrounding areas.
Much research in recent years has shown that anthropogenic heat is one of the key contributing factors
to forming UHI and has a significant impact on local climate [5,6]. Therefore, it is very important to
accurately quantify the anthropogenic heat for monitoring the UHI effect and improving the urban
environments [7].

Anthropogenic heat flux (AHF) refers to the amount of anthropogenic heat emissions generated
per unit time and unit area [8]. Earlier, Torrance and Shun [9] paid attention to urban anthropogenic
heat and its impacts on urban climate. Subsequently, many researchers also launched studies on
anthropogenic heat to estimate the AHF in cities and regions [10,11]. Wang et al. [12] estimated the
annual mean AHF of China in 2016 and found that at the provincial level, the AHF of Shanghai
is the highest which reaches 12.53 W·m−2, followed by Tianjin, Beijing, and Guangdong, the AHF
values are 6.91 W·m−2, 5.84 W·m−2, and 4.53 W·m−2, respectively. According to the model predicted
by Flanner [13], the annual mean AHF over continental United States, western Europe and China,
2005 AHF values are 0.39 W·m−2, 0.68 W·m−2, and 0.22 W·m−2, respectively. Moreover, in 2040, these
regional annual mean AHF will increase to 0.59 W·m−2, 0.89 W·m−2, and 0.76 W·m−2. Moreover,
the global distributions of annual mean AHF for 2005 and 2040 are 0.028 W·m−2 and 0.059 W·m−2.
In addition, he pointed out that the increase of global average annual AHF will aggravate the rise of
global average temperature, and cause aerosol and other atmospheric pollutants in planetary boundary
layer release into the areas with high AHF.

Nighttime light (NTL) data has a unique capability to detect low levels of visible and near-infrared
(VNIR) radiance emissions from cities and towns at night [14]. The brightness of NTL can reflect
the spatial distribution of social economic activities and energy consumptions [15,16]. Moreover,
many researchers have found that there is a significant correlation between the brightness of NTL
and AHF [12,17,18], which could be used for AHF spatial gridding estimation. Wang et al. [12]
found that the normalized NPP/VIIRS NTL data is highly correlated with AHF, where the fitting R2

is 0.95. Chen et al. [18] established the quantitative relationship between NTL and AHF to estimate
the anthropogenic heat release distribution in China from 1992 to 2009. There is a strong negative
correlation between vegetation coverage and impervious surface, that is, the areas with higher density
impervious surface have lower vegetation coverage. This conclusion has been proven by many
studies [19,20]. Therefore, some researchers combined vegetation indexes with NTL data to reduce
saturation and increase variation in nighttime luminosity, thereby improving the fitting relationships
between NTL data and AHF. Lu et al. [21] combined DMSP/OLS NTL data with MODIS NDVI
vegetation products to construct the Human Settlement Index (HSI). Chen and Hu [22] found a strong
correlation between the annual mean AHF and mean HSI (R2 = 0.98). Ma et al. [23] obtained the
gridded AHF estimation result in Zhejiang Province, China, based on HSI. Moreover, Zhang et al. [24]
used the vegetation index to reduce saturation of the NTL data values in core urban areas and proposed
the Vegetation Adjusted NTL Urban Index (VANUI).

At present, the two generations of NTL sensors, DMSP/OLS and Suomi-NPP/VIIRS, are the
most widely used NTL data with coarse spatial resolutions 1000 m and 500 m, respectively [25].
In June 2018, Luojia 1-01 scientific experimental satellite was successfully launched [26]. Luojia
1-01 is China’s advanced NTL remote sensing satellite with 130 m spatial resolution and 14-bit
radiometric resolution [25,27], which provides a critical basis data for refining the estimation of gridded
AHF. Currently, there are few studies on this subject. Therefore, this study aims to construct
the AHF spatial estimation models based on Luojia 1-01 NTL data, realize the AHF gridding
estimation and mapping with a high resolution of 130 m in Jiangsu Province, China, in the year 2018.
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First, the AHF of 96 county-level cities of Jiangsu are calculated using energy-consumption statistics
data. Next, the relationships between the 96 county-level cities’ AHF and NTL related indexes, NTLnor,
HIS, and VANUI, are established, thereby the AHF spatial estimation models of Jiangsu are constructed.
Then, the performance and accuracy of different AHF estimation models are analyzed and compared,
and the best model is determined based on a 5-fold cross-validation approach. Finally, the AHF
mapping with a high resolution of 130 m is realized and the spatial distribution characteristics of AHF
in urban areas are analyzed based on the AHF estimation result.

2. Methods

2.1. Study Area

The study area is Jiangsu Province, located in China’s southeastern coastal region
(30◦45′N–35◦20′N, 116◦18′E–121◦57′E). Jiangsu belongs to a subtropical and warm temperature
climate transition zone with the average annual temperature around 13–16°C, the average annual
rainfall between 150–400 mm. The regional gross domestic product (GDP) of Jiangsu increased from
4196.2 billion yuan in 2010 to 9259.5 billion yuan in 2018, with a growth rate of 121%, and the GDP
per capita increased from 53,525 yuan to 115,168 yuan, ranking first among all the provinces in
China. The total population increased from 78.7 million people to 80.5 million people. Moreover,
the energy consumption also increased significantly, from 257.7 million tons of standard coal in 2010 to
314.3 million tons of standard coal in 2018 [28]. Jiangsu Province is divided into 13 prefecture-level
cities (Nanjing, Wuxi, Xuzhou, Changzhou, Suzhou, Nantong, Liangyungang, Huaian, Yancheng,
Yangzhou, Zhenjiang, Taizhou, and Suqian) and 96 county-level cities. The study area covers around
100,831 km2, some small coastal islands and reefs are not included in this study (Figure 1).
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Figure 1. Location map of Jiangsu Province.

Figure 2 is the land cover map of Jiangsu, the dataset of 30-m Finer Resolution Observation and
Monitoring-Global Land Cover (FROM-GLC30) by Gong et al. [29]. It can be seen from Figure 2 that
the northern and central of Jiangsu are predominated by cropland, and the south has a large area of
continuous impervious surface. Statistics show that the area is dominated by cropland, making up
66.11% of the area, followed by impervious surface (16.81%), water (11.72%), and forest (4.12%).
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Figure 2. Land cover map of Jiangsu.

The development difference between north and south regions in Jiangsu is obvious. The cities in
the south have faster economic growth and larger population inflow than those in the north. Therefore,
this study can reveal the regional unbalanced development and the spatial distribution characteristics
of AHF in Jiangsu, which is of great significance for the study of anthropogenic heat emissions.

2.2. Satellite Data

The NTL data used in this study is Luojia 1-01. We acquired all the GEC system geometry corrected
NTL products covering Jiangsu in 2018, downloaded from the High-Resolution Earth Observation
System of the Hubei Data and Application Center (http://www.hbeos.org.cn).

Since some AHF algorithms used in this article need the help of vegetation index, we further
selected the Landsat 8 images in 2018. The product level of Landsat 8 images is Level 1T, downloaded
from the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/). The acquisition time
of Landsat 8 images had to be selected in summer from July to August as far as possible, because the
images of the optimum growth of vegetation throughout the year in 2018 needed to be utilized in this
study. However, there are many cloudy and rainy days in summer of subtropical area like Jiangsu,
so a large number of Landsat 8 images are missing. The images from June to October were used
as supplements, because Jiangsu is dominated by evergreen vegetation, and the growth trends of
vegetation from June to October are relatively similar.

2.3. Remote Sensing Data Processing

Although the system geometry was corrected before being downloaded, Luojia 1-01 images
still had slight geo-referencing errors by about 150–400 m, when referring to the Landsat 8 images.
In order to ensure the accuracy of overlay analysis, a map-to-map geometric correction was performed.
Taking Landsat 8 as the reference image, Luojia 1-01 was registered with Landsat 8.

Jiangsu is covered by multiple scene images of Luojia 1-01 images on different acquisition dates.
In order to ensure the continuity of the spatial pixels, and eliminate the lighting noise existing in the
NTL data, the overlapping areas were averaged for the brightness of light, and if the pixels in an image
were 0, then this position was represented by 0 [30]. Then, the DN value image of NTL data of Jiangsu
was obtained by mosaicking and clipping the processed images.

http://www.hbeos.org.cn
https://earthexplorer.usgs.gov/
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We detected a few outliers in the Luojia 1-01 NTL mosaicking image. The outliers are probably
caused by the stable lights from fires of oils or gas wells located in those areas [31]. In order to correct
the outliers, the processing procedure proposed by Shi et al. [31] was performed. Since Nanjing,
Wuxi, and Suzhou are the three most developed cities in Jiangsu, the pixel values of the other areas
should not exceed those cities theoretically. According to statistics, the highest DN value in Nanjing,
Wuxi, and Suzhou is 793,457, which was used as a threshold to correct the outliers. Each pixel whose
DN value was larger than 793,457 in NTL data was assigned as a new value. The new value was the
maximal DN value within the pixel’s immediate eight neighbors.

The images of Landsat 8 OLI were radiometrically calibrated using the equations from the Landsat
8 Data Users Handbook [32]. This converted the DN of the raw images to at-satellite reflectance.

The Luojia 1-01 NTL and Landsat 8 images were stitched and projected to the Albers Equal Area
Conic Projection, respectively. We resampled the spatial resolution of Luojia 1-01 to 30 m, consistent
with Landsat 8 (Figure 3).
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2.4. Calculation of the AHF Spatial Estimation Indexes

In this study, Normalized nighttime light data (NTLnor) [12], Human Settlement Index (HSI) [21],
and Vegetation Adjusted NTL Urban Index (VANUI) [24] were employed for AHF spatial gridding
estimation. In previous studies, these three indexes were calculated based on DMSP/OLS and
Suomi-NPP/VIIRS NTL data. HSI and VANUI also need to integrate the brightness of NTL with
MODIS vegetation index products. However, at present, there is little literature on construction of
AHF estimation index based on Luojia 1-01 NTL data. Therefore, this paper attempted to transplant
the three indexes to Luojia 1-01 data and combined with the Normalized Difference Vegetation Index
(NDVI) [33] from Landsat 8 images for AHF estimation. The equations of NTLnor, VANUI and HSI
were expressed as:

NTLnor =
NTL−NTLmin

NTLmax −NTLmin
(1)

HSI =
(1−NDVImax) + NTLnor

(1−NTLnor) + NDVImax + NTLnor ×NDVImax
(2)

VANUI = (1−NDVImax) ×NTLnor (3)
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where NTLmax and NTLmin are the maximum and minimum values in NTL image, respectively;
NDVImax is the maximum value in the multitemporal composite NDVI data in 2018 [21]. The NDVImax

is expressed as:
NDVImax= MAX[NDVI1, NDVI2, . . . , NDVIn] (4)

where NDVI1, NDVI2, . . . , NDVIn are the multitemporal NDVI images from Landsat 8 in 2018.
Through visual interpretation of Google Earth satellite imagery, the pure vegetation pixels were

extracted from NDVImax, with a threshold of 0.70. Each pixel whose value is larger than or equal to
0.70 in NDVImax was simply defined as pure vegetation. Furthermore, the pixels with the brightness
of NTL greater than 0 were extracted from the pure vegetation. The NTLmin was obtained by counting
the average brightness value of these pixels in the NTL image [34–36].

2.5. Estimation of the AHF of Administrative Unit Based on Statistics Data

The energy-consumption inventory approach was employed to calculate the AHF of the cities in
Jiangsu based on the socio-economic data and various types of energy-consumption data from the
statistical yearbook [28]. After comprehensive analysis of the statistical indicators in Jiangsu Province
statistical yearbook, the four parts of anthropogenic heat emissions sources, industry, transportation,
buildings (including both commercial and residential buildings), and human metabolism were
considered [8,12,22,23,37–40]. The total AHF is the sum of the four parts. The equation is expressed as:

QS = QI + QV + QB + QM (5)

where QS is the total AHF (W·m−2); QI is the industry heat flux (W·m−2); QV is the transportation
heat flux (W·m−2); QB is the buildings heat flux (W·m−2); and QM is the human metabolism heat
flux (W·m−2).

The industry heat is mainly derived from various types of energy consumption, such as coal, oil,
gas, electricity, etc. [12]. In addition, the actual energy consumption is converted into the standard coal.
The total industry consumption of Jiangsu is calculated, then the consumption of each city is allotted
based on the ratio of the secondary industry. This equation is expressed as:

QI =
EI ·C
A · T

(6)

where EI is the energy consumption of per ton of standard coal (tce); C is the standard coal heat,
which is 29,306 kJ·kg−1 according to the national energy conversion standard; A is the study area (km2);
and T is 1 year.

The transportation heat is the fuel waste heat discharged from vehicle energy consumption.
The equation is expressed as:

QV =
V ·D · E · ρ ·NHC

A · T
(7)

where V is the sum of civil automobiles; D is the annual average driving distance per vehicle (km),
which is assumed average 2.5 × 104 km per year; E is the combustion efficiency (L·km−1), which is
12.7 L per 100 km; ρ is combustion density (kg·L−1); NHC is the net heat combustion (kJ·g−1), which is
45 kJ·g−1 [22]; A and T are the same as in Equation (6).

The buildings heat is the energy consumption from wholesale and retail trade, accommodation,
catering industry, and living consumption, including commercial and residential buildings.
The commercial buildings heat and residential buildings heat were allotted based on the ratio
of the tertiary industry and the population in each city, respectively. The equation is expressed as:

QB =
(EBC + EBR) ·C

A · T
(8)
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where EBC and EBR are the commercial buildings energy consumption (tce) and residential buildings
energy consumption (tce), respectively; C, A, and T are the same as in Equation (6).

The energy consumption from human metabolism is divided into two states, active (7:00~23:00)
and sleeping (23:00~7:00), respectively, according to the previous studies [37,41]. The equation is
expressed as:

QM =
(s1 · t1 + s2 · t2) · P
(t1 + t2) ·A · T

(9)

where s1, s2 are the metabolic rate of active state (171 W per person) and sleeping state (70 W per person),
respectively; t1, t2 are the hours of active time and sleeping time, respectively; P is the population;
A and T are the same as in Equation (6).

2.6. Construction and Verification of the AHF Spatial Estimation Models

As was already mentioned, there is a significant correlation between brightness of NTL and
AHF [17], which could be used for constructing the AHF spatial estimation model by employing
the three indexes, NTLnor, HSI and VANUI). According to Equations (5)–(9), the annual mean AHF
based on statistics data (AHFsta) of 96 county-level cities in Jiangsu Province can be calculated. Taking
AHFsta as the dependent variable (y), and the indexes as independent variable (x), and then regression
analysis was carried out to establish the gridded AHF spatial estimation models. By comparing the
fitting degree (R2) of regression models based on the different indexes, the AHF estimation models
with higher R2 were preliminary selected. Furthermore, we used a 5-fold cross-validation approach to
evaluate the results of AHF estimation models. The 5-fold cross-validation approach can be described
as follows: the dataset was split randomly into 5 subsets, 1 of which was selected as the validation
subset and the remaining 4 subsets were used as the training subset. Finally, the root mean square
error (RMSE) and R2 between the estimated and statistics values were employed to assess the model’s
performance [42].

3. Results

3.1. Determination and Verification of the Best AHF Spatial Estimation Models

In order to realize the gridded AHF mapping and take full advantages of the high spatial resolution
of Luojia 1-01 NTL data, the regression analysis of three indexes (x) and AHFsta (y) were carried out
by using linear, quadratic polynomial, exponential, logarithmic, and power functions, respectively.
The results of AHF spatial estimation models based on different indexes and functions are shown in
Table 1. It can be seen that all the correlations are statistically significant (p < 0.005). Overall, the R2

of NTLnor and VANUI are higher than that of HSI. In term of functions, the power function has the
highest R2 in the three indexes. Among them, the R2 of power function based on NTLnor and VANUI
are greater than 0.83, which are much higher than 0.26 of HSI.

Table 1. The anthropogenic heat flux (AHF) spatial estimation models based on different indexes.

Indexes Functions AHF Spatial Estimation Models R2 p

NTLnor

Linear y = 1020.5049 x − 2.3789 0.6690 0.000
Quadratic polynomial y = 2023.8957 x2 + 912.2377 x − 1.8133 0.6703 0.000

Exponential y = 1.5767 e76.5868 x 0.7595 0.000
Logarithmic y = 9.2545 ln(x) + 56.6676 0.3944 0.000

power y = 480.6051 x0.9436 0.8370 0.000

HSI

Linear y = 34.1123 x − 6.1785 0.1170 0.001
Quadratic polynomial y = −103.2869 x2 + 153.0525 x − 35.4743 0.1979 0.000

Exponential y = 0.9847 e2.9827 x 0.1803 0.000
Logarithmic y = 18.9390 ln(x) + 25.5896 0.1474 0.000

power y = 17.7673 x1.7857 0.2641 0.000
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Table 1. Cont.

Indexes Functions AHF Spatial Estimation Models R2 p

VANUI

Linear y = 1538.4800 x − 2.0793 0.6889 0.000
Quadratic polynomial y = 3252.9998 x2 + 1419.2199 x − 1.6735 0.6896 0.000

Exponential y = 1.6461 e112.5489 x 0.7432 0.000
Logarithmic y = 9.2084 ln(x) + 60.7723 0.4103 0.000

power y = 696.2097 x0.9304 0.8444 0.000

Although the R2 of VANUI power function model is 0.8444, which is slightly higher than 0.8370
of NTLnor, the difference between VANUI and NTLnor is not obvious. Figure 4 gives the 5-fold
cross-validation results of AHF power function estimation models based on three indexes. It shows
that among the three indexes, the strongest correlations between AHFsta and AHF estimation values
obtained based on VANUI model of Jiangsu’s 96 county-level cities, which yielded an R2 of 0.8228
and RMSE of 4.8277 W·m−2. Followed by the NTLnor model, which achieved a slightly low degree of
agreement, with R2 of 0.8119 and RMSE of 4.9782 W·m−2. Meanwhile, the HSI model had an extremely
low agreement, with the R2 value being only 0.6274, and the RMSE was as high as 7.4805 W·m−2.
These results suggest that Luojia 1-01 NTL data can aptly estimate the AHF with the use of a proper
index, such as VANUI or NTLnor. In this study, the estimation accuracy of VANUI is higher than that
of NTLnor, so the VANUI power function model is selected as the best AHF spatial estimation model
of Jiangsu in 2018.
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3.2. Analysis the Gridded AHF Mapping Results

According to the best AHF spatial estimation model of VANUI power function (y = 696.2097 x0.9304),
the gridded AHF mapping of Jiangsu in 2018 with a spatial resolution of 130 m (Figure 5a) and the
distribution of annual mean AHF values in each county (Figure 5b) were completed. It can be seen
that the distribution of AHF in Jiangsu shows a significant difference between the north and south.
In northern Jiangsu, such as Liangyungang, Huaian, Xuzhou, Yancheng, and Suqian, the AHF values
are relatively low. That is because there are large areas of continuous cropland and many scattered
urban built-up areas (Figure 2). Meanwhile, the AHF of cities in central Jiangsu, such as Yangzhou,
Taizhou, and Nantong, have slightly higher AHF than the north. In contrast, in the south of Jiangsu,
the scope of impervious surface in urban built-up areas has expanded dramatically and connected
with each other (Figure 2), forming the high-value AHF areas in urban regions.
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According to the statistics in Figure 5a, the annual mean AHF of Jiangsu in 2018 is 2.91 W·m−2.
Among the 13 prefecture-level cities, Suzhou contributes the highest AHF, which reaches 7.41 W·m−2,
followed by Wuxi, Nanjing, Changzhou, and Zhenjiang, with AHF range of 3.80–5.97 W·m−2, while the
figures of Suqian, Yancheng, Lianyungang, and Huaian, the cities in northern Jiangsu, are relatively
low, ranging from 1.41 to 1.59 W·m−2, only half of the whole province (Figure 6).
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Figure 6. The AHF estimation result of each city in Jiangsu in 2018.

Statistics of the contribution rates of AHF grades are shown in Table 2. In Jiangsu, the contribution
rate of the AHF grade of 0–5 W·m−2 is the highest, reaching 87.21%. These areas with low-value AHF
are mainly croplands and water, as well as a few forests. And the contribution rate of AHF >5 W·m−2 is
about 12.79%. Comparing the result between AHF (Figure 5a) and land cover (Figure 2), it can be seen
that the spatial distribution of AHF >5 W·m−2 is consistent with an impervious surface. It indicates
that the areas with frequent human activities can be well represented by the results of AHF.

Table 2. AHF contribution rates of different grades in Jiangsu.

AHF Grades (W·m−2) 0–5 5–10 10–15 15–20 20–30 30–50 50–100 >100

Contribution Rate (%) 87.21 4.19 2.47 1.76 2.25 1.60 0.45 0.07

3.3. Validation of AHF Estimation Results

It is difficult to validate AHF estimation results according to field measured data because the
sensible or latent heat caused by human activities or background conditions cannot be completely
distinguished [8,22,43]. Therefore, the results are usually verified by comparing them with previous
similar studies [44,45]. Due to the inconsistency in the data sources, modeling methods, and research
scales, there is often no absolute comparability between the study results, but it can be used as
reference data to verify the rationality of research results as a whole [12]. Xie et al. [46], Chen et al. [18],
and Wang et al. [12] employed an energy-consumption inventory approach based on statistics data to
estimate the spatial distribution of AHF in China. Part of the estimation results of AHF in Jiangsu of
the three existing studies are compared with those obtained in this study. The detailed comparison is
shown in Table 3. The AHF estimation result in this study is basically consistent with the three existing
studies results, especially in the order of magnitude.
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Table 3. The comparison of Jiangsu’s annual mean AHF estimation results in this study with the
existing AHF results.

This Study Previous Results

AHF (W·m−2) (Study Year) AHF (W·m−2) (Study Year) References

2.91 (2018)

0.68 (1990); 0.94 (1995); 0.99 (2000);
1.83 (2005); 2.61 (2010) Xie et al. (2016) [46]

2.32 (2008) Chen et al. (2012) [18]
2.81 (2016) Wang et al. (2019) [12]

For Suzhou, Wuxi, and Nanjing, the three cities that have the highest AHF estimation values in
Jiangsu, as examples (Figure 7), the spatial rationality of AHF result can be verified by comparing the
distribution of AHF in the urban spaces with the different characteristics of land use and land cover
types. The figure also illustrates the differences in the spatial details of AHF achieved by Luojia 1-01
and Suomi-NPP/VIIRS, respectively.
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Figure 7. AHF estimation images of Suzhou, Wuxi and Nanjing. (a–c) Luojia 1-01,
(d–f) Suomi-NPP/VIIRS. 1: Suzhou ancient town, 2: Suzhou railway station and its surrounding
commercial area, 3: Suzhou New District railway station, 4: Industrial district, 5: New residential
and commercial high-rise real estate, 6: Wuxi city center, 7: Wuxi Baile Square city complex,
8: Wuxi Huiju city complex, 9: Nanjing Xinjiekou city center, 10: Large public buildings, 11: Nanjing
South railway station.

It can be seen from Figure 7 that the gridded AHF estimation results with high resolution of 130 m
based on Luojia 1-01 NTL data can effectively reveal the detailed spatial distribution of AHF inside the
cities. The sharp and clear urban anthropogenic heat emissions networks are formed by the dense and
orderly urban road systems. According to the different traffic flow and busy degree of the main roads,
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the AHF values of them vary slightly. The AHF values of urban roads are generally between 30 and
100 W·m−2. AHF can also reach more than 100 W·m−2 at some road intersections. In addition to the
network distribution, AHF also forms the massive agglomeration in some prosperous areas of the city
center. The high-value AHF areas are mainly distributed in urban commercial areas and old towns,
such as the commercial street around the Suzhou ancient town, Wuxi city center, Baile Square and
Huiju city complex, and Nanjing Xinjiekou city center. In addition, the large municipal public facilities
areas, such as railway stations, the grand theatre, the international conference and exhibition center,
and the Olympic center also have high AHF. The results of this study show that the AHF in these
high-value areas are mostly concentrated in the range of 50–150 W·m−2, and in some extra high-value
areas can exceed 200 W·m−2. Furthermore, there are some median-value areas of AHF are between 15
and 50 W·m−2; those are mainly distributed in the urban residential districts. Meanwhile, the AHF of
some villages and suburban residential areas is lower, with AHF ranging of 5–15 W·m−2 (Table 4).

Table 4. The mean AHF of the different land use types.

Land Use Types Average AHF Values (W·m−2)

Urban commercial areas 129.04
Large municipal public facility areas 114.57

Urban main roads 63.40
Urban residential areas 29.98

Villages and suburban residential areas 11.68

The above comparative analysis shows that the gridded AHF estimation results in this study have
a good presentation of AHF spatial details insider the city. Furthermore, the AHF results align with the
different characteristics of urban land use and land cover types in spatial distribution. To summarize,
the AHF estimation in this study obtained good AHF estimation results.

4. Discussion

The AHF estimation index and its model are the key factors of AHF spatial estimation. In this
study, the indexes of NTLnor, HSI, and VANUI were employed to estimate the AHF. We found that
there are the significant correlations between NTLnor, VANUI. and AHFsta, especially in the power
fitting equation, with R2 about 0.8. However, the AHF estimation model based on HSI, the R2 is as
low as 0.26. Examining the result of HSI (Figure 8a), an unreasonable phenomenon could be found,
that is, the value of water in HSI is much higher than other land covers, which directly leads to the
lower fitting relationship between HSI and AHFsta. Analyzing the calculation formula of HSI in
Equation (2), we found that in the extreme case, the NTL intensity of water areas should be close to 0,
and the vegetation index (NDVI) with the range from −1 to 1, may be close to the minimum value,
theoretically. Therefore, in this extreme situation, the HSI value in the water areas may present very
high. Zhang et al. [24] also pointed out the drawbacks to the HSI. Since the relationship between NTL
and NDVI follows a power law, when NTL has a maximum value, HSI will increase exponentially as
NDVI approaches 0.

As such, when the water was removed from HSI (HSI-water) (Figure 8b), the fitting degree
between HSI-water and AHFsta was greatly improved as expected (Table 5). The R2 is from 0.2641 of
HSI to 0.7177 of HSI-water based on power function. The 5-fold cross-validation result of HSI-water
AHF estimation model in Figure 9 illustrates that compared with HSI (R2 is 0.8887 and RMSE is
6.8358 W·m−2), HSI-water based on power function has a significant improvement in correlations (R2 is
0.8887) and accuracy (RMSE is 6.8358 W·m−2) between AHF estimation values and AHFsta values of 96
county-level cities in Jiangsu. However, if compared with VANUI (RMSE is 4.8277 W·m−2) or NTLnor

(RMSE is 4.9782 W·m−2), there is still a certain accuracy gap in the result of HSI-water. Wang et al. [12]
also found the same conclusion in the comparative study of these three indexes and pointed out that
result of HSI have poor performance on the regional characteristics of AHF estimation.
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Table 5. The AHF spatial estimation models based on HSI-water.

Index Function AHF Spatial Estimation Model R2 p

HSI-water

Linear y = 128.8516 x − 35.0518 0.4755 0.000
Quadratic polynomial y = 789.8687 x2

− 466.2848 x + 69.4359 0.6672 0.000
Exponential y = 0.0790 e11.2600 x 0.7019 0.000
Logarithmic y = 41.8538 ln(x) + 55.3212 0.3960 0.000

power y = 300.5217 x3.9687 0.7177 0.000
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Figure 9. Validation of AHF power function estimation models based on HSI-water.

Over the past 20 years, DMSP/OLS and Suomi-NPP/VIIRS NTL data have been proven to be
useful proxy measures for monitoring and analyzing human activities [27,47,48]. The coarse spatial
resolution of these NTL data often means that the studies can only be done at large scales but will be
restricted at city scales.

As can be seen from the results of AHF and the comparison between Luojia 1-01 and
Suomi-NPP/VIIRS in the detailed images (Figure 7) and their profiles of NTL data (Figure 10),
Luojia 1-01 NTL images shows great advantages in capturing finer spatial details within urban areas.
First, the main roads in urban areas can be presented more clearly by Luojia 1-01, while they are difficult
to be reflected in Suomi-NPP/VIIRS. Moreover, the overall trends of the two NTL data profiles are
basically similar, but the fluctuations in Luojia 1-01 are more frequently than those in Suomi-NPP/VIIRS.
Moreover, the variation ranges of the peaks and valleys of Luojia 1-01 are larger than Suomi-NPP/VIIRS.
These differences indicate that Luojia 1-01 NTL data contains more spatial information and has more
capacities to reduce the saturation of NTL in urban areas.
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Figure 10. The detailed images and its profiles of Luojia 1-01 and Suomi-NPP/VIIRS NTL data.
(a) Suzhou, (b) Wuxi, (c) Nanjing.

5. Conclusions

In this article, using the new generation NTL data of Luojia 1-01 with finer spatial resolution,
supplemented by Landsat 8 vegetation index data, the AHF spatial estimation models were constructed,
and the gridded AHF mapping with high spatial resolution of 130 m in Jiangsu Province in 2018 was
achieved. The conclusions are summarized as follows:

(1) AHF can be effectively estimated by using Luojia 1-01 NTL data. Among the three indexes
used in this study, NTLnor, HSI (or HSI-water,) and VANUI, the VANUI has the most significant
correlation with annual mean AHF based on statistics data (AHFsta) of county-level cities in
Jiangsu, and AHF spatial estimation model based on its power function has the highest accuracy.
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(2) From the estimation results of AHF mapping, the annual mean AHF of Jiangsu in 2018 was
2.91 W·m−2. In terms of the AHF spatial distribution, the higher AHF values are obviously
concentrated in the cities in southern Jiangsu, such as Suzhou, Wuxi, Changzhou, and Nanjing,
while the AHF in the northern cities was lower. The concentration of higher AHF is closely related
to the level of regional economic development and population density.

(3) Compared with Suomi-NPP/VIIRS, Luojia 1-01 NTL data with finer spatial resolution and has
more potentials in distinguishing AHF in urban areas from different land use and land cover types.
This ability to discriminate the spatial detail of AHF will contribution to the precise management
of urban or regional anthropogenic heat emissions.

Anthropogenic heat emissions aggravate the temperature rise in the urban areas and increase the
amplitude of the UHI. The reason is that anthropogenic heat not only affects temperature directly, in the
form of AHF, it also affects it indirectly by altering storage and consequently the outgoing long-wave
and sensible heat flux terms. Thus, the gridded AHF estimation results can be added to the urban
surface-energy balance parametrization and regional scale climate modelling to better understand and
model human–environment interactions in the future.
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