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Abstract: In this study, 16 satellite-based precipitation products (SPPs) comprising satellite, gauge
and reanalysis datasets were assessed on a monthly time step using precipitation data from 11 gauge
stations across Nigeria within the 2000–2012 period as reference. Despite the ability of some of
the SPPs to reproduce the salient north–south pattern of the annual rainfall field, the Kling–Gupta
efficiency (KGE) results revealed substantial discrepancies among the SPP estimates. Generally,
the SPP reliability varies spatially and temporally, with all SPPs performing better over part of
central Nigeria during the dry season. When we compared the real-time and adjusted satellite-based
products, the results showed that the adjusted products had a better KGE score. The assessment also
showed that the reliability of integrated multi-satellite retrievals for Global Precipitation Mission
(IMERG) products was consistent with that of their predecessor Tropical Rainfall Measuring Mission
(TRMM) multi-satellite precipitation analysis (TMPA). Finally, the best overall scores were obtained
from multi-source weighted-ensemble precipitation (MSWEP) v.2.2 and IMERG-F v.6. Both products
are therefore suggested for further hydrological studies.
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1. Introduction

1.1. Precipitation Monitoring Across Remote Regions

Accurate measurements of precipitation across space and time remain essential to assess its
deficits and abundance. Such measurements allow for tracking the state of precipitation and its
overall effect on hydro-ecological systems and water resource management [1,2]. At the global level,
precipitation information is necessary for sustainable socio-economic growth, especially in countries
with lower rainfall regimes and in some developing nations that depend on rainfall for socio-economic
purposes such as agriculture [3,4]. The high spatial and temporal variability of precipitation requires a
formidable network of gauge installations to monitor the occurrence and intensity of rainfall effectively.
However, in many countries, precipitation information has traditionally been collected from a sparsely
distributed network of gauge stations. The scarcity of large numbers of these gauges has resulted in
spatially and temporarily discontinuous observations [5,6]. Some authors [7–9] also claimed that the
socio-economic and challenging terrain contexts had hindered the installation and management of
gauge stations, emphasising data breaches in many locations. In this context, precipitation data from
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gauge station observations are inadequate in many parts of the developing world [10,11]. Hence, there
is a need to fill the data gap created in the absence of reliable precipitation from the gauge stations.

1.2. Satellite-Based Precipitation Estimate Prospect

Recent advancements in remote sensing technologies have led to the development of satellite
precipitation products (SPP) which measure precipitation on a regular grid globally [12,13], offering
ample opportunity to overcome the problems associated with traditional gauge measurements.
In recent decades, several efforts to improve SPPs in terms of precipitation accuracy, temporal and
spatial resolution, and extension of temporal coverage have been presented.

The first generation of SPPs started with the Tropical Rainfall Measuring Mission (TRMM)
launched in 1997 by the National Aeronautics and Space Administration (NASA), and the Japan
Aerospace Exploration Agency (JAXA). Over the last 20 years, TRMM multi-satellite precipitation
analysis (TMPA) [14,15], Climate Prediction Centre MORPHing (CMORPH) [16], and precipitation
estimation from remotely sensed information using artificial neural networks (PERSIANN) [17] SPPs
have been developed based on the TRMM to deliver precipitation estimates at the 0.25◦ grid scale.

The second generation of SPPs, the Global Precipitation Mission (GPM), was launched in 2014
to overcome the technical difficulties arising from ageing mechanisms and sensors of the TRMM to
ensure the continuation of precipitation data acquisition. The second generation of SPPs included the
integrated multi-satellite retrievals for GPM (IMERG) [18] and Global Satellite Mapping of Precipitation
(GSMaP) SPPs which deliver precipitation estimates at a finer grid scale (0.1◦) than the first generation
of SPPs.

At the same time, the third generation of SPPs took advantage of previous SPPs and missions
to estimate precipitation over a larger time window; hence, the long-term SPP generation. This is
the case of PERSIANN-Climate Data Record (PERSIANN-CDR), multi-source weighted-ensemble
precipitation (MSWEP), Climate Hazards Group Infrared Precipitation (CHIRP) with station data
(CHIRPS) available at a global scale, tropical applications of meteorology using satellite and
ground-based observation (TAMSAT), and African Rainfall Climatology (ARC v.2), only covering
the African continent. Despite continuous efforts to improve SPP reliability, these products are
subject to uncertainties in space and over time due to technical issues relating to sensitivity to
the topography, i.e., [19,20], surface temperature and emissivity contrast, i.e., [21–23], and regional
differential climatologic context, i.e., [24–26]. In these circumstances, numerous studies on the reliability
of SPPs in many parts of the world have provided vital information to potentially interested users [27].
This effort comes with first studies reporting on the first generation of SPPs based on the TRMM,
i.e., [28–33].

Then, from 2014, studies started to report on the second generation of SPPs based on the GPM.
These studies highlight the potential benefits of the GPM over the TRMM [30,33–39]. At the same time,
other studies reported on long-term SPPs to monitor drought processes and precipitation trends in
order to understand the sensitivity of water resources to ongoing climate variability potential [40–42].

1.3. Toward a Broad Overview of Satellite-Based Precipitation Reliability across Nigeria

As indicated earlier, most of the available studies reported on the reliability of a single SPP group
such as TRMM, GPM, and long-term. Although all the SPPs have been available since the start of
the satellite precipitation mission (2000–present), it is essential to compare their reliability to indicate
the most reliable SPP among the available products. In this circumstance, such effort is only possible
by crossing results from studies in different regions and temporal windows. However, such action
prevents a robust comparison, as SPP sensitivity to the regional meteorological, topographic, and land
cover characteristics induce substantial space and time reliability variation [26,43,44]. A recent study
comparing seven satellite-based precipitation datasets over two distinct areas with similar precipitation
patterns (i.e., South American Andean Plateau and Pakistan) shows that the most reliable SPP from
one region to another is different [45].
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In Nigeria, there are few studies focusing on SPP validation, but each has had a specific purpose.
For instance, using gauge data as a reference, Semire et al. (2013) [46], evaluated one first-generation
SPP (TMPA v.7) using gauge data as a baseline. Similarly, Akinyemi et al. (2019) [47] evaluated
one long-term SPP (CHIRPS) along with RFE 2.0, and Usman et al. (2018) [48] analysed four SPPs’
(TAMSAT v.2, ARC v.2, TMPA v.7, and CHIRPS v.2) ability to follow spatio-temporal precipitation
trends in northern Nigeria. Consequently, the reliability assessment of SPPs across Nigeria is limited
in terms of products (TAMSAT v.2, ARC v.2, TMPA v.7, CHIRPS v.2) and spatial coverage.

1.4. Study Objectives

The main goal of this study is to assess for the first time the performances of sixteen SPPs
(including TRMM, GPM, and long-term SPPs) over Nigeria for thirteen years. This study also addresses
the improvement of first- to second-generation SPPs (TRMM to GPM) and to compare these products
with the recently released long-term SPP for a standard observation period.

In a general context, this study will provide useful information to guide potential interested SPP
users at the time of choosing the most efficient SPPs for their research but also precious information for
SPP team developers to improve future SPP generation.

2. Materials

2.1. Study Area

Nigeria is a country in West Africa, located within latitude 4◦.00–14◦.00 north of the equator and
longitude 3◦.00–15◦.00 east of the meridian. It is bordered to the north by the Niger Republic and the
Chad Republic, to the east and west by Cameroon and the Benin Republic, and in the south by the
Atlantic Ocean. Nigeria has a rainfall regime that varies spatially and temporally.

Annual precipitation varies from about≤900 mm/year in the northern region to over 4000 mm/year
in the southern part. Nigeria can be divided into three main climatic zones: (i) the Guinea Coast
(4◦–8◦N), (ii) the Savannah (8◦–11◦N), and (iii) the Sahel (11◦–16◦N) [49,50] (Figure 1). Precipitation
starts around March/April in the Guinea region and ends by October each year. However, in both
Savannah and Sahel regions, precipitation sets off around May/June and ends in September (Figure 1).
The Guinea and Savannah areas experience double maxima, with a small break in August (Figure 1),
known in Nigeria as August break [51]. It is worth noting that generally in Nigeria, precipitation is
governed by the actions of the West African monsoon, characterised by variations in the maritime
and continental air masses, referred to as south-westerly and north-easterly winds, respectively [52].
This monsoon action summarises the known rainfall regime known in Nigeria.

Vegetation types vary from the Sahel in the northwest, Sudan Savannah stretching to some of the
north-western, north-central, and north-eastern parts of Nigeria. The Guinea/rainforest region starts
from the southern part of the middle belt, extending into the stretch of the Niger Delta in the south.
As with the vegetation, the topography varies within the country. Parts of the south-west consist of
complex and rugged rocky terrain. The topography of the north-east is a combination of highlands,
such as the Mambila and Adamawa, and the Jos Plateau. There are also the Obudu highlands on the
southern border with Cameroon. Most of the coastal fronts consist of swampy terrain of the south.
The most important rivers are the Niger and the Benue. Both have formed a confluence in the low-lying
plains of the north-central town of Lokoja.
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1) managed by the Nigerian Meteorological Agency (NIMET). NIMET uses measuring cylinders 
attached to rain gauges for measuring rainfall in the majority of their stations across Nigeria. 
Precipitation is measured daily and further harmonised into a weekly and monthly dataset. Although 
the gauge reference data were not collected from all stations across the country, the selected gauge 
stations are well distributed from the Sahel to the southern part of the Guinea/rainforest region. 
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Table 1 shows the main characteristics of the sixteen satellite-based precipitation products (SPPs) 
used in this work. The SPPs were downloaded from their host websites which are free and open 
source. The 16 considered SPPs include:  

- The Tropical Rainfall Monitoring Mission (TRMM) covering the last 20 years at 0.25° spatial 
resolution; 

- The Global Precipitation Mission (GPM) covering the previous 20 years at 0.1° spatial resolution;  
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The first and second SPP generation (TRMM and GPM) combine passive (and active) 
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geostationary satellite, respectively, to retrieve precipitation estimates. This combination aims to 
optimise precipitation estimates and fill space and time gaps related to the limited overpass of the 
LEO satellite. 

The long-term SPPs merge reanalysis datasets derived from physical and dynamical models 
with satellite-based precipitation estimates. The reanalysis datasets are available for a larger temporal 
window than the PMW and IRs sensor used for TRMM and GPM SPPs. Therefore, the long-term 
SPPs offer more extensive temporal coverage than TRMM and GPM SPPs. Generally, the relationship 

Figure 1. A map of Nigeria showing the locations and names of reference meteorological gauge stations
and precipitation distribution among the meteorological zones of the country.

2.2. Rain Gauge Observations

Gauge precipitation observations were collected from eleven (11) meteorological stations (Figure 1)
managed by the Nigerian Meteorological Agency (NIMET). NIMET uses measuring cylinders attached
to rain gauges for measuring rainfall in the majority of their stations across Nigeria. Precipitation
is measured daily and further harmonised into a weekly and monthly dataset. Although the gauge
reference data were not collected from all stations across the country, the selected gauge stations are
well distributed from the Sahel to the southern part of the Guinea/rainforest region.

2.3. Brief Descriptions of the Satellite-Based Precipitation Products

Table 1 shows the main characteristics of the sixteen satellite-based precipitation products (SPPs)
used in this work. The SPPs were downloaded from their host websites which are free and open source.
The 16 considered SPPs include:

- The Tropical Rainfall Monitoring Mission (TRMM) covering the last 20 years at 0.25◦

spatial resolution;
- The Global Precipitation Mission (GPM) covering the previous 20 years at 0.1◦ spatial resolution;
- The long-term datasets are reanalysed retrospectively (40 years).

The first and second SPP generation (TRMM and GPM) combine passive (and active) microwaves
(PMWs) with infrared sensors on board a low Earth-orbital (LEO) satellite and geostationary satellite,
respectively, to retrieve precipitation estimates. This combination aims to optimise precipitation
estimates and fill space and time gaps related to the limited overpass of the LEO satellite.

The long-term SPPs merge reanalysis datasets derived from physical and dynamical models with
satellite-based precipitation estimates. The reanalysis datasets are available for a larger temporal
window than the PMW and IRs sensor used for TRMM and GPM SPPs. Therefore, the long-term
SPPs offer more extensive temporal coverage than TRMM and GPM SPPs. Generally, the relationship
between reanalysis datasets and satellite-based precipitation estimates from TRMM SPPs and IR-based
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precipitation estimates are known for a standard period of observation. This information encourages
retrospectively reanalysed estimates of past precipitation events. Finally, it is worth mentioning that
most of the considered SPPs also include a gauge-based precipitation dataset to calibrate the precipitation
estimates. Therefore, the 16 considered SPPs include (1) only satellite-based SPPs (PERSIANN-RT,
TMPA-RT v.7, IMERG-E, and -L v.6), (2) satellite-based SPPs adjusted with gauge information, such
as TMPA-Adj v.6, IMERG-F v.6, CMORPH-CRT and -BLD v.1, TAMSAT v.3, and ARC-2, and (3)
SPPs including both satellite and reanalysis datasets with or without gauge adjustment (CHIRP v.2,
CHIRPS v.2, PERSIANN-CDR, and MSWEP v.2.2).

For more information about the considered SPPs, readers should refer to the main references
listed in Table 1.

Figure 2 shows the mean annual precipitation retrieved from the 16 SPPs, which revealed the
south–north precipitation pattern that is controlled by the moisture-laden south-west trade winds
across Nigeria. The mean yearly precipitation from the satellite-based products demonstrates a
similar precipitation trend, where a decrease in precipitation corresponds with an increase in latitude.
The Guinea/rainforest region experiences an annual mean of about 6000 mm within the considered
period, whereas the annual mean precipitation in the Sahel is about 370 mm.Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 26 
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Figure 2. Mean yearly precipitation retrieved from all the satellite-based precipitation products (SPPs)
at their original grid size from 2000–2012.
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Table 1. Summary of main characteristics and references of the SPPs. The acronym S, R, G in the data column description stands for satellite, reanalysis, and gauge
information; spatial coverage refers to the absolute maximum and minimum latitude with precipitation information, latency refers to the time delay for data availability.

Acronym Name Period Data Spatial Coverage Spatial
Resolution

Temporal
Resolution Latency Link References

1 ARC-2 Africa Rainfall Climatology v.2 1983–Present S, G Africa 0.1◦ × 0.1◦ Daily 2 days ftp://ftp.cpc.ncep.noaa.gov/fews/
fewsdata/africa/arc2/

[42]

2 CHIRP v.2 Climate Hazards Group InfraRed v.2 1981–Present S, R 50◦N × 50◦S 0.05◦ Daily 2 days ftp://ftp.chg.ucsb.edu/pub/org/
chg/products/ [53]

3 CHIRPS v.2 Climate Hazards Group Infrared v.2
with Station 1981–Present S, R, G 50◦ × 50◦ Daily 1 month ftp://ftp.chg.ucsb.edu/pub/org/

chg/products/ [53]

4 MSWEP v.2.2 Multi-Source Weighted Ensemble
Precipitation v.2.2 1979–Present S, R, G Global 0.1◦ 3 hourly A few months http://www.gloh2o.org/ (Personal

communication) [54]

5 PERSIANN-CDR

Precipitation Estimates from
Remotely Sensed Information using

Artificial Neural Network and
Climate Data Record

1983–Present S, G 60◦N–60◦S 0.25◦ Daily 3 months https://chrsdata.eng.uci.edu/ [55]

6 PERSIANN-RT

Precipitation Estimates from
Remotely Sensed Information using

Artificial Neural Network
(Real-Time)

2003–Present S 60◦N–60◦S 0.25◦ 1 hourly 2 days https://chrsdata.eng.uci.edu/ [17,56]

7 TAMSAT v.3
Tropical Applications of

Meteorology using Satellite and
Ground-Based Observations v.3

1983–2018 S, G Africa 0.0375◦ Daily 3 days https://www.tamsat.org.uk/about [57,58]

8 CMORPH-BLD v.1
Climate Prediction Center

MORPHing (Satellite–Gauge
Merged) v.1

2002–Present S, G 60◦N–60◦S 0.25◦ Daily 10 months ftp://ftp.cpc.ncep.noaa.gov/precip/
CMORPH_V1.0/

[59]

9 CMORPH-CRT v.1 Climate Prediction Center
MORPHing (Bias Corrected) v.1 2002–Present S, G 60◦N–60◦S 0.25◦ Daily 6 months ftp://ftp.cpc.ncep.noaa.gov/precip/

CMORPH_V1.0/
[59]

10 TMPA-Adj v.7 TRMM Multi-Satellite Precipitation
Analysis Adjusted v.7 1998–Present S, G 50◦N–50◦S 0.25◦ Daily 3 months https://earthdata.nasa.gov/ [15]

11 TMPA-RT v.7 TRMM Multi-Satellite Precipitation
Analysis Real-Time v.7 2000–Present S 60◦N–60◦S 0.25◦ × 0.25◦ Daily 1 day https://mirador.gsfc.nasa.gov/ [15]

12 GSMaP-Adj v.6 Global Satellite Mapping of
Precipitation Standard Adjusted v.6 2002–2012 S, G 60◦N–60◦S 0.1◦ Hourly 3 days ftp:

//hokusai.eorc.jaxa.jp/standard/v6/
[60,61]

13 GSMaP-RT v.6 Global Satellite Mapping of
Precipitation Standard v.6 2002–2012 S 60◦N–60◦S 0.1◦ Hourly 3 days ftp:

//hokusai.eorc.jaxa.jp/standard/v6/
[61,62]

14 IMERG-E v.6 Integrated Multi-Satellite Retrievals
for GPM Early Run 2000–Present S 60◦N–60◦S 0.1◦ × 0.1◦ 30 min 4 h http://disc.sci.gsfc.nasa.gov/ [62]

15 IMERG-F v.6 Integrated Multi-Satellite Retrievals
for GPM Final Run 2000–Present S 60◦N–60◦S 0.1◦ × 0.1◦ 30 min 3 months http://disc.sci.gsfc.nasa.gov/ [62]

16 IMERG-L v.6 Integrated Multi-Satellite Retrievals
for GPM Late Run 2000–Present S, G 60◦N–60◦S 0.1◦ × 0.1◦ 30 min 12 h http://disc.sci.gsfc.nasa.gov/ [62]

ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/
ftp://ftp.cpc.ncep.noaa.gov/fews/fewsdata/africa/arc2/
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ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
ftp://ftp.chg.ucsb.edu/pub/org/chg/products/
http://www.gloh2o.org/
https://chrsdata.eng.uci.edu/
https://chrsdata.eng.uci.edu/
https://www.tamsat.org.uk/about
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
ftp://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/
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ftp://hokusai.eorc.jaxa.jp/standard/v6/
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3. Methods

3.1. Database Pre-Processing

The datasets were aggregated into a monthly dataset to match the rain gauge data and resampled
to the 0.1◦ grid cell size to enable consistent comparison between all SPPs. The bilinear average
(interpolation) is used for SPPs with grid cell size <0.1◦ (>0.1◦) [44,63].

3.2. SPP Assessment

The Kling–Gupta efficiency (KGE) was used to compare the SPPs with rain gauge
measurements. KGE is an objective function introduced by Gupta [64], that combines the correlation
coefficient (r), bias (β), and the ratio of variability (γ). The KGE function was necessary since water
resource management requires a reliable representation of precipitation temporal dynamics as measured
by the correlation coefficient (r) and volume as explained by bias (β) and variability (γ). Both aspects
(temporal dynamics and volume) might be relevant for different purposes, as potential readers might
be interested in an efficient representation of one or other element in the function of the foreseen
utilisation of SPPs. The equations are expressed as follows:

KGE = 1 −
√
(r − 1)2 + (β − 1)2 + (γ − 1)2 (1)

where (r) denotes the ratio between the observation and the modelled correlation coefficients, β is the
ratio between the observed and the modelled means, and (γ) is the ratio of the estimated and observed
coefficients of variation.

r =
1
n

n∑
1

(on − µo)∗(s n − µs)

σo∗σs
(2)

β =
µs

µo
(3)

γ =
σs/µs

σo/µo
(4)

where µ and σ are the distribution mean and standard deviation, respectively; s and o indicate the
estimate and the reference, respectively.

From Equation (1), r, β, and Vr analyses of the products were carried out for all the months within
the period 2000–2012, as well as the dry and wet seasons. The values of the involved coefficients in
KGE, r, β, and γ, were computed at each grid cell location to observe the spatial reliability of the SPPs,
and their median values were adopted for regional-scale observation.

4. Results

4.1. SPP Reliability on the National Scale

Monthly and seasonal performances of the SPPs in terms of KGE, correlation coefficient (r),
bias (β), and variability ratio (γ) for the 2000–2012 period are expressed in Figure 3.

With a KGE value inferior to 0.4, TMPA-RT v.7 and PERSIANN-RT were unable to represent
the regional monthly precipitation. Interestingly, the gauge adjustment applied for TMPA-Adj v.7
drastically increased KGE from <0.4 (TMPA-RT v.7) to 0.81 (TMPA-Adj v.7). Similarly, the gauge-adjusted
version of IMERG-F v.6 presented a higher KGE score (0.82) than the only satellite-based version,
IMERG-E v.6 (0.69) and IMERG-L v.6 (0.71). Actually, IMERG-F v.6 is the second most reliable SPP just
after MSWEP v.2.2, which presents the highest KGE score (0.83).

MSWEP v.2.2, CHIRPS v.2, and PERSIANN-CDR precipitation estimates are derived from several
gridded precipitation datasets (P-datasets) from satellite, reanalysis, and gauges. CHIRPS v.2 and
PERSIANN-CDR include only one gauge-based P-dataset each (CHPclim and GPCP, respectively),
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while MSWEP v.2.2 includes three gauge-based P-datasets (GPCP, GPCC, WorldClim). They also
include fewer satellite- and reanalysis-based P-datasets than MSWEP v.2.2. This difference in terms of
input numbers can partially explain the better reliability of MSWEP v.2.2 in comparison to CHIRPS v.2,
PERSIANN-CDR, and all the considered SPPs in this study. Notably, MSWEP v.2.2 and CHIRPS v.2
use precipitation estimates from some of the considered SPPs as input data (GSMaP-RT v.6 and
TMPA-RT v.7 for MSWEP v.2.2 and TMPA-Adj v.7 for CHIRPS v.2). Thus, as “level-2” versions of these
specific SPPs, they provide more reliable precipitation estimates. Interestingly, even if IMERG-F v.6
does not consider such a multisource approach, it still offered precipitation estimates almost as reliable
as MSWEP v.2.2. Therefore, the IMERG technique is up-and-coming and recommended in future
multi-source precipitation datasets.

Most of the P-datasets were well correlated to the reference (>0.8) except PERSIANN-RT and
TMPA-RT v.7 (0.79 and 0.62, respectively). The gauge-adjusted versions presented a higher correlation
than their non-adjusted version, as observed for IMERG-F v.6 (TMPA-Adj v.7) when compared to
IMERG-E and -L v.6 (TMPA-RT v.7). Interestingly, IMERG-F v.6 presents a slightly superior correlation
value compared to MSWEP v.2.2, which both offer the highest score.

Non-adjusted SPPs, PERSIANN-RT, TMPA-RT v.7, and IMERG-E and -L v.6 overestimate
precipitation amount. The gauge-based adjustment efficiently removed the bias, as observed with a
bias value close to 1 for TMPA-Adj v.7 and IMERG-F v.6. In a general way, all SPPs using gauge-based
datasets present reasonable bias values (0.85> and <1.15). However, the gauge-based adjustment
in GSMaP-Adj v.6 introduced a lower bias (0.85) when compared to the non-adjusted version of
GSMaP-RT v.6 (0.91). The bias values, as seen here, confirmed previous studies which highlighted
deficiencies in the adjustment of GSMaP SPPs across Africa, such as Satgé et al. (2020) [63], and Beck et al.
(2019) [65].

Regarding the Vr, all SPPs presented a Vr close to one except for PERSIANN-RT and TMPA-RT v.7,
which underestimated precipitation variability (Vr < 0.85). However, these SPPs are also the less
efficient ones in terms of KGE, correlation, and bias.

On a seasonal basis, a robust trend was observed for all SPPs, with the highest reliability
(as expressed by KGE) during the wet season compared to the dry season. Differences between
wet and dry month-based KGE values is essentially linked with significant differences in r values
for both seasons. In contrast, similar β and Vr values were observed for both wet and dry months.
This seasonal variation is linked to the monthly precipitation total distribution [45]. Across Nigeria,
the monthly precipitation totals are well (poorly) distributed between the maximum and minimum
values during the dry season (wet season) (Figure 1). This feature tends to increase correlation and
therefore the KGE value during the dry season. As this distribution is even better when considering
the whole period, the all-month r increases, thereby increasing the KGE.
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Figure 3. Box plot statistical summary of (a) Kling–Gupta efficiency (KGE), (b) correlation coefficient (r),
(c) bias (β), and (d) variability ratio (Vr), based on the sixteen SPPs and eleven gauging stations across
Nigeria. The performances in terms of KGE, correlation coefficient, bias, and variability ratio of all SPPs
across all months are highlighted in black, while their seasonal performances are highlighted in green
and red for the rainy and dry seasons, respectively. The SPPs in black represent the long-term group,
while the Tropical Rainfall Measuring Mission (TRMM) is in red and the Global Precipitation Mission
(GPM) is in green.

4.2. SPP Reliability for Different Climatic Regions

In this section, the values of the statistical scores (KGE, r, β, and Vr) calculated at the locations of
the gauges and for the three Nigerian climatic regions are presented (Figures 4–7).
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Figure 6. The β values obtained at the grid cell level for all SPPs over the 2000–2012 period. The SPPs
are grouped according to their respective categories, and the gauges are separated by the country’s
ecological zones.
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ecological zones.

The KGE values obtained from all considered SPPs at the eleven gauge locations are reported in
Figure 4. The benefits of the gauge adjustment process observed at the regional scale are observed at
all gauge locations when considering TMPA-Adj v.7 and IMERG-F v.6 in comparison to TMAP-RT v.7
and IMERG-E and -L v.6, respectively. Regarding GSMaP SPPs, the adjustment is only significant
across the Savannah region.
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The most efficient SPP varies according to the considered region. With a KGE of 0.77, 0.77, and 0.78,
espectively, PERSIANN-CDR, CHIRPS v.2, and IMERG-F v.6 present the most efficient values across
the Sahel region. In contrast, MSWEP v.2.2, CHIRPS v.2, and IMERG-F v.6 showed the highest KGE
score over the central Savannah region (0.84, 0.84, 0.85). Finally, across the southern Guinea region,
MSWEP v.2.2 is the most efficient SPP (KGE = 0.86).

Generally, all SPPs presented lower KGE scores for the gauges located in the northern Sahel region.
Passive and active microwave (PMW) sensors onboard a low Earth-orbital (LEO) satellite are the
main input for precipitation estimates for most of the considered SPPs (TMPA, CMORPH, IMERG,
GSMaP, CHIRP, and MSWEP v.2.2). The orbital trajectory of the LEO satellite limited the number of
overpasses and thus hardly captures short precipitation events which are typical in a semi-arid context,
as observed across the Sahel region [66,67]. To fill the gaps, IR sensors on board of geostationary
satellite (continuous observation in time) are commonly used to augment the primary input during
the second step. Contrarily, PERSIANN-CDR uses IR information as the input of an artificial neural
network trained with precipitation estimates obtained by PMW sensors. Using IR data as the main
input allows for a continuous observation, which seems adapted to the arid context of the Sahel region.
Indeed, PERSIANN-CDR is the SPP providing the highest KGE score for the Sahel region. It is worth
mentioning here that TAMSAT v.3 also used IR data as the main input for its precipitation estimates.
TAMSAT v.3 used a cloud temperature threshold calibrated in space and time with gauge records.
The heterogeneous distribution of the African rain gauges might introduce uncertainty in the threshold
value for some regions, as observed across the Sahel region.

As observed for the KGE, the adjusted version of TMPA-Adj v.7 and IMERG-F v.6 presented
higher r values for all regions and considered stations in comparison to TMPA-RT v.7 and IMERG-E
and -L v.6, respectively. The adjustment on GSMaP shows more contrast, with a clear improvement
(degradation) observable across the Sahel (Guinea) region. Interestingly, except for MSWEP v.2.2 and
IMERG-F v.6, which exhibit a higher correlation for all considered grid cells and regions, the SPPs
presented lower correlation across the southern Guinea region. The southern part of Nigeria is a
naturally cloudy region. The continuous presence of clouds, regardless of a rainy episode, might be
challenging for SPP retrieval. On the contrary, the presence of cloud in the northern Savannah and
Guinea regions are more related to rainy episodes, which minimizes potential mismatches between
rain and no-rain clouds. This difference may partially explain the higher correlation observed from
more gauge stations over the Sahel region.

In general, all SPPs underestimated precipitation in the northern Sahel region. As the correlation
is generally higher for this region, it seems that the SPPs correctly captured the temporal occurrence of
precipitation event but still underestimated the amount. This might come from specific short-term
and light precipitation events occurring across the arid region, which is challenging for SPP retrieval
methods [67,68]. However, it is worth mentioning here that an equivalent bias expressed in mm
equals a different relative bias (Equation (3)) if considering high or low precipitation amounts.
Therefore, the same bias (in mm) will result in higher relative bias over the Sahel than the Savannah
or Guinea regions. The differences could partially explain the higher bias value observed over the
Sahel region.

Finally, though that high discrepancy was observed in terms of SPP bias spatial distribution
across Nigeria, over the Sahel region, IMERG-F v.6 and PERSIANN-CDR presented bias values closer
to 1 (0.86 and 0.87, respectively). Whereas for the Savannah region, CHIRPS v.2 and MSWEP v.2.2 had
1.02 and 0.97, respectively. Finally, across the Guinea region, CHIRP v.2 and TMPA-Adj v.7 provided
the less biased precipitation estimates, with a bias of 1.01 and 0.99, respectively.

Regarding the Vr values, all SPPs underestimated precipitation variability, particularly
PERSIANN-RT and TMPA-RT v.7, and to a lesser extent ARC-2, TAMSAT v.3, and PERSIANN-CDR.
The other SPPs presented reasonable Vr values. Interestingly, the gauge-based adjustment led to
contradictory results depending on the considered SPPs. Indeed, IMERG-F v.6 had a lower Vr value
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than the non-adjusted version (IMERG-E and -L v.6), whereas both TMPA-Adj v.7 and GSMaP-Adj v.6
have Vr values closer to one compared to their non-adjusted versions (TMPA-RT v.7 and GSMaP-RT v.6).

As a general conclusion on gauge-based adjustment, despite an overall increase in KGE for TMPA
and IMERG SPPs, the benefit shows more contrast when considering the KGE variables (r, β, and Vr)
across the main Nigerian climatic regions (Sahel, Savannah, and Guinea). While all KGE variables
(r, Bias and Vr) increased for TMPA across all climatic regions (Sahel, Savannah, and Guinea), a slight
decrease was observed in terms of Vr for IMERG and all climatic regions. More interestingly, GSMaP Vr
improved for all region, whereas β (r) increased (decreased) for all regions (Savannah). Therefore,
the adjustment process of GSMaP v.6 and IMERG-F v.6 should be optimised to avoid compromise in
terms of precipitation feature optimisation (i.e., β, r, Vr).

5. Discussion

5.1. Long-Term SPPs for Precipitation Trend Analysis

This study aims to validate the usability and potency of long-term, TRMM, and GPM products
for Nigeria using thirteen years of gauge observation data. However, the SPP reliability may exhibit
temporal variation due to (i) different combinations of sensors over time, related to both ageing and
newly released sensors, (ii) occasional technical issues, and (iii) variation in the available gauges
(number and location) used to adjust some SPPs [68]. Variation in SPP reliability over time can
influence SPP-based precipitation trend analysis. It is, therefore, crucial to report on SPP reliability
over time. In this context, Figure 8 showed the KGE performance of the considered long-term
SPPs (ARC-2, CHIRP v.2, CHIRPS v.2, MSWEP v.2.2, PERSIANN-CDR, and TAMSAT v.3) before
2000 (1985–1999) and after 2000 (2000–2012). Before 2000, the KGE is slightly better than after
2000 for all SPPs (except ARC-2). The highest difference between the KGE values obtained before
and after 2000 was observed from CHIRP v.2 and CHIRPS v.2 (Figure 8). A similar observation
was made for CHIRPS v.2 over Nepal and was attributed to a decrease in available gauges for the
adjustment process [69]. Similarly, the trend (KGE before 2000 higher than KGE after 2000) observed
for MSWEP v.2.2, PERSIANN-CDR, and TAMSAT v.3 could be related to the gauge-based precipitation
dataset (used in these particular SPPs) variation in terms of the number of gauges. In this context,
TAMSAT v.3 uses consistent gauge-based information in space and time rather than continuously
updated information to avoid adding any space or time discrepancy into the gauge network [70].
Still, the KGE varies slightly in time, as other factors, such as ageing sensors and different sensor
combinations, can influence SPP reliability over time.
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Finally, with a median KGE value higher than 0.8 before and after 2000, MSWEP v.2.2 appears to
be the best option for long-term precipitation needs over Nigeria. This is in line with the previous
finding over the South American Andean Plateau [68].
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5.2. Enhancement from TRMM to GPM SPPs

The GPM came into existence to ensure the continuity of the TRMM. The expectations were
high for GPM due to an increase in spatial (0.1◦) and temporal (30 min) resolution. GPM SPPs
(IMERG and GSMaP) are expected to provide an estimate of precipitation that is at least as accurate
as that produced by the TRMM SPPs (TMPA-Adj and -RT v.7, CMORPH-CRT and -BLD v.1,
PERSIANN-RT).

Figure 9 shows the difference in KGE values obtained at each grid cell between IMERG and
TMPA SPPs. IMERG and TMPA datasets were compared, taking into account their available time
latency. Therefore, IMERG-E and -L v.6 (time latency of 4 and 12 h, respectively) were compared to
TMPA-RT v.7 (1 day latency) (Figure 9b,c), whereas IMERG-F v.6 (latency of 3 months) was compared
to TMPA-Adj v.7 (3 months’ latency) (Figure 9a). Finally, IMERG-E and -L v.6 were also compared
(Figure 9d). GSMaP-RT v.6, GSMaP-Adj v.6, CMOPRH-CRT v.1, CMORPH-BLD v.1, and PERSIANN-RT
were not considered for comparison because their overall reliability is lower than IMERG and TMPA
datasets (Figure 4). IMERG-F v.6 reaches higher KGE values than TMPA-Adj v.7 at nine out of
11 grid cell locations (Figure 9a). The same was observed when comparing IMERG-E v.6 and -L v.6 to
TMPA-RT v.7 (Figure 9b,c). These results highlight a significant enhancement in precipitation estimates
from TRMM to GPM SPPs. This finding is consistent with previous results reported in Bolivia [30],
Brazil [37,38], and Pakistan [26]. Finally, IMERG-E v.6 and IMERG-F v.6 show a strong agreement
with an absolute difference inferior to 0.05 at 10 out of 12 gauge locations (Figure 10d). Therefore,
for real-time requirements, IMERG-E v.6 could be used instead of IMERG-L v.6 to obtain faster access
to precipitation estimates across Nigeria (4 h instead of 12 h).
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showed the SPPs with the highest KGE value at each considered grid cell. MSWEP v.2.2 showed the 
most robust performance in five gauge stations located in the central Nigeria region. IMERG-F v.6 
reaches the highest KGE value at three grid cell locations, while CHIRPS v.2, IMERG-E v.6, and 
CMORPH-CRT v.1 are the best performers at a single grid location. To take advantage of all available 
SPPs, merging all SPPs to produce an enhanced precipitation dataset over the region should be a 
good option as shown in figure 10. The potential benefit of such an improved precipitation dataset 

Figure 9. Comparative display of TRMM and GPM product performance at the gauge locations by
comparing TRMM-TMPA vs. GPM-IMERG. (a) The performance of IMERG-F v.6 with TMPA-Adj v.7,
(b) IMERG-E v.6 with TMPA-RT V.7, (c) IMERG-L v.6 with TMPA-RT v.7, (d) IMERG-L v.6 with
IMERG-E v.6 at rain gauge points.
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Figure 10. (a) Merging of the best product to each location’s result revealed that MSWEP performed
better in 5 out of 11 locations, (b) cumulative overall KGE score of MSWEP v.2.2 against the best
performing products in other location.

5.3. Towards an Enhanced Precipitation Dataset over Nigeria

As observed in Figures 5–8, the SPP reliability varies in space, indicating that different SPPs should
be considered depending on the region of interest within Nigeria. In this context, Figure 10 showed the
SPPs with the highest KGE value at each considered grid cell. MSWEP v.2.2 showed the most robust
performance in five gauge stations located in the central Nigeria region. IMERG-F v.6 reaches the
highest KGE value at three grid cell locations, while CHIRPS v.2, IMERG-E v.6, and CMORPH-CRT v.1
are the best performers at a single grid location. To take advantage of all available SPPs, merging all
SPPs to produce an enhanced precipitation dataset over the region should be a good option as shown
in Figure 10. The potential benefit of such an improved precipitation dataset can be highlighted by the
median KGE value of the most efficient SPP at each of the considered grid cell locations (Figure 10b).
The enhanced precipitation dataset reached a KGE value higher (0.87) than the most efficient SPP
(MSWEP V.2.2, KGE = 0.83). Previous studies have reported on different merging approaches to retrieve
a more realistic precipitation dataset from various SPPs over Pakistan [71,72], Tibet [73], and different
tropical complex terrains [74]. This method should be used as a guideline for Nigeria.

It is worth mentioning here that Figure 10 presents the best SPP in term of KGE. However, as
shown in the results section, the most efficient SPP changes according to the considered variables
(i.e., KGE, r, β, and Vr). For instance, the most efficient SPPs in term of bias are IMERG-F v.6 and
PERSIANN-CDR across the Sahel region, CHIRPS v.2 and MSWEP v.2.2 across the Savannah region,
and CHIRP v.2 and TMPA-Adj v.7 across the Guinea region. Therefore, interested users should select
different SPPs in agreement with the foreseen use.

6. Conclusions

In this study, the reliability of sixteen satellite precipitation estimates was evaluated for Nigeria
using Kling–Gupta efficiency scores at eleven gauge locations across Nigeria for the 2000–2012 period.
Despite the scarcity of ground reference points, some consistent features emerged from the analysis:

• When considering the long-term SPPs, MSWEP v.2.2 and CHIRPS v.2 provide the most reliable
precipitation estimates over Nigeria.

• When considering TRMM-based SPPs, TMPA-Adj v.7 outperformed CMORPH-CRT v.1
and -BLD v.1, while TMPA-RT v.7 outperformed PERSIANN-RT

• When considering the GPM-based SPPs, the IMERG-F v.6 precipitation estimate is more realistic
than that of GSMaP-Adj v.6, while IMERG-L v.6 and GSMaP-RT v.6, which are without gauge
adjustment, produced a similar performance.

• Overall, the transition from TRMM to GPM constitutes an apparent enhancement of precipitation
estimates over Nigeria with GPM-based SPPs providing more realistic monthly precipitation
estimates than TRMM-based SPPs.
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• IMERG-F v.6, which only uses satellite- and gauge-based precipitation estimates, provides
precipitation information as accurate as that of MSWEP v.2.2, which combines data from several
sources (satellite, gauge, and reanalysis). The use of IMERG-F v.6 in such a multi-source approach
should provide improved precipitation estimates.

• SPP accuracy is region dependent, with variable ranking in SPP performance according to the
considered region. In this context, the development of an SPP merging approach is suggested to
improve the precipitation representation over Nigeria.

As a general conclusion, with 40 (20) years of precipitation observations, MSWEP v.2.2
(IMERG-F v.6) is the best SPP option to consider when focusing on precipitation trends, as well
as support for water resource management.
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Glossary

ARC-2 African Rainfall Climatology.
CHIRP Climate Hazards Group Infrared Precipitation.
CHIRPS V.2 Climate Hazards Group Infrared Precipitation with Stations.
CMORPH-BLD Climate Prediction Centre Morphing Technique (Bias Corrected).
CMORPH-CRT V.1 Climate Prediction Centre Morphing Technique.
GSMaP-RT Global Satellite Mapping of Precipitation.
GSMaP-Adj Global Satellite Mapping of Precipitation (Adjusted).
IMERG-E Integrated Multi-Satellite Retrievals for GPM Early Run.
IMERG-F Integrated Multi-Satellite Retrievals for GPM Final Run.
IMERG-L Integrated Multi-Satellite Retrievals for GPM Later Run.
MSWEP Multi-Source Weighted-Ensemble Precipitation.
PERSIANN-RT Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks.

PERSIANN-CDR
Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks
Climate Data Record.

TAMSAT Tropical Applications of Meteorology using Satellite Data and Ground-Based Observations.
TMPA-Adj TRMM Multi-Satellite Precipitation Analysis.
TMPA-RT TRMM Multi-Satellite Precipitation Analysis.
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