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Abstract: Earth Observation satellite imaging helps building diagnosis during a disaster.
Several models are put forward on the xBD dataset, which can be divided into two levels: the building
level and the pixel level. Models from two levels evolve into several versions that will be reviewed in
this paper. There are four key challenges hindering researchers from moving forward on this task,
and this paper tries to give technical solutions. First, metrics on different levels could not be
compared directly. We put forward a fairer metric and give a method to convert between metrics
of two levels. Secondly, drone images may be another important source, but drone data may
have only a post-disaster image. This paper shows and compares methods of directly detecting
and generating. Thirdly, the class imbalance is a typical feature of the xBD dataset and leads
to a bad F1 score for minor damage and major damage. This paper provides four specific data
resampling strategies, which are Main-Label Over-Sampling (MLOS), Discrimination After Cropping
(DAC), Dilation of Area with Minority (DAM) and Synthetic Minority Over-Sampling Technique
(SMOTE), as well as cost-sensitive re-weighting schemes. Fourthly, faster prediction meets the need
for a real-time situation. This paper recommends three specific methods, feature-map subtraction,
parameter sharing, and knowledge distillation. Finally, we developed our AI-driven Damage
Diagnose Platform (ADDP). This paper introduces the structure of ADDP and technical details.
Customized settings, interface preview, and upload and download satellite images are major services
our platform provides.

Keywords: convolutional neural network; building-damage assessment; benchmark xBD dataset;
disaster response online platform

1. Introduction

1.1. Motivation and Problem Statement

Natural disasters such as floods, hurricanes, or earthquakes cause great loss of life,
property damage, and economic damage every year around the world. According to the World Health
Organization, natural disasters kill around 90,000 people every year and affect close to 160 million
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people worldwide [1]. When a natural disaster occurs, accurate information and effective responses are
critical to saving thousands of lives and reducing loss. Knowing the location and severity of damages,
emergency responders can respond quickly and deploy resources efficiently. Traditional workflows
are based on ground-based assessments, which require a huge amount of labor and manual work for
satellite imagery analysis [2–6], and are potentially impossible to obtain. For this, advanced automated
methods are under development.

Although a series of research results has been achieved regarding convolutional neural
network-based building-damage assessment from satellite imagery, there are still many challenges to
be discussed. The release of large-scale xBD satellite disaster datasets [7] provides us with an excellent
opportunity to discuss these issues. In this article, we combine our experience and experiments with
the use of the xBD dataset to contribute to the following:

First, we made a comprehensive state-of-the-art review of convolutional neural network-based
Building-Damage Assessment from Satellite Imagery.

Secondly, we conducted a technical discussion for the four key challenges of operational
convolutional neural network-based building-damage assessment from satellite imagery as detailed
below:

(1) Challenge 1: How Do We Objectively Compare the Accuracy of Various Methods in Case
Evaluation Metrics Are Not Uniform?

(2) Challenge 2: How Do We Conduct Building-Damage Assessment in the Absence of Pre-Disaster
Satellite Imagery?

(3) Challenge 3: How Do We Train a Robust Prediction Model Based on Disaster Data with
Unbalanced Categories?

(4) Challenge 4: Which Technical Solutions Should Be Adopted to Improve the Accuracy of
Building-Damage Evaluation Models?

Finally, we demonstrated the developed disaster emergency response platform: Cloud-Based AI
Damage Mapping Online Service, a solution for realizing operational disaster damage assessment in
the future.

1.2. xBD Benchmark Dataset

The data used in this paper is a wide-ranging satellite image dataset called xBD [8]. The xBD
dataset is used by the xView2 prize challenge. As the largest building-damage assessment dataset
to date, it contains both pre-disaster and post-disaster satellite images as well as 850,736 building
annotations across 45,362 km2 of land images.

Maxar/DigitalGlobal Open Data Program has high-resolution images in high definition from many
sporadic regions of the world and images for xBD derived from this Open Data Program. 19 events as
shown in Figure 1 are available in the complete xBD dataset across 22,068 images, and 850,736 building
polygons are contained in the dataset. Each image has a 1024-by-1024-pixel resolution.

For pre-disaster imagery, a three-band RGB image and building polygons are provided.
For post-disaster imagery, a three-band RGB image and building classifications based on The
Joint Damage Scale are provided. A four-level granularity scheme is used to represent the damage
levels of buildings from the images, namely no damage (0), minor damage (1), major damage (2),
and destroyed (3). An example of the XBD dataset is shown in Figure 2.
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Figure 1. Disaster events included in the xBD dataset.

(a) Pre-disaster Image (b) Post-disaster Image

(c) Damage Scale Label (d) Building Footprint

Figure 2. Example of xBD dataset. From left to right: (a) Pre-Disaster Image, (b) Post-Disaster Image,
(c) Damage Scale Label, (d) Building Footprint.
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Mining the group counting information in Figure 3, dataset tier 3 is different from the dataset
tier 1, hold, and test, with more imagery of the wildfire and from the WORDVIEW-02 sensor.
Different disaster types or sensor types differ in the imagery of the building damage.

(a) Group count by the disaster type (b) Group count by the sensor type 

Figure 3. Histogram of (a) different disaster types and (b) different sensors images are obtained by
in tier 1, tier 3, tier hold and tier test for xBD dataset. The distribution demonstrates the unbalanced
distribution both in disaster types and sensor types in the dataset.

1.3. The Structure of the Article

Our paper is organized as per Figure 4. In Section 2, we review two categories of
building-damage-level assessment models. In Section 3, we discuss four problems in applying
intelligent damage-level assessment and propose some novel solutions. In Section 4, we develop
a web-based platform supporting damage detection after disasters. Finally, we summarize the
unexplored problems and further research objectives in Section 6.

Review

Start

Building-level 
models

CNN-Building Damage Assessment 
from Satellite Imagery

Pixel-level models

Building 
Extraction

Classification

End-to-end
Solutions

Building 
Extraction

Segmentation

Transfer
Learning

xBD Dataset

Major Challenge

Our solution

High-precision Damage 
Assessment Model

Disaster Emergency Response 
Platform Demonstration

Missing
Pre-disaster Images

Class-Imbalanced

A Novel
Evaluation Metric Resampling Main-Label 

Over-Sampling
Generative 
Adversarial 

Network

Metrics Variation

Efficiency 
Improvement

Parameter Sharing Knowledge 
DistillationNetwork Pruning

Cloud-Based AI Damage Mapping 
Online Service

Upload Baseline 
Processing

Classification
Results Download

Figure 4. The overall structure of this paper. It contains three main parts and follows the black arrow
line from the start point. The first is the review of two categories of building-damage assessment.
The second is about four key challenges in this field and proposes some novel solutions. The third is
the web-based platform supporting damage detection after disasters.
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2. State-of-The-Art Review of Convolutional Neural Network-Based Building-Damage
Assessment from Satellite Imagery

2.1. The Approaches of Damage Assessment at Building Level

For building-level tasks [7,9–14], each building has a ground-truth polygon that outlines its
location in the image. It also has a ground-truth label that indicates the damage level of this building.
As shown in Figure 5, the pipeline of building-level models is commonly composed of three main
parts: a data preprocessing module, a two-class semantic segmentation module, and a four-class image
classification module. The input, which can be a pre or post-disaster image, or a pair of pre-post
images, will be entered into the semantic segmentation module after being preprocessed to get the
buildings’ location. The output from the previous module will be sent to the image classification
module with its corresponding post-disaster image. Finally, the model will predict the damage levels
of each building in the post-disaster image.

Figure 5. The flowchart of building-level model.

Data preprocessing is very useful to get a robust model and improve its performance. For example,
we can use a crop to reduce memory usage and keep the image size consistent [15]. The crop is
also very helpful if the position of the object has a large variance [16]. Sometimes we face the
common imbalanced class problem. The resampling method is always used to limit the decrease
in performance [17], which combines over- and downsampling that all classes contain the same
amount of samples. Moreover, data augmentation methods, such as scaling, flipping, padding,
and rotation, are applied during training to reduce overfitting [18]. The semantic segmentation part
always uses the pre-trained model as its backbone [19]. It takes the image or a pair of images as
the input and performs a pixel-wise binary semantic segmentation to predict whether each pixel
belongs to a building or not. After that, the segmentation module can generate building masks by
aggregating neighboring pixels, and hence we can get the locations of those buildings in the input
images. The image classification part also uses some pre-trained models to be the core. Inputs to
this module are the output polygons from the previous segmentation part and its corresponding
post-disaster image. For a given polygon, a sub-image corresponding to the building can be cropped
from the post-disaster image. Those sub-images, which have ground-truth labels that show the damage
scales of those buildings, will be sent into the image classification module to get the predicted results.

The primary evaluation metrics for a building-level model are IoU (Intersection over Union),
precision, recall, and F1 scores [20]. IoU is the intersection over union of the predicted bounding
box and ground-truth box and used as the measure of loss. Precision (also called positive predictive
value) is the fraction of relevant instances among the retrieved instances while recall (also known as
sensitivity) is the fraction of the total amount of relevant instances that were actually retrieved. The F1
score conveys the balance between precision and recall. These metrics are used because train/test data
are not balanced.

There are many prior works concerning the building-level method, exploring the effective
use of deep learning in the context of damage assessment from pre- and post-disaster satellite
images. xBD dataset is a felicitous dataset for training and validating damage-assessment models,
and a two-stage building-level deep-learning network is proposed as the benchmark to assess the
complexity of the xView2 challenge using xBD dataset [7]. In the baseline model, a SpaceNet that
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features an altered U-Net structure [21] is used to extracted polygons indicating buildings from the
original images, and a ResNet50 pre-trained on ImageNet [1] is used for damage-level classification
of each building. Wheeler and Karimi [9] build a network with a rather similar structure to the
baseline model of the xBD dataset, which also contains a localization module and a classification
module. They test AlexNet, DenseNet, GoogLeNet, ResNet, and VGG for the classification module on
a randomly selected subset from xBD, and find that ResNet enjoys the best performance on precision,
recall, and F1 score, at the expense of relatively high time costs. Inspired by the xView2 challenge,
Trevino et al. [10] incorporate the spatial properties of natural disaster damage into the process of
assessing post-disaster damage of the buildings for a speedy and resource-efficient response operation.
They design a hybrid GCN (Graph Convolutional Network) + CNN model and achieve a drastic boost
over the xView2 baseline model.

Apart from xBD, several pieces of research are based on self-produced datasets. Fujita et al. [11]
create the binary-class AIST Building Change Detection (ABCD) dataset, a combination of cropped
building images from MLIT (“First report on an assessment of the damage caused by the Great
East Japan earthquake”. http://www.mlit.go.jp/common/000162533.pdf. (published in Japanese).
Accessed: 2019-09-01) and PASCO (Corporation, P. http://www.pasco.co.jp/eng/. Accessed:
2019-09-01). They apply different methods to image cropping so that buildings can be extracted
with a reasonable context. Later, three CNN structures, 6-channel, Siamese, and post-only are applied
respectively to determine whether the building has been washed away, where the former two structures
are used when both pre- and post-disaster images exist, and the last one is used when only post-disaster
images are available. Xu et al. [12] also incorporate the localization task into the creation of the dataset.
They collect images from three natural memorable disasters: the Haiti earthquake in 2010, the Mexico
City earthquake in 2017, and 2018 Indonesia earthquake in 2018. Pre-disaster and post-disaster images
are first fed into a building detection model to identify all buildings, where constructions in the
regions are assessed as ’Severe Damage’ and ’Destroyed’ by UNOSAT [22] are labeled as positive,
while buildings outside those regions are labeled as negative. They also test several different CNN
structures, varying from single-stream models to double-stream models, for their performances on the
classification task of buildings.

The advantage of using the building-level method is effectively using the homogeneous
information in images and reducing the complexity of the task and removing the impact of image
noise because it processes at building level instead of pixel level. However, it still has some
drawbacks. The performance of the whole model largely depends on the performance of the first
segmentation stage. The output of the segmentation module is a bounding box for a building instead
of a pixel-wise mask, while the input of the classification module is the ground-truth label with the
actual building, so it suffers some uncertainty for the prediction of the building location and maybe
have poor performance than pixel-level method if the segmentation output is not accurate.

2.2. The Approaches of Damage Assessment at Pixel Level

2.2.1. The Idea of Pixel-Level Approach: Semantic Segmentation

Building-level models extract the buildings in the first place and then adopt some state-of-art
classification networks to predict the damage scale label for the whole building with pre- and
post-disaster images. Consequently, they often suffer loud noise under the uncertainty of building
footprint predictions. The other stream of models, the pixel-level models, provide a new
genre [20,23–26]. As Figure 6 shows, the current mainstream pixel-level approach is designed
end-to-end instead of two-step. The input must contain a post-disaster image, which carries the
source information for building-damage scale. Moreover, pre-disaster images are regularly combined
to better mine the damage before and after the disaster. After the preprocessing series, which mainly
includes cropping, ameliorating the class imbalance, and typical augmentation, the image is dropped in
the pixel-level structure. The feature encoder and decoder process are adopted, and the output masks

http://www.mlit.go.jp/common/000162533.pdf
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are produced afterward, which contain c+1 channels: c damage-level labels plus one background label.
Meanwhile, the building segmentation task and damage scale classification task of each pixel is
accomplished based on the background label and c damage label, respectively. It should be noticed
that the classification of pixel damage scale is valid only when its building segmentation result is
true. In the training process, common classification loss functions such as cross-entropy loss, dice loss,
focal loss, etc. are applied. Generally, the loss functions for building segmentation and damage scale
classification are designed separately, and the weighted sum is taken as the total loss, which generally
serves as the objective function. Metrics used to evaluate pixel-level models are similar to those of
building-level models, including IoU, F1loc, F1cls, and so on.

Figure 6. Pixel-level Computation Flow. The images are processed with crop, class balance and
augmentation operations. Then, the processed pre-image and post-image are input to the encoder and
decoder, and the masks of building segmentation and damage classification are produced.

The advantages of pixel-level models are self-evident. Compared with building-level models,
a pixel-level model requires fewer parameters and training costs. However, there are some drawbacks
of pixel-level models, the biggest of which is that different damage scale labels may appear in the same
building. Thus, achieving high performance has become the focus of most existing research in the field
of pixel-level damage assessment, and we will introduce two novel approaches in the following part
of this section.

2.2.2. Innovative Solution: End-to-End Network

We refer to existing state-of-art pixel-level models. Hanxiang Hao et al. [25] design a
Siam-U-Net-Attn model as Figure 7 shows. A double U-Net model will use both pre-disaster and
post-disaster images to generate binary masks. In addition, features extracted by the encoder of the
U-Net model will be used in the damage scale classification section. The two-stream features produced
by the U-Net encoder and an independent decoder constitute the Siamese network, which compares
features respectively extracted from two input frames to predict the damage levels of buildings.
Weber et al. [26] use the Mask R-CNN (Regions with CNN features) architecture and apply the same
model architecture for both the building localization task and the damage classification task. This way,
the model can jointly reason about similar features. Instead of working with full images, they train the
model on both pre- and post-disaster image quadrants and fuse the final segmentation layer to draw
building boundaries more accurately.
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(a) (b)

Figure 7. Examples of state-of-the-art end-to-end models. (a) The overall structure of the
Siam-U-Net-Attn model [25] which uses a double U-Net model to generate binary masks. (b) The
overall structure of the model in Weber et al. [26] which uses Mask R-CNN(Regions with CNN features)
with FPN (Feature Pyramid Networks) architecture as the backbone.

2.2.3. Innovative Solution: Integration of Transfer Learning Ideas

The idea of transfer learning has been adopted in the current research. Transfer learning is
a research problem in machine learning that focuses on storing knowledge gained while solving
one problem and applying it to a different but related problem [27]. Under the background of
building damage, the first part of the building-level model, which has performed dramatically on
building a segmentation task, can be transferred into the building-damage scale classification task.
Specifically speaking, the primary output layer of a single-channel building segmentation model is
replaced with the c+1 channel classification output layer structure as mentioned above, which makes
full use of the high-precision building segmentation. As an example shown in Figure 8, Karoon
Rashedi Nia and Greg Mori [20] propose a novel damage-assessment deep model for buildings using
only post-disaster images. The model transfers three different neural networks: DilatedNet, LeNet,
and VGG. VGG and LeNet extract deep features from the input source, and DilatedNet preprocesses
the input data. Combinations of these networks are distributed among three separate feature streams.
Then, the regressor summarizes the extracted features into a single continuous value denoting the
destruction level.

Figure 8. An example of transfer learning. First, we input the image to DilatedNet to obtain the color
mask and binary mask. Then, the original image, color mask and binary mask are input to VGG,
VGG and LeNet respectively for extracting corresponding features. Finally, we input three features to
regression network and output the estimated damage.

3. Major Challenges and Our Solutions

There are some largely unexplored challenges in the application of intelligent building
damage-level assessment. First, diverse metrics applied to evaluate the performances put an obstacle
in comparing currently proposed networks. They are a building-scale network and a pixel-scale
network. Secondly, drone images may be another important source apart from satellite images.
However, pre-disaster drone images often lack historical data, which puts forward a demand for
developing algorithms solely relying on post-disaster imagery. Thirdly, many networks built on the
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xBD dataset suffer from poor classification performances in the ‘Minor Damage’ and ‘Major Damage’
class, primarily because of the limitations of satellite imaging methods and spatial resolution in
detecting fine-scale target objects. In addition, data imbalance and the intrinsic ambiguity of the Joint
Damage Scale also play an important role in precise classification. Fourthly, when applied to real-time
rescue, a fast prediction is rather crucial. We will discuss the problems stated above precisely in this
section and propose some novel solutions.

3.1. Challenge 1: How Do We Objectively Compare the Accuracy of Various Methods in Case Evaluation
Metrics Are Not Uniform?

The diverse evaluation critics present an obstacle when comparing the performance of the
current state-of-the-art models [7,12,28]. Normally, there are two specific evaluation ways for the
damage-detection model. Some papers emphasize the pixel-level category accuracy of different
damage status buildings [12,28]. To evaluate the pixel-level localization error and classification error,
they linearly combine the average F1 scores of each class and IoU (intersect over union, which stands
for the accuracy of localization task). However, the fixed hyper-parameter in the score function needs
to be set manually, which cannot guarantee rational access to the model performance.

Some other papers care more about the distribution of building units [7]. These models first
predict the region in the image containing buildings. Given the image region, the forward CNN
classifier predicts the damage level of the buildings as the final result. The building-level detection
seems a more robust method for detection in the real world since the rescue institution cares more
about the localization point rather pixel accuracy, but since the accuracy of localization sometimes
decides the accuracy of classification, the score of localization should not be ignored when comparing
different models.

3.1.1. Solution 1: Conversion Between Two Metrics

Although these two methods of evaluation do not always correspond to each other since the
pixel-level segmentation is more detailed than bounding box localization [29], and the pixel-level mask
is considered more effective and detailed for the latter classification module, we still try to evaluate
each of these methods by the other evaluation function. First, it is easy to convert the bounding box to a
rectangle in pixels to apply the pixel-level metrics to a building-level prediction. There is one case where
pixel-level model and building-level are evaluated at the pixel level. In Figure 9, the building-level
model gives a more detailed building segmentation, while the pixel model outperformed in the damage
classification. Secondly, it is not hard to apply the polygon processing tool from the Xview2 to generate
the minimum bounding rectangle from the area of the same label, in order to get a building-level
result from the pixel-level prediction. Both conversions cannot perform well, as the bounding box
in building-level detection is too rough in pixel-level evaluation, and pixel-level segmentation is too
sensitive to the input image, compared to the bounding box, which has a more robust location result.

3.1.2. Solution 2: Introduce a Novel Evaluation Metric

There has been some contribution in object detection tasks about finding an effective way to take
both the precision of localization (pixel-level mask) and classification results into consideration. As we
stated before, the damage-detection tasks which detect the location of the buildings and classify the
level of damage status, to some extent, are similar to the multi-object detection tasks. A majority of
the current object detection models [30–32] are designed to detect the possible location (bounding
box) of the objects of interest and then classify the buildings inside the bounding box, for which the
IoU score of the bounding box precision is a decisive factor. There is a sketch map to help judge the
True Positive, False Positive, and False Negative of the building segmentation with the IoU, shown in
Figure 10. An empirical but coarse method of prediction is to select all the bounding boxes with an IoU
0.5 and higher. Aiming to design a more comprehensive critic to define the performance of detection,
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the COCO (Common Objects in Context) dataset [29] proposes to evaluate the classification result in
different levels of IoU thresholds.

(a) Pre-disaster Image (b) Post-disaster Image

(c) Our pixel-level model (d) Our building-level model

Figure 9. A case study of different level models evaluated in the pixel-level.

Figure 10. With a given IoU for building contour segmentation, we can define the True Positive (TP),
False Positive (FP), and False Negative (FN) to evaluate the detection result. The IoU threshold decides
the precision of localization result.

Inspired by the COCO dataset detection evaluation, we propose to evaluate the model F1 scores
under different IoU thresholds, where the localization precision will be considered to be an intermediate
result affected by the final classification, rather be generalized with classification accuracy by a fixed
parameter [28], or ignored in object-level detection [7]. The object-level detection critics are special
cases of F1 score matrix whose IoU threshold is equal to 0.5. Our metric, seen in Table 1, needs to
calculate F1 scores with IoU equal to 0.5, 0.55, 0.60, ..., 0.90, 0.95, and the final result is the average of
the above F1 scores with different IoU thresholds.
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Table 1. F1 scores metrics under different IoU thresholds.

Metrics Definition

mF1 Mean F1 score at IoU = 0.50:0.05:0.95
F1IoU=0.50 F1 score at IoU = 0.50 (normal object-level metrics)
F1IoU=0.75 F1 score at IoU = 0.75 (strict metric)

3.2. Challenge 2: How Do We Conduct Building-Damage Assessment in the Absence of Pre-Disaster
Satellite Imagery?

The pre-disaster image and post-disaster image are crucial for the current state-of-the-art model to
localize the building in the image. However, under the real application of damage-detection situations,
it is common that the images are not recorded before the disaster.

3.2.1. Solution 1: Development of Building-Damage Assessment Methods Based on Only Post-Disaster
Satellite Imagery

A trade-off way to overcome this setback is to train the localization module only by post-disaster
image. For most damage-detection models, they use the temporal feature (pre- and post-disaster) and
detect the difference of features between them. When losing pre-damage images, they localize the
building and infer the damage level only from the post-damage image. This solution obviously will
lose accuracy due to insufficient information.

3.2.2. Solution 2: Use of Generative Adversarial Network to Generate a Pre-disaster Image

It would be highly desirable to fill up the lost pre-disaster image-based on the post-disaster image.
Fortunately, this task can be successfully achieved by Generative Adversarial Network (GAN) [33].
A generative model is designed to simulate the transfer function between distributions. GAN is a
more recently proposed generative network that learns a loss and tries to classify if the output image
is real or fake, while simultaneously training a generative model to minimize this loss [18]. It takes
significant steps after convolution neural networks (CNNs) becoming the common workhorse for
image processing. Concurrent works have applied GANs on image generation (generate images
similar to the known datasets) [17] or image-to-image translation (generative images mapping from
input images) [15,16,18].

Considering that the generative model is a relatively sophisticated technique in image generation
tasks, we propose that these models can also be applied to our damage-detection tasks to generate a
pre-disaster image of a building when only a post-disaster image is available. In our later experiment,
we used PixelGAN [18] as our generative model. It “recovers” the damaged buildings in the
post-disaster images and generates the paired pre-disaster ones. We compare the real post-disaster
image to our generated image and show that PixelGAN achieves a reliable pre-disaster image
generation. Furthermore, we exploit the generated pre-disaster images and compare them with
the detection result and with the model using a real pre-disaster image and the result that only uses
post-disaster images. The result shows that the generated image can improve the result significantly
when the pre-disaster image is not available.

3.3. Challenge 3: How Do We Train a Robust Prediction Model Based on Disaster Data with
Unbalanced Categories?

If there is an unequal distribution between its minority and majority class, a dataset can be referred
to as imbalanced. Data imbalance has long been a problem in data analysis and prediction. A model
is likely to classify most instances as the majority class to yield a fairly high metric, even though
the performance of the minority class is often of the most significance. Multi-label imbalance occurs
when data distributes unevenly across multiple classes (i.e., more than two classes) and plagues the
performance of a classifier on the class with much fewer instances than the others. For networks built
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on the xBD dataset, the performances on instances labeled as “Minor Damage” or “Major Damage”
are often unsatisfactory, primarily because they account for only a small part of the whole dataset,
shown in Table 2.

Table 2. Non-building Area and building area ratio in pixel level.

Non-Building No Damage Minor Damage Major Damage Destroyed

96.97% 2.33% 0.24% 0.27% 0.18%

Several methods have been proposed to address the problem of data imbalance, which
mainly fall into two categories: data-level methods and algorithm-level methods [34]. The former
includes data sampling and feature selection, while the latter consists of cost-sensitive, ensemble,
and hybrid measures. In this section, we will introduce some techniques, including both data-level and
algorithm-level ones, to address the poor performance of the “Minor Damage” and “Major Damage”
instances. We will also discuss some problems worth considering when the data imbalance within the
current four classes on the xBD dataset is well solved.

3.3.1. Solution 1: Data Resampling Strategies

Data sampling includes over-sampling and under-sampling. The former adds instances of the
minority class while the latter removes instances of the majority class. Random over-sampling (ROS)
and random under-sampling (RUS) can address data imbalance effectively despite their simplicity [35].
However, the problem with our task is more complicated. The proposed network conducts pixel-level
classification with input data in the form of pixel-labeling images, and nearly all images in the
dataset contain pixels of different classes. Consequently, the sampling process needs to be adjusted to
address the mismatch between the classification unit and the input unit. In this paper, we introduce
3 specific methods: Main-Label Over-Sampling (MLOS), Discrimination After Cropping (DAC) and
Dilation of Area with Minority (DAM). We also apply the Synthetic Minority Over-Sampling Technique
(SMOTE) [36] to generate some fake images of minority classes.

• Main-Label Over-Sampling (MLOS)

MLOS can be regarded as an over-sampling method at the image level. To determine how many
times an image, which covers pixels of both majority and minority classes, should be repeated in the
final training dataset, we will first introduce the concept of main label. If n(i) = [n(i)

0 , n(i)
1 , n(i)

2 , n(i)
3 ]T

is the vector recording the number of pixels of each class in image i, and w = [w0, w1, w2, w3]
T

represents the relative importance between different classes, the main label of image i (denoted as L(i))
is determined as follows:

L(i) = arg max
j

n(i)
j wj, j = 0, 1, 2, 3, (1)

where class 0 denotes “No Damage”, class 1 denotes “Minor Damage”, and so on. A function F (L(i))

will then be applied to decide how many times the image i will be repeated. The weight vector w and
the function F (L(i)) are flexible, changing along with the structure of the dataset, the mechanism of
the network, and perhaps the specific training environment. Generally, vector w will emphasize the
minority classes, and F (L(i)) will allow images main-labeled as the minority class to be repeated more
than the ones main-labeled as the majority class.

• Discrimination After Cropping (DAC)

DAC is applied after MLOS. The original image size in the xBD dataset is 1024 × 1024.
We uniformly sample smaller crops, e.g., 512× 512 as the input of the network. We would sample
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several crops from an image, re-weight each pixel with vector w′ inversely proportional to the
frequencies of damage levels, and choose the crop with the largest weighted sum ws. Similar to MLOS,
the number of crops sampled from one image and the vector w′ are changeable. DAC combines the
idea of over-sampling and under-sampling since it removes crops with more majority class pixels
and adds the ones with more minority class pixels simultaneously. Therefore, DAC can alter data
distribution without increasing the data volume.

• Dilation of Area with Minority (DAM)

After the implementation of DAC, we will further balance the numbers of pixels of different classes.
DAM is introduced to alter the distribution of damage levels within the same image. We expand areas
with pixels labeled as the relative minority classes, and pixels in the overlapping regions are re-labeled
as the minor class. For instance, if the dilated area of class Minor Damage overlaps the dilated area of
class Destroyed, pixels in the overlapping region will be uniformly labeled as Minor Damage, on which
the network prediction is worse in the metric of F1. DAM is a sampling method at the pixel level,
and it also addresses data imbalance without increasing the data volume.

• Synthetic Minority Over-Sampling Technique (SMOTE)

We also implement the classical data-sampling method SMOTE to generate some fake images.
In our task, we swap pixel locations in images main-label as minority classes for some new
images. Such an operation can also diversify the spatial patterns of damage-level distribution and
thus enhance the generalization ability of our model. It should be noted that there are various
approaches to synthesize images featuring minority classes, and the location swap is only one of them.
More sophisticated methods, such as GAN, can also be applied in this process.

3.3.2. Solution 2: Cost-Sensitive Re-Weighting Schemes

Algorithm-level methods seek to address data imbalance by altering the objective function or the
model structure. Cao et al. [37] design a wrapper framework incorporating classification performance
metrics, such as area under curve (AUC), directly into the objective function of the SVM model.
In this paper, we apply a similar mechanism to improve the performance of our network on instances
of minority damage levels, introducing a loss function combining IoU and focal loss.

It should be noted that the choice of metrics is crucial when data is imbalanced. Some metrics,
such as accuracy and error rate, can be misleading since the model is likely to classify most of the
instances belonging to the majority class for a rather high score, although the performance of the
minority class may be more important. Therefore, we combine two metrics sensitive to data imbalance,
dice and focal loss, for a compounded loss function. Dice is a measure to evaluate the similarity
between two groups and is equivalent to the F1 score when applied in the classification task. We apply
a macro dice score for the multi-classification task, which can be represented as follows:

Dicej =
2TPj

2TPj + FNj + FTj
, j = 0, 1, 2, 3 (2)

Dice =
1
4

3

∑
j=0

Dicej, (3)

where TPj denotes the number of pixels correctly classified as category j, FPj denotes the number of
pixels misclassified as category j, and FNj represents the number of pixels inaccurately classified as
other categories.

Focal Loss is another well-known metric concerning classification of imbalance data, which is
based on cross-entropy with the parameter γ to adjust the importance of ambiguous instances and α to
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adjust the relative importance of the minority class. In the multi-classification task, the focal loss can
be represented as follows:

Focal Loss = −(1− pprediction × pgroundtruth)
γ log(pprediction), (4)

where pgroundtruth denotes the frequency of the ground-truth damage level and pprediction is the
possibility given by the classifier of the current pixel belonging to its ground-truth class.

We combine the values of dice and focal loss for the final compound loss function, which is
calculated as follows:

Loss = β×Dice + (1− β)× Focal Loss, (5)

where the parameter β represents the relative importance of these two metrics.
There is one case showing the improvement of applying different techniques to tackle the category

imbalance problem based on our pixel-level model, PPM-SSNet (Table 3). As for the naïve model,
the model will perform well in the majority category with the worst result for the other categories.
With data resampling, our model improves a lot in the destroyed class. With weighted loss added,
the model slightly improved the performance in the minor and major damage classes.

Table 3. Ablation study of category imbalance technique (%).

Methods Pclf1 Rclf1 F1clf1 Pclf2 Rclf2 F1clf2 Pclf3 Rclf3 F1clf3 Pclf4 Rclf4 F1clf4 F1clf

Naïve PPM-SSNet 90.81 94.12 92.43 15.75 32.01 21.12 30.23 37.54 33.43 72.41 31.23 43.61 36.01
+ Data Resampling 96.04 67.93 79.51 20.69 73.64 32.28 58.28 70.12 63.69 80.49 74.17 77.25 55.41
+ Data Resampling

+ Weighted Loss 90.64 89.07 89.85 35.51 49.50 41.36 65.80 64.93 65.36 87.08 57.89 69.55 61.55

3.3.3. Rethinking: Continuous Label Problems about Data

Despite various methods mentioned above to address data imbalance, there are still some
problems concerning our task that remain unsolved. We build the network on the xBD dataset,
a four-class dataset about building-damage assessment after environmental disasters. xBD applies
the Joint Damage Measurement varying from no damage (class 0) to destroyed (class 3), which is a
trade-off between the precision and the convenience of annotation [7]. Unfortunately, the classification
of building damage is quite different from the classification of different species such as cats and dogs,
and the Joint Damage Scale itself is subjective and sometimes indistinguishable between adjacent
classes. In other words, our proposed network is trying to learn a classification rule with intrinsic
ambiguous boundaries. Lacking damage details to distinguish them from satellite imagery may
contribute to this problem.

Other problems are less relevant to data imbalance but still plague the reliability and universality
of our network. In practical application scenarios, images taken by drones may be used as input
because of the unavailability of satellite images. Drones tend to join multiple small images of buildings
for a larger one to compensate for its relatively small spectrum compared to the satellite. As a result,
the input images are no longer in rectangular form, and their irregular boundaries might be misleading
to the classification task after convolution operation. Another problem also concerns the unfavorable
input. It is possible that we do not have access to pre-disaster images immediately after disasters when
humanitarian assistance is urgent. We have discussed some possible solutions to this problem in the
precedent text.

3.4. Challenge 4: Which Technical Solutions Should Be Adopted to Improve the Efficiency of Building-Damage
Evaluation Models?

Due to the demand for rapid building-damage assessment in the case of humanitarian assistance
and disaster recovery research after environmental disasters, it is crucial to modify the neural network
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for faster prediction. In this section, we enhance the efficiency of prediction by altering data-processing
methods and compacting the neural network.

3.4.1. Solution 1: Feature-Map Subtraction

To figure out the damage level, the network would combine the feature maps of each pair of pre-
and post-disaster images. Generally speaking, we can either concatenate the feature maps or conduct
certain calculations on them to produce a comprehensive one. Despite the favorable performance
the concatenation method may produce, this operation would increase the number of coefficients in
the network along with the expanding image size. Therefore, we choose to apply certain calculations
for a comprehensive feature map. Since difference detection between pre- and post-images is crucial
in damage-level assessment, we subtract the post-disaster feature map from the pre-disaster one.
It should be noted that subtraction is not the only operation that can be conducted on feature maps.
More sophisticated methods are welcomed as long as they produce better performance without
significantly aggravating the computational burden.

3.4.2. Solution 2: Parameter Sharing

We implement the structure of Siamese Networks [8] to further reduce computational expenses.
Instead of training independent encoders for pre-disaster images and post-disaster images, respectively,
we modify the network so that the front parts of encoders can share weights. Since the mechanism
of encoding pre-disaster images and post-disaster images are nearly identical, such a structure is
reasonable. This weight-sharing mechanism would reduce the number of parameters in the network
thus accelerating the training and predicting process.

3.4.3. Solution 3: Knowledge Distillation

Knowledge distillation aims to achieve a light network with considerable accuracy. Formally
proposed by Hinton et al. [38] in 2015, it is presently applied in many fields, including image
classification [39], biometric identification [40], object detection [41], and semantic segmentation [42].
Knowledge distillation would transfer knowledge acquired in the teacher net, which is heavy but has
high accuracy, to the student net, which is light but has low accuracy [43]. In this way, knowledge
distillation considerably saves computational expense without exacerbating the performance of the
network. In this paper, we develop a loss function, which includes knowledge distillation losses
for both features and outputs of the networks and train a relatively lighter student network from a
pre-trained teacher network. The algorithm is Algorithm 1.

Algorithm 1: Knowledge Distillation for Satellite Image Segmentation
Input: (xi, yi): training data, i = 1 · · ·N., φ`T and φ`S : Pre-trained teacher and student model.

1 while not converge do
2 for i = 1, · · · , N do
3 fT

i , oT
i = φ`T (xi) // Compute features and outputs produced by teacher model.

4 fS
i , oS

i = φ`S (xi) // Compute features and outputs produced by student model.

5 Lcls = − log e
oS

i,yi

ΣK
k=1eoS

i,k
// Compute classification loss. K is the number of classification categories.

6 Lk f = ‖fS
i − fT

i ‖
2
F // Compute knowledge distillation loss for features.

7 Lko = −ΣK
k=1

eoT
i,k /H

ΣK
k=1eoT

i,k /H
· log eoS

i,k /H

ΣK
k=1eoS

i,k /H
// Compute knowledge distillation loss for outputs. H is

the hyper-parameter for obtaining distilled outputs. Usually, we set H = 2.
8 L = Lcls + α · Lk f + β · Lko // The final loss. α and β are hyper-parameters.
9 end for

10 end while
Output: φ`S
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There is a case study about to what degree the knowledge distillation helps the student model
reduce the parameters and achieve heavy model performance. We conduct some experiments based
on the first-place model in the xView2 Challenge whose the source has been published on the GitHub
website. By making each layer about half the channels of the previous layer, we name it as the student
model. In Table 4, the student model can achieve nearly the same results in the building localization
task, with about 91% capability of the teacher model in the damage classification task.

Table 4. A case study of the knowledge distillation.

Models IoU for Building Localization Overall F1 Score for xView2 Challenge

Teacher
(xView2 1st place model) 0.84 0.79

Student
(about half parameters of Teacher) 0.82 0.72

3.4.4. Solution 4: Network Pruning

Apart from the methods introduced above, there are many other ways to compact the network
and accelerate the prediction, one of which is network pruning. Network pruning, which removes
redundant weights and only preserves the important ones, proves to be an effective technique
to improve the efficiency of deep networks when computational resources are limited. A typical
weight-pruning process includes three stages: training a model with an excessive number of
parameters, pruning the model based on certain criteria, and fine-tuning the pruned model to
regain the loss performance [44]. In building-damage assessments, weight-pruning can be applied
to make predictions faster since the pruned network contains much fewer coefficients. Such work in
building-damage assessment based on satellite images remains unexplored but is well worth trying.

4. Results: Disaster Emergency Response Platform Building Challenges: Cloud-Based AI
Damage-Mapping Online Service

AI-driven Damage Diagnosis Platform is a web-based platform to support the detection of
building damage in a disaster by accessing and visualizing the remote-sensing images pre- and
post-disaster. The system allows the visualization of images, both pre-disaster and post-disaster,
as well as the damage-detection result. The platform offers a set of basic functionalities such as sliders
and zoom-in tools. Our platform is available at http://qwenwu.online/classify/public/index.html
for a period.The platform interface is shown in Figure 11.

When a disaster occurs, quick response reinforcement needs accurate and instant data to call
out situation awareness and implement effective countermeasures. This multi-level web application
is a cloud platform that consists of a graphic interface and smart algorithm buttress, dedicated
to highlighting damaged buildings after disasters and assessing the extent of damage, hence
classifying the buildings of interest into four appreciated categories, “no damage”, “minor damage”,
“major damage” and “destroyed”. These labels are called Joint Damage Scales, an integrated evaluation
scale for construction damage in satellite imagery primarily based on Damage-Assessment scales
proposed by HAZUS, FEMA, and Kelman.

To build an AI platform to present the latest model of the field of building-damage detection,
which has not been widely applied in the industry, helps the peers and the demand side to promote
this technique into the application environment. There are four challenges for a data science team to
tackle. In this paper, we give our solutions to these challenges according to the case of our platform.

http://qwenwu.online/classify/public/index.html


Remote Sens. 2020, 12, 3808 17 of 25

Figure 11. Interface of Cloud-Based AI Damage Mapping Online Service.

4.1. Challenge 1: How to Continuously Give State-of-the-Art Prediction?

The major motivation to build our platform is to present the potential application value of
state-of-the-art building-damage detection techniques. The research in this field has drawn the
attention of many computer vision researchers, and evermore efficient models have been put forward.
This platform needs to update the model to give state-of-the-art predictions. Currently, our running
model is PPM-SSNet, a Pyramid Pooling Module-based Semi-Siamese Network for End-to-End
Building-Damage Assessment from Satellite Imagery, which will be published soon.

4.1.1. Splitting the Whole Procedure into Several Minima Execute Units

Our platform provides the service of assessing the input images and giving the damage-level
images, which includes three main procedures. First, the data-processing unit is to regulate the image
scale and format for prediction. The preview interface will cut the demo images saved in the server
previously, while the upload interface will transform the image format and check the consistency of
the pre-disaster image and the post-disaster image. Second, the prediction unit is to get semantic
segmentation results by the model. Third, the get-results unit is designed for the user-end browser
to take results that have been saved in the server. The prediction unit and get-results unit will be
run automatically after the data-processing unit in the preview interface, while the two units can be
manually controlled in the upload interface.

Every unit will return at least one response result for the web page and is suitable to be wrapped
in the API. As Table 5 shows, we offer six different APIs for users to upload images and obtain
their expected damage scale classification masks. Specifically, the user uploads their images on the
web in the first place via API “upload” or “cls for upload”. Afterward, “get cls image” will return
the results of the classification. The user can check or download the results using “download” or
“check download result” API, respectively.
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Table 5. API description table.

API Request Type Usage Parameter Result

get-sub-image post cut and get the
region

id (image number)
x (left-top x coordinate)
y (left-top y coordinate)

id
pre_cut (cut pre- image),

post_cut (cut post- image)

get-cls-image get get the classification
result id img (classification result)

upload post upload image
file

type (pre- or post-damage),
fileName (filename uploaded)

fileName (uploaded file
name)

download get download image fileName file

cls-for-upload post managing
pre-and-post images preName, postName fileName (the result file

name)

check download
result get check if the manage

process is done fileName is Finish (false/true)

4.1.2. Making the Prediction Unit a Highly Changeable Box

The prediction unit will be updated in the future and is a unique black box for other APIs.
We deployed two series of mainstream models to tackle damage-assessment and classification
problems, whose processing grains are building-level and pixel-level. For building-level models,
there is the building localization part and the damage classification part, which can be taken as the
two-class semantic segmentation task and four-class image classification task. It is easier to apply the
pixel-level model since it is just one task of the five-class semantic segmentation. The building-level
result can be converted into pixel-level results by padding each pixel of one polygon with the same
prediction label.

Unlike the procedure that differs between the building-level and the pixel-level, the difference of
the model structure is more common. Indeed, any semantic segmentation model can be converted
into the Siamese network structure to process the image before and after the disaster to get the
change-detection results. In recent years, more and more network structures have been put forward.
As long as experiments prove that new semantic segmentation achieves state-of-the-art assessment of
the building-damage task, it is easy to update the model of this platform.

4.2. Challenge 2: How to Meet the Need for Both the Visitors and the Real Demand Side?

Building a platform is technically hard but worthwhile for researchers to present their work,
which makes it easier to explain the potential application value. The users of this platform are two-fold.
On the one side, a stable API, which provides an available baseline for some contrast experiments or
case studies, is urgently needed. On the other side, it is unnecessary to know about the details of the
AI algorithm for visitors from the industry. The design of a simple and friendly user interface, as well
as a flexible and stable API, meets the needs of both the visitors and the real demand side.

4.2.1. Demo Image and Friendly Interface Design for the Visitors

The platform gives a quick demo interface for visitors to know about what this application
can do at one glance. Demo images on the platform are ground-truth satellite images, unbiased
overhead views, including several images taken before and after the Joplin tornado and Santa
Rosa wildfire. Images in the Joplin demo resembled the extent to which the typhoon had affected the
dense residential areas. A massive number of dwellings are destroyed with only their sites left. On the
contrary, images in the Santa Rosa demo depicted how sparse residential areas are affected by wildfire.
In particular, we choose the images from the worst-hit area where the diversity of damage degree
can be assured and present a better demonstration for classification. It should be noted that all input
images of the algorithm are of the same size due to a size-fixed selection area following the user cursor
in the image. In addition, this limitation, in some ways, precluded the model from processing images
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with incongruous sizes. To adjust the viewable range in the selection area, one must zoom in or zoom
out the original image by clicking the buttons with plus and minus symbols. The visualization panel
has three parts—one part to present the original post-disaster image in the selection area, one part
of presenting the corresponding pre-disaster image, and a part in which buildings are highlighted
in colors consistent with damage degree. When user customization is imported on labels, you will
see a smaller panel representing the legend of damage degree, and other functions enable users to
customize their appreciated groups with certain colors and basic categories as components.

4.2.2. Image Upload and Download API for the Real Demand Side

To improve the application ability of the platform in comprehensive scenarios such as tsunami,
flood, volcano eruption, wildfire, earthquake, and so on, an interactive client portal is embedded
within the platform. All you have to do is to find the satellite images about a certain disaster, download
them to your PC, select the path where you store the images, and upload both pre-disaster and
post-disaster satellite images. Users are authorized to upload pre-disaster satellite imagery and
corresponding post-disaster satellite imagery simultaneously and execute the algorithm to yield
a result. Currently, the platform only supports JPG or PNG formats of images of the fixed size, and the
result of the model will not be a preview of the web page but can be downloaded instead since a
uniform input format and implicit output can significantly boost the process when the application
programming interface is invoked to process the images in large batches.

4.3. Challenge 3: How to Solve the Concurrent Access Problem?

The high concurrent access always challenges the stability of the website. High single-serving
time may make this problem more severe, especially for the heavy model of the remote-sensing
application. Too many requests at the same moment cause GPU memory resource depletion and a bad
user experience for waiting. There are technical details in the following to control the GPU usage and
improve the user experience while waiting.

4.3.1. Control the GPU Usage: Release Resources and Maintain a Thread Queue

• Considering the limited GPU resources of our device, we have adopted some optimization upon
the Pytorch framework. First, we minimize the unnecessary intermediate variables in our code.
As an instance, using “a = 2a” instead of creating a new variable with “b = 2a” will save quite a lot
of space. Moreover, releasing the image memory promptly and deleting the used image storage
helps a lot in reducing the burden of GPU.

• To handle frequent and multiple requests, we maintain a task queue collecting tasks in
chronological order. Instead of performing tasks serially, we turn on a multithreaded structure.
Once a single request is started in a thread, the user will get a notification. Meanwhile, the web
will frequently make inquiries about the server until the classified images are output.

4.3.2. Improve the Waiting Experience: Asynchronous Rendering and Polling by the JavaScript

The inference time of our current model is not fast enough and may not meet the needs of the
industry application. It is not tolerant for any user to wait for a final result without any feedback.
Moreover, the Hyper-Text Transfer Protocol (HTTP) limits the server sending data without requests
from the browser. One way to improve the user experience for waiting is giving feedback by pooling
each API and rendering any result as long as it has finished. Specifically, our JavaScript controls the
browser request to the server every 0.1 s to discover whether the prediction result has been saved at
the target path.
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4.4. Challenge 4: How to Design an AI Platform Easy for Data Scientists to Iterate the Algorithm?

The major target for the platform is to present our latest research with a friendly interface rather
than providing only the resource code and the checkpoint, which prevents the visitor from experiencing
the latest model. For data scientists, Python is an easy and popular language to validate the idea and
realize the algorithm. The best situation is to present our latest experiment model by simply updating
the checkpoint and source code on the server.

4.4.1. Platform Structure Based on the Technology Stacks of the Python Family

To fully present our latest model and to provide a friendly interface to visitors, an online
disaster building-damage-detection system is designed and developed, called AI-driven Damage
Diagnosis Platform (ADDP). The main function of ADDP is targeted to directly present the
building-damage-detection results and application potentiality of typical AI-driven models. The ADDP
has a service-oriented architecture containing the following four layers: an application layer, a logit
layer, a service layer, and a resource layer, as shown in the following Figure 12. The web structure and
deep-learning structure are Django and Pytorch from the Python family, which makes it easy for data
scientists to update the model from the back end.

Figure 12. The overall structure of the AI-driven Damage Diagnosis Platform (ADDP). It has a
service-oriented architecture containing the following four layers: an application layer, a logic layer,
a service layer, and a resource layer.

The application layer lies at the top of the ADDP architecture and represents a friendly user
interface that enables end users to select the model level and metrics threshold level, which helps to
get a better building-level evaluation. For non-professional users, the platform designed a friendly
demo preview interface, where users can select different demo images and select a rectangular area
for prediction. As for the professional user, we provide upload and download API. This API gives
users a chance to upload the latest remote-sensing image to test the model performance. This part is
mainly developed with JavaScript. Since we apply a structure separating the front end and back end,
JavaScript helps the user-end communicate with the model-end server.
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4.4.2. Pipeline Design Specifically for Building-Damage Detection

The logit layer mainly helps users switch to a preferred mode and handle abnormal cases, hostile
attacks, and concurrent assess. To get a valid sub-image from the demo image, the server will check
the request parameter. Since the prediction of the model costs a few seconds, it is not good to run too
many predictions and drain the computing resource in a short time. We build and maintain a task
queue and make sure only 5 sub-threads run at the same time. This part is developed based on a Web
Frame for Python. The detailed workflow of the logit layer is shown in Figure 13.

Figure 13. The detailed workflow of the logit layer we design. The structure helps users switch to a
preferred mode and handle abnormal cases, hostile attacks, and concurrent assess by a task queue
design which makes sure only 5 sub-threads run at the same time.

In the service layer, we use Pytorch to build up our AI-driver prediction pipeline. ADDP mainly
provides AI semantic segmentation service. The building-level model indeed refers to two sub-modules.
The localization module will give a building mask, and the mask can be split into several building
polygons. The classification module can take building sub-images as inputs and give a damage type
as the output. Moreover, the output can be the 5-class semantic segmentation result if the pixel-level
end-to-end model is selected.

The resource layer lies at the bottom of the ADDP architecture and aims to provide a preview of
computing devices, models, input datasets, and output database. Demo images and upload images
consist of the input database, while middle results and final results are stored in the output database.

5. Conclusions

In short, this paper first reviews the work in the field of assessing building-damage and concludes
mainstream methods into the building-level network and pixel-level network. Second, this paper
introduces four key challenges and provides several solutions and corresponding case studies.
Third, this paper introduces the platform which will continuously update the latest work and the
state-of-the-art model for peers and visitors.

While reviewing the related work, the pixel-level model and building-level model are two
mainstream methods for assessing building-damage tasks. Different methods and practical needs lead
to four challenges, for which this paper gives corresponding solutions.

• Different metrics for the building-level and pixel-level put an obstacle in comparison. This paper
puts forward the conversion method and a novel metric for comparison of the performance of
different levels.

• The UAV is the most efficient device to get images after disasters, although it only captures the
post-disaster image. This paper gives two solutions—one is naïve, and the other needs to use the
GAN trained on the dataset with both pre- and post-disaster images.
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• Disasters that can explicitly destroy a building happen infrequently, and severely destroyed
buildings are relatively rare in the current open-source benchmark. This paper gives solutions
from the perspective of both the data processing and the loss function.

• Real-time rescue demands faster inference of the damage situation with less computing resource
in the industry environment. Feature-map subtraction, parameter sharing, knowledge distillation,
and network pruning are discussed and studied by cases.

To comprehensively apply the above technical solution, an AI platform is developed for providing
state-of-the-art results for assessing building-damage tasks.

6. Discussions

In the process of developing a web-based system for intelligent building-damage level assessment,
we find that some problems remain largely unsolved. Further research in these fields is likely to
promote intelligent building-damage-level assessment theories and applications.

There are plenty of brilliant approaches proposed to address the problem of damage-level
assessment. Because of the diverse metrics used to evaluate the performance, the direct comparison
of different models is largely invalid. A set of standard procedures for data processing and model
evaluation is in demand so that the model with better performance on the task can be figured out.
In this paper, we rethink some of the commonly used metrics and propose a method where F1 scores
are evaluated by different IoU thresholds so that both the localization precision and the classification
precision can be represented well in the final metric value. However, this method is not general enough
to address various data structures and application situations.

Classification networks built on the xBD dataset often suffer from poor performance on
“Minor Damage” and “Major Damage” class, primarily because of data imbalance in the dataset.
Data sampling is an effective approach addressing data imbalance, which mainly falls into two
categories, pixel level and image level. We introduce several specific methods in this paper, including
both pixel-level ones and image-level ones, but we have not compared these approaches’ efficacies.
Further exploration can be made to figure out the relative efficiency of different data-sampling methods.
Another problem concerning data imbalance in our task is that the Joint Damage Scale applied in the
xBD dataset is subjective and sometimes indistinguishable on the boundaries of different classes. If the
current four-class labeling is unnecessary in some cases, “Minor Damage” and “Major Damage” class
could be converged to improve the comprehensive performance of the networks.

It should be noticed that the application of neural networks to intelligent building-damage
assessment is quite different from developing novel model structures or data-processing methods in
the laboratory. We need to pay attention to specific requirements concerning real-world situations.
For instance, humanitarian rescue tasks emphasize rapid responses and value metric recall more
than precision. There are also problems with the availability of data in practical applications.
Concretely speaking, sometimes we must rely on drones for building images because there is no
access to satellite images. Consequently, pre-disaster images may be unavailable, and the input image
irregular boundaries may be misleading after the convolution operation. Although we discussed some
solutions in this paper, many of these problems remain unsolved, and further research will be useful.
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Abbreviations

The following abbreviations are used in this manuscript:

IoU Intersection over Union
MLOS Main-Label Over-Sampling
DAC Discrimination After Cropping
DAM Dilation of11Area with Minority
SMOTE Synthetic Minority Over-Sampling Technique
ADDP AI-driven Damage Diagnose Platform
GCN Graph Convolutional Network
ABCD AIST Building Change Detection
FPN Feature Pyramid Networks
R-CNN Regions with CNN features
GAN Generative Adversarial Network
CNN Convolution Neural Network
RUS Random Under-sampling
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