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Abstract: There are several new and imminent space-based sensors intended to support mapping
of forest structure and biomass. These instruments, along with advancing cloud-based mapping
platforms, will soon contribute to a proliferation of biomass maps. One means of differentiating the
quality of different maps and estimation strategies will be comparison of results against independent
field-based estimates at various scales. The Forest Inventory and Analysis Program of the US
Forest Service (FIA) maintains a designed sample of uniformly measured field plots across the
conterminous United States. This paper reports production of a map of statistical estimates of mean
biomass, created at approximately the finest scale (64,000-hectare hexagons) allowed by FIA’s sample
density. This map may be useful for assessing the accuracy of future remotely sensed biomass
estimates. Equally important, fine-scale mapping of FIA estimates highlights several ways in which
field- and remote sensing-based methods must be aligned to ensure comparability. For example,
the biomass in standing dead trees, which may or may not be included in biomass estimates,
represents a source of potential discrepancy that FIA shows to be particularly important in the
Western US. Likewise, alternative allometric equations (which link measurable tree dimensions such
as diameter to difficult-to-measure variables like biomass) strongly impact biomass estimates in ways
that can vary over short distances. Potential mismatch in the conditions counted as forests also varies
greatly over space. Field-to-map comparisons will ideally minimize these sources of uncertainty
by adopting common allometry, carbon pools, and forest definitions. Our national hexagon-level
benchmark estimates, provided in Supplementary Files, therefore addresses multiple pools and
allometric approaches independently, while providing explicit forest area and uncertainty information.
This range of information is intended to allow scientists to minimize potential discrepancies in support
of unambiguous validation.
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1. Introduction

Forests play an important role in the global carbon cycle, as the storage of atmospheric carbon
in the form of forest biomass significantly influences the planet’s radiative balance [1,2]. In the
United States, growth of forests mitigates on the order of 15% of national fossil fuel emissions [3].
Carbon storage across forests is far from uniform, however. Biomass gradients occur across the
world’s forests due to land use conversion [4], varying growing conditions and the impact of forest
disturbance [5]. These gradients must be understood if carbon-related ecosystem services are to be
measured and managed.

National forest inventories are the international standard for measuring carbon at the country
scale [3,6]; their field-based measurements and statistical sample design contribute to straightforward
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estimates of biomass and uncertainty. However, the capacity of these inventories to resolve biomass
gradients and spatial patterns is limited by the density of their (often expensive) field measurements.
Also, inventories are not well developed in many countries, and significant discontinuities occur at
many borders because of incompatible definitions and methods.

Space-based remote sensing offers globally consistent forest measurements that address some
of these limitations. At least three lidar missions and two radar missions will soon be providing
high-quality forest structure information relevant to biomass measurement. Lidar instruments include
the already launched ICESat-2 canopy profiling lidar [7] and the GEDI full-waveform system [8] from
NASA as well as the upcoming Multi-footprint Observation Lidar and Imager (MOLI) from JAXA [9].
Planned radar missions include the P-band ESA instrument called BIOMASS [10] and the NASA/ISRO
L- and S-band NISAR satellite [11].

In light of the emergence of cloud-based platforms such as Google Earth Engine [12,13], which allow
highly parallelized computing and provide a robust application programming interface, there will
soon be a variety of forest biomass maps at multiple scales. Judging among alternative maps and
choosing the map most appropriate for a particular application will be a complex process. The Land
Product Validation (LPV) sub-working group of the Committee on Earth Observation Satellites (CEOS)
addresses these factors and highlights the need for open access to reference datasets that follow
consistent and straightforward protocols [14]. Duncanson et al. [15] and Bell et al. [16] outline processes
for using high-resolution lidar datasets to compare biomass maps from different platforms. However,
such datasets are rare and expensive to collect, and they may not be available for many applications.

National forest inventories are collected consistently across large areas and may augment validation
options for remotely sensed biomass maps. The inventory of the United States is managed through the
Forest Service’s Forest Inventory and Analysis Program (FIA) [17]. FIA plot data are collected across
the country at field plots selected randomly at a nominal density of one plot per 2428 ha. One way
to use this inventory data to evaluate alternative biomass maps is to use the plot data to calibrate
independent satellite-based biomass maps [18,19], which may be compared against candidate biomass
maps. However, while definitions in these maps are consistent with FIA protocols, they are subject to
many of the same sources of error as the maps one would want to validate.

This Technical Note documents an alternative use of inventory data for validation. We produced
a map of local-scale statistical estimates, based solely on a designed sample of ground measurements,
that may be of use in evaluating the myriad remotely sensed biomass maps that will soon be in circulation.
Brown and Schroeder [20] used FIA’s sampling frame to make statistical estimates of biomass in the
Eastern US at the level of the county. These estimates provide the opportunity to evaluate biomass
levels implied by remote sensing-based methods against design-based, field-calibrated estimates across
hundreds of diverse counties. The current paper extends this idea to the entire conterminous United
States, and provides biomass estimates at what is generally considered to be the finest spatial grain
supported by FIA’s standard sample intensity. Specifically, we map FIA estimates of biomass using
a hexagonal grid that includes at least 25–30 plots per grid cell (or “hex”). The primary purpose of this
technical note is to document this spatial dataset, which provides 9876 local non-zero (12591 total)
estimates of mean biomass against which alternative remotely sensed estimates might be evaluated.

These “benchmark” estimates are considered more authoritative than the remotely sensed
estimates to which they may be compared because they are based solely upon straightforward sample
theory and quality-controlled field measurements instead of models using auxiliary data. This is
not to say, however, that the inventory-based benchmark is without uncertainty. The second goal of
this paper, beyond documenting an FIA-based reference dataset, is to illuminate concurrent sources
of uncertainty that complicate the task of assessing the error of a remotely sensed biomass map.
For example, biomass is rarely directly measured in the field; FIA and other national forest inventories
use allometric models to convert standard non-destructive measurements such as crown height and
bole diameter into “measurements” of biomass. Zhao et al. [21] found that calibrating lidar-based
models with identical ground data subject to different allometric models can yield maps that vary
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substantially, particularly in high-biomass areas. Vorster et al. [22] found that uncertainty due to
allometric error can exceed remote sensing error in the production of biomass maps with Landsat
data. Using FIA’s sampling frame and applying different sets of equations to plot measurements of
height and diameter, we map differences in statistical estimates of biomass due solely to the choice
of allometry.

Another source of uncertainty affecting benchmark validation using FIA data is the choice of
carbon pools considered. Many maps identify aboveground biomass density (AGBD, in mass per
hectare units) as the variable of interest. Calibration data may or may not include standing dead trees.
Since this pool can represent a significant but highly variable source of biomass [23], its inclusion or
exclusion from the reference data used to calibrate a biomass map may play an important role in how
well the map matches benchmark biomass estimates. We use FIA estimates to quantify the impact of
standing dead trees on total aboveground carbon stocks across the US.

Disagreement about the forestland base over which biomass should be estimated is another source
of uncertainty in the validation process. Inventory-based estimates of biomass density tend to restrict
estimates to forestland (e.g., [24]), which is a strictly defined class using variables such as stocking
potential that are difficult to measure from space. However, trees outside of these areas—in urban
or rangeland areas, for instance—can represent substantial amounts of biomass [25]. Forest cover
maps can be used to mask out non-forest trees, but cover maps can differ both from each other and
from inventory-based forest area estimates. Consequently, the issue of which trees are considered in
estimates of mean and total biomass can become an important source of uncertainty [26]. Our hex-level
analysis of FIA data identifies areas where mixing of forest and non-forest conditions may make forest
mask issues more important.

Lastly, field sampling error complicates validation of biomass maps against inventory-based
estimates. FIA estimates are presumed to be unbiased, but their uncertainty varies widely across the
country as a function of both sample intensity (which can vary by state) and natural variation in the
underlying forest population. We depict the uncertainty of FIA biomass estimates at the hex level to
allow a more nuanced comparison of maps and inventory data. Agreement between maps and the
FIA benchmark within hexes having lower FIA uncertainty may be more important from a validation
perspective than agreement in areas where FIA’s confidence interval is broader. The intent of this
investigation is to not only document FIA estimates that may be used as a benchmark for alternative
remotely sensed maps, but also to draw from the inventory factors that expand consideration of
uncertainty and provide context for the use of inventories to validate remotely sensed biomass estimates.

2. Materials and Methods

2.1. Environmental Monitoring and Assessment Program (EMAP) Hexagons

White et al. [27] described a hierarchical hexagonal tessellation of the Earth’s surface based upon
decomposition of a triangular network of sample points. The distance between these points was
approximately 27 km, implying approximately equal-area hexagons of 640 km2. Positioning of this
tessellation, referenced here as the EMAP hexagons, was optimized for coverage of the United States.
FIA uses a similar but spatially offset and intensified tessellation to allocate plots [17], such that there
are approximately 27 FIA plots within each EMAP hex. It should be noted that some stakeholders
(e.g., individual states) have augmented plot collection using finer-scale hexagons, which supports
inventory analysis at finer scales. Estimation at the level of the EMAP hex has provided a balance
between fine-scale spatial detail and inclusion of enough plots (around 27) to support relatively precise
estimation (e.g., [28]).

2.2. FIA Measures of Biomass

FIA’s national network contains nearly 327,000 plots, approximately one third of which fall
in forested areas. Each plot is randomly assigned to a “panel” representing a fixed fraction of
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the sample (10–20%, depending on the state), and one panel is typically measured every year.
Standard design-based statistical estimators are used to make estimates of forest conditions at different
scales. These estimators are described comprehensively elsewhere [17,29,30] and are not detailed in
this Technical Note. Because plots are measured using a rolling panel design, estimates represent
conditions associated with a lagging time window of 5–10 years, depending on the sample fraction
assigned to each panel.

Several standard FIA forest biomass variables [29], described below, were estimated for each
EMAP hexagon. Estimates for these variables, summarized in Table 1, were stored by hex in a geospatial
database that is included here as Supplementary Materials. Estimates were expressed as a ratio of
biomass per unit of sampled land. The denominator of this ratio was the FIA estimate area of total
land, excluding water and foreign territory (EST_SAMPLED_HA in Table 1). For most hexagons,
the estimated biomass ratio equaled the total biomass estimated for forests within the hexagon divided
by the entire area of the hexagon. Biomass was estimated in this way to support the broadest possible
use of the hex-level estimates to evaluate the accuracy of biomass maps and to minimize the impact of
forest definition discrepancies.

Table 1. Attributes estimated for each EMAP hex using the FIA database.

EMAP_HEX FIADB EMAP hexagon identifier. The same as USHEXES_ID in the
original EMAP GIS layer.

PROP_FOREST Estimate of proportion of the area that is forest land. Ratio estimate of
forest land area over sampled area. Unitless.

SE_PROP_FOREST_PCT Sampling error of estimate of the forest land proportion, as a percent of
the estimate.

CRM_LIVE
Estimate of aboveground biomass of live trees (≥2.54 cm diameter) on

forest land per hectare of sampled area, using FIA component ratio
method (CRM). Megagrams per hectare.

SE_CRM_LIVE_PCT Sampling error of CRM live biomass per hectare estimate, as a percent of
the estimate.

CRM_STND_DEAD
Estimate of aboveground biomass of standing dead trees (≥12.7 cm

diameter) on forest land per hectare of sampled area, using FIA
component ratio method (CRM). Megagrams per hectare.

SE_CRM_STND_DEAD_PCT Sampling error of CRM standing dead biomass per hectare estimate, as a
percent of the estimate.

CRM_LIVE_DEAD

Estimate of aboveground biomass of live trees (≥2.54 cm diameter) plus
standing dead trees (≥5 inches diameter) on forest land per hectare of
sampled area, using FIA component ratio method (CRM). Megagrams

per hectare.

SE_CRM_LIVE_DEAD_PCT Sampling error of CRM live plus standing dead biomass per hectare
estimate, as a percent of the estimate.

DRYBIOT_LIVE
Estimate of aboveground biomass of live trees (≥2.54 cm diameter) on

forest land per hectare of sampled area, using retired FIA regional
methods. Megagrams per hectare.

SE_DRYBIOT_LIVE_PCT Sampling error of regional method live biomass per hectare estimate,
as a percent of the estimate.

DRYBIOT_STND_DEAD
Estimate of aboveground biomass of standing dead trees (≥12.7 cm

diameter) on forest land per hectare of sampled area, using retired FIA
regional methods. Megagrams per hectare.

SE_DRYBIOT_STND_DEAD_PCT Sampling error of regional method standing dead biomass per hectare
estimate, as a percent of the estimate.

DRYBIOT_LIVE_DEAD

Estimate of aboveground biomass of live trees (≥2.54 cm diameter) plus
standing dead trees (≥5 inches diameter) on forest land per hectare of

sampled area, using retired FIA regional methods. Megagrams per
hectare.
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Table 1. Cont.

SE_DRYBIOT_LIVE_DEAD_PCT Sampling error of regional method live plus standing dead biomass per
hectare estimate, as a percent of the estimate.

JENK_LIVE
Estimate of aboveground biomass of live trees (≥2.54 cm diameter) on

forest land per hectare of sampled area, using Jenkins equation.
Megagrams per hectare.

SE_JENK_LIVE_PCT Sampling error of Jenkins live biomass per hectare estimate, as a percent
of the estimate.

JENK_STND_DEAD
Estimate of aboveground biomass of standing dead trees (≥12.7 cm
diameter) on forest land per hectare of sampled area, using Jenkins

equation. Megagrams per hectare.

SE_JENK_STND_DEAD_PCT Sampling error of Jenkins standing dead biomass per hectare estimate,
as a percent of the estimate.

JENK_LIVE_DEAD
Estimate of aboveground biomass of live trees (≥2.54 cm diameter) plus
standing dead trees (≥12.7 cm diameter) on forest land per hectare of

sampled area, using Jenkins equation. Megagrams per hectare.

SE_JENK_LIVE_DEAD_PCT Sampling error of Jenkins live plus standing dead biomass per hectare
estimate, as a percent of the estimate.

EST_SAMPLED_HA Estimate of sampled hectares in the hexagon.

SAMPLED_PLOTS Number of sampled plots in the hexagon.

NON_SAMPLED_PLOTS Number of non-sampled plots in the hexagon.

Specifically, FIA’s field-based definition of forestland considers variables that are difficult to
observe remotely [31] and that are not available in a wall-to-wall map. If the user’s biomass map
does not use an explicit forest/non-forest mask, their average pixel-level prediction of biomass may
be compared directly with the FIA biomass estimates described here. If the user is interested in the
biomass stored only in the areas of mapped forest within the hexagon, the FIA number described
here may be divided by the fraction of forest cover implied by the user’s forest mask. For context,
this fraction may be compared to the FIA estimate of proportion of forest within the hex, which was
estimated separately and is available in conjunction with the biomass ratio described above.

FIA’s nationally consistent plot design is composed of four 0.017-hectare subplots, on which
measurements of every tree (≥12.7 cm diameter) are recorded. Measurements include variables
such as height, species, and diameter at breast height and are subject to well-defined measurement
quality objectives (Pollard et al., 2005). Direct observation of biomass through destructive sampling
is not feasible across large inventories, so allometric biomass models are used for every tree to scale
observable tree dimensions such as diameter and height to biomass. Three different sets of allometric
equations are available in FIA’s database, and we derived separate hex-level biomass estimates from
each set.

Allometry under these three variations is specific by species or species group. The first set
of models, based on tree diameter measurements alone, was published by Jenkins et al. [32] and
is here called the “Jenkins” allometry. A second approach, called the Component Ratio Method
(CRM: [33]), is based upon FIA estimates of sound bole volume, with other tree components estimated
as ratios [32] of computed bole biomass. CRM is currently used by FIA for national carbon reporting.
Unlike the Jenkins equations, CRM makes use of height measurements (through computation of
volume). Estimates were also made using an FIA variable called DRYBIOT, a retired FIA biomass
variable that was evaluated to support potential calibration against legacy FIA analyses. It should be
noted that while FIA’s measurements of CRM dead-tree biomass include a biomass reduction factor
linked to decay class [23], to the best of our knowledge there is no such factor applied for biomass
in dead trees calculated with the Jenkins and DRYBIOT variables. Applying different allometries to
tree-level measurements creates varying plot-level measurements, and that variance propagates to
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statistical estimates of biomass at larger scales. Here, we map differences in hex-level biomass estimates
that are traceable to the difference between use of CRM and Jenkins allometries.

Three pool-specific estimates were made for each hex under each allometry, covering biomass in:
(1) live trees; (2) dead trees; and (3) the combination of live and dead trees. Sampling error was assessed
for each mean biomass estimate using standard FIA design-based estimators. FIA’s plot network is
treated as a simple random sample, and exhaustive description of the estimators used by the Inventory
are available elsewhere [17,29,34]. Hex-level estimates of each of the variables in Table 1 were written
to a spatial database covering the conterminous United States (included in Supplementary Materials).

3. Results

The spatial distributions of hex-level estimates of several key variables are summarized below
and documented in a geodatabase file and a similar kml file (with truncated variable names), both of
which is stored in the Supplementary Data. Recall that the biomass density estimates shown in Figure 1
and Figure 4, as well as the standard error estimates in Figure 2 and the difference between CRM and
Jenkins allometries in Figure 5, all consider biomass as a ratio of measured forest biomass divided the
entire sampled area of the polygon.
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The highest levels of biomass occur in the forests of the Northwest, while the lowest values occur
in the country’s interior, in areas where forested conditions make up only a small proportion of the
polygon. Areas of highest uncertainty, as a percentage of the estimate (Figure 2), occur in areas where
the proportion of forest is low (Figure 3). This is both because variation of biomass in these areas
is high and because mean values are low, which inflates the standard error when it is expressed as
a percentage of the estimate.
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4. Discussion

This analysis provided fine-scale biomass benchmark information over the United States (Figure 1),
against which remote sensing-based means of estimating biomass might be evaluated. Remotely sensed
estimates are increasingly derived through formal modes of inference and are accompanied by their
own estimates of variance. These methods may make use of properties of the model-building process
and a wall-to-wall map (e.g., [35]), or they may be based upon only a sample of high-quality remote
sensing data, integrating both modeling and sampling uncertainty (e.g., [36]). Statistical estimators also
exist for scaling up across a hierarchy of remotely sensed data [37]. FIA estimates have been widely
used to provide context around biomass levels implied by remote sensing at county, state, and national
scales [38–41].

While the current analysis standardizes the process of evaluating spatial biomass products at
the finest possible scale, it also highlights the need for circumspection when comparing inventory
and remotely sensed data. Figure 2 indicates that the certainty of FIA’s estimates at the hex level
varies substantially; in some hex units, large FIA sampling error reduces what we can learn about the
accuracy of biomass levels predicted through remote sensing. However, it should be kept in mind that
FIA’s sample is presumed to be unbiased [17]; when assessed over a large number of hexes, one would
not expect a similarly unbiased map to produce hex-level estimates either consistently above or below
the FIA estimates.

The allometric equations used to assign a biomass to trees measured in the field were also shown
to be an important consideration. Domke et al. [42] found that the estimate of national carbon stocks
decreased by 16% when FIA moved from a set of generalized equations from Jenkins et al. [32] to the
currently used component ratio method (CRM). Duncanson et al. [43] found similar discrepancies at
the county scale. When using FIA estimates as a benchmark, it is important to remember that many
remotely sensed biomass maps are often global in scope and are therefore unlikely to be calibrated
consistently with the state-specific volume equations that comprise the core of CRM. Comparison of
Figures 1 and 4 shows that, even when using an identical sample of trees, allometry can cause population
estimates to vary 50% or more at the level of the hex. Unlike sampling error, allometric discrepancies
are likely to cause systematic differences between maps and inventory estimates.

The issue of biomass in standing dead trees can also complicate comparison of map- and
inventory-derived biomass estimates. Large stocks of standing dead trees in the Rocky Mountains
(Figure 4) are partially due to recent outbreaks of mountain pine beetle (Dendroctonus ponderosae),
which in many areas have killed a majority of large trees [44]. Dry forests throughout the West have been
the site of increasing wildfire [45]. Drier landscapes in the West also have lower autotrophic respiration
rates [46], which likely increases the duration of disturbance-killed trees prior to decomposition.

FIA explicitly measures the biomass in such trees (Figure 4), but remote sensing methods often
do not. Standing dead trees can be predicted as a function of stand structure using active sensing
technologies like lidar [47], but it is difficult to directly distinguish live from dead trees using height
return data [48]. Maps created with optical sensors can be sensitive to canopy mortality [49], but to
date we are unaware of research with sensors such as Landsat that differentiates dead- from live-tree
biomass. Spatially explicit inventory estimates, such as those presented here, may help map producers
decompose overall map error by highlighting uncertainty related to dead trees.

Differences in the recency of field and remote sensing data represent a seemingly straightforward
caveat in the error assessment process. Disturbance can generate large, immediate changes in
live biomass [50], and attention to timing is needed when inventory data are matched with maps.
Figure 6 shows how complicated this process can be, however. Operational differences in the
inventory can result in different-vintage field estimates even within the same state. There is likewise
complexity in simply determining the conditions over which biomass estimates are made and
compared. Varying definition of forests, and the potential detection of trees outside of forests,
can produce divergence in map- and inventory-based estimates that has nothing to do with the quality
of remotely sensed predictions [41]. As mentioned above, the FIA dataset documented here supports
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efforts to understand the role of forest/non-forest confusion by including hex-level FIA estimates of the
proportion of forest.

5. Conclusions

New spaceborne instruments and the evolution of cloud-enabled mapping platforms will likely
precipitate a proliferation of broad-scale forest biomass maps and estimation tools. Large, ground-based
inventories provide an opportunity to validate maps in a consistent way across many ecological settings.
We used FIA (the national forest inventory of the United States) to produce consistentestimates of
biomass and other relevant variables across 12,591 local hexagonal areas (Supplementary Files).
Most directly, these field-based estimates represent a benchmark against which remote sensing
scientists may evaluate the accuracy and potential biases of space-based predictions or estimates of
biomass. More broadly, this dataset highlights potential discrepancies that must be addressed to reduce
ambiguity in the validation process.

One such discrepancy involves timing. Measurement latency varies spatially in FIA’s sample,
and in places where the time between field measurements and remote sensing measurements is high,
users should be alert to artifacts caused by any intervening large disturbances. Discrepancies may also
result from factors such as the inclusion/exclusion of dead trees, the presence of which varies strongly by
region, and from differences in how forestland is defined. We also showed that divergent choices about
allometry can introduce substantial disagreement even when using exactly the same measurements
and statistical estimators. Our inventory-based maps suggest that the effect of these factors varies in
complex ways over short distances. In constructing an FIA-based validation dataset, we therefore
included a range of variables that should allow the user flexibility in matching the benchmark to
the remotely sensed product to be validated. Specifically, the dataset attached as Supplemental Data
includes estimates of different combinations of live and dead tree biomass across three different sets of
allometry. The dataset is also explicit at the level of the local hexagon about the estimated proportion of
forest and the uncertainty of all variants. It is hoped that this dataset may be useful both for immediate
assessment of biomass predictions and for broadening the discussion around the use of field data to
validate remote sensing.

Supplementary Materials: The following are available online at https://zenodo.org/record/4294490#
.X9o5Q9hKg2w: FIA Benchmark Biomass Estimates for sub-regions of the United States (geodatabase and
kml formats).
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