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Abstract: Existing gauging networks are sparse and not readily available in real-time over the
transboundary Lancang–Mekong River (LMR) basin, making it difficult to accurately identify drought.
In this study, we aimed to build an operational real-time Lancang–Mekong drought monitor (LMDM),
through combining satellite real-time data and the Variable Infiltration Capacity (VIC) hydrological
model at a 0.25◦ spatial resolution. Toward this, three VIC runs were conducted: (1) a 60-year
(1951–2010) historical simulation driven by Princeton’s global meteorological forcing (PGF) for
yielding ‘normal’ conditions (PGF-VIC), wherein the VIC was calibrated with 20-year observed
streamflow at six hydrological stations; (2) a short-period (2011–2014) simulation to bridge the gap
between the historical and the real-time modeling; (3) the real-time (2015–present) simulation driven
by bias-corrected satellite data, wherein the real-time soil moisture (SM) estimate was expressed as
percentile (relative to the ‘normal’) for drought monitoring. Results show that VIC can successfully
reproduce the observed hydrographs, with the Nash–Sutcliffe efficiency exceeding 0.70 and the
relative bias mostly within 15%. Assessment on the performance of LMDM shows that the real-time
SM estimates bear good spatial similarity to the reference, with the correlation coefficient beyond 0.80
across >70% of the domain. In terms of drought monitoring, the LMDM can reasonably reproduce
the two recorded droughts, implying extreme droughts covering the Lower LMR during 2004/05 and
widespread severe 2009/10 drought across the upper domain. The percentage drought area implied
by the LMDM and the reference is close, corresponding to 66% and 60%, 43% and 40%, and 44% and
36% for each typical drought month. Since January 2015, the LMDM was running in an operational
mode, from which the 2016 unprecedented drought was successfully identified in Mekong Delta.
This study highlights the LMDM’s capability for reliable real-time drought monitoring, which can
serve as a valuable drought early warning prototype for other data-poor regions.
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1. Introduction

Drought is nothing more than a water deficit, but it can have tremendous social and economic
impacts [1,2] because of its relations to agriculture [3,4], water supply [5], and the environment [6,7].
Globally, the reported annual economic loss from droughts is up to tens of billions, and the total number
of people affected by droughts has exceeded one billion in the past two decades [8]. Particularly with
the warming climate, regional droughts are expected to become more frequent and more severe [9–14],
which will lead to more people being exposed to drought risk [15–17]. One possible way to mitigate
drought impact is to properly recognize drought development and make prompt and comprehensive
risk preparation and response [18]. Unlike other natural disasters, drought evolves slowly over a
prolonged time period without early warning, until it becomes severe and begins to impact a region
across a large spatial extent [19–21]. Therefore, accurately monitoring drought onset and tracking its
propagation in real-time are critical for drought planning and mitigation.

Traditional drought monitoring relies on direct measurements of hydro-meteorological
fields [22,23] from in situ gauging stations [24]. However, the sparse observation networks, together with
scale inconsistency, inhibit the continuous drought diagnosis [25]. Alternatively, satellite remote sensing
provides a promising way to measure different components of the terrestrial water cycle at high spatial
resolution and in near real time [26,27]. To date, a substantial body of satellite-based products have been
developed for key water-cycle components [28–31], and many efforts have been made to apply these
products for regional drought monitoring [32–34]. Albeit with great potential to retrieve the specific
variable, satellite remote sensing alone can hardly provide hydrologically consistent observations due
to the retrieval errors [35,36], making it difficult to depict drought from a holistic view [37]. In contrast,
land-surface hydrological modeling driven by high-quality meteorological inputs is able to provide
closed (i.e., hydrologically consistent) and reliable estimates of water budgets via the built-in balance
schemes [38]. To date, combining satellite real-time (RT) data and land surface hydrological modeling
has been a routine for large-scale drought monitoring [39,40]. For instance, Princeton University
made an early attempt to operate a regional drought monitoring over the conterminous United States
(CONUS), through integrating bias-corrected satellite RT precipitation, with a land-surface model [18].
This operational framework was also applied to support regional water-resources management and
food security in Sub-Saharan Africa [41]. In addition to these approaches, several recent studies
attempted to integrate the available multiple satellite- and model-based precipitation and soil moisture
(SM) data for operational global drought monitoring and prediction system [42–44], like Global
Integrated Drought Monitoring and Prediction System (GIDMaPS) [45,46].

The Lancang–Mekong River (referred to as LMR) is an important transboundary river across
six countries in Southeast Asia, where a large portion is rain-fed agriculture, and most people are
engaged in agricultural work [47]. In this region, drought is not destructive as directly as a flood
(or hurricane), but accounts for more than 80% of the total affected population [48]. Particularly over
recent decades, a series of devastating droughts (e.g., during 2004/05, 2009/10, and 2015/16) hit LMR in
the dry season (November–April) [49,50], posing a huge threat to regional water and food security [51].
When it comes to drought analysis in LMR, early studies were primarily conducted to characterize
drought patterns [52–54] or assess drought impacts on various sectors [51,55]. Coinciding with the
changing climate, the focus was changed to assess how global warming will affect regional droughts
(in terms of frequency, severity, and duration) [56]. Recently, the complex issue on water–food–energy
nexus in this transboundary basin also attracts much attention [57,58]. In contrast, current attempts
toward drought monitoring in LMR are still in their infancy. Although there have been few efforts
devoted to exploring the applicability of satellite-based land-surface products (i.e., MODIS NDVI and
LST) for agricultural drought monitoring [59] or enabling regional hydrologic extreme assessment
system through model couple [60], the operational drought-monitoring practices in LMR are still
mostly dependent on the low-density hydrological gauging networks archived in the Mekong River
Commission (MRC). Albeit the Global Drought Monitor [39,45] may cover the domain of LMR, these
products aim to depict drought from a global perspective, at a relatively coarse (e.g., 0.5◦ × 0.5◦) spatial
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resolution. More importantly, detailed local in situ information is usually not included in the global
products (e.g., lack of model calibration), making it difficult to provide accurate hydrological estimates
at basin and regional scales.

To fill this gap, this study attempted to create a high-resolution real-time drought monitor over the
LMR basin, through combining satellite near-real-time meteorological data and accurate hydrological
modeling. This attempt can improve the outdated drought-monitoring schemes in LMR and provides
a prototype for other drought-prone regions with sparse gauging networks.

2. Materials and Methods

2.1. VIC Model

In this study, the Variable Infiltration Capacity (VIC) hydrological model (version 4.1.2.a) [61] is
used. VIC is a macroscale, semi-distributed land-surface hydrological model, characterized by sub-grid
heterogeneity (e.g., local water holding capacity) in representing the saturation and infiltration-excess
runoff generation processes at each grid cell (see Figure 1). One prominent feature of VIC is that both
water and surface energy budgets are resolved at each simulation time step. Moreover, VIC includes a
nonlinear ARNO model [62] to depict the recession process of baseflow. To date, the VIC model has
been widely applied to reconstruct water budgets over major global river basins [63].
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Figure 1. Schematic structure of the Variable Infiltration Capacity (VIC) model (courtesy from
https://www.hydro.washington.edu/Lettenmaier/Models/VIC/).

2.2. Data

2.2.1. Meteorological Forcings

In this study, a set of 60-year (1951–2010) global gridded meteorological forcing data, Princeton
Global Forcing (hereafter referred to as PGF), at a 0.25◦ spatial resolution and with a 3-hourly time
step, was used to calibrate the VIC model and reconstruct long-term climatology. The PGF data were
constructed by combining a suite of most recent global observation-based datasets (CRU data) with the
state-of-the-art reanalysis data [64], and was successfully employed to drive VIC for closing terrestrial
water budget over major global river basins [65].

To enable real-time VIC modeling, the latest version of TRMM Multisatellite Precipitation Analysis
(TMPA) real-time (RT) product (3B42RTv7) was utilized. Note that, although several satellite-based
precipitation research products like CHIRPS [66] have been made available after controlling data
quality against in situ rain-gauge measurements, these products are barely accessible in real time due
to the long time lag (several days or months) used for quality control. In contrast, the TMPA-RT data
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Remote Sens. 2020, 12, 376 4 of 21

can provide quasi-global (50◦S–50◦N), 0.25◦, 3-hourly near real-time precipitation measurements (only
with 9-hour time lag) since March 2000 [29]. It has been broadly applied in near-real-time drought
detection [39,41] and flood prediction [67,68]. In addition, the National Centers for Environmental
Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, with data record
available from January 1948 to the near-real-time moment (about 3-day time lag), was employed as
the near real-time source of the other three climatic drivers (i.e., daily maximum temperature (Tmax),
daily minimum temperature (Tmin), and daily wind speed (W)).

2.2.2. Land-Surface Characteristics

Here, the land-cover characterization was specified based on the University of Maryland global
land-cover classification [69]. From this global product, we identified the land-cover types and the areal
proportion occupied by each type within the 0.25◦ grid cell, as described in our previous study [38].
The additional parameters for each vegetation type, like leaf area index (LAI), rooting depth, roughness
length and displacement height, architectural resistance, and minimum stomatal resistance, were
specified and assembled from the available global source [70]. Note that the land-cover types and
parameters do not change during model simulation in this study.

The soil texture types used here were directly specified from the 5-arc-min Food and Agriculture
Organization of the United Nations dataset [71]. For each soil-texture class, the soil physical parameters
(e.g., field capacity, wilting point, and saturated hydraulic conductivity) were identified based on our
previous studies [38] and kept constant during model implementation. The remaining six numerical
parameters (i.e., the infiltration parameter, the second and third soil layer depths, and the three baseflow
parameters) were determined through calibrating the simulated streamflow with the observed record
at the in situ hydrological gauging stations [72]. The topography information at each 0.25◦ grid cell
was resampled from HYDRO1k global 1 km digital elevation model (DEM) data.

2.2.3. Model calibration and validation

To enable model calibration, the VIC model was coupled with a separated routing model [73] to
access the routed runoff (i.e., streamflow) at the specific location. The LMR’s digital river network
information (e.g., flow direction) required by the routing model was directly taken from a set of
0.25◦ (commensurate with VIC resolution) global river network product. This global database was
produced by upscaling the combined HydroSHEDS and HYDRO1k global fine-scale hydrography
inputs through hierarchical dominant-river-tracing (DRT) algorithm [74]. In this study, we selected six
in situ hydrological gauging stations with long-term daily observed streamflow records (see details in
Table 1 and Figure 2) to calibrate the six unspecific model parameters (as mentioned in Section 2.2.2).

Table 1. The six hydrological gauging stations.

No. Name

Location
Drainage Area (103 km2) Data RecordLongitude

(◦)
Latitude

(◦)

1 Changdu 97.18 31.18 48.5 1981–2000
2 Chiangkhan 100.09 20.27 189 1985–2016
3 NongKhai 102.73 17.88 302 1985–2016
4 Mudahan 104.73 16.58 391 1985–2016
5 Parkse 105.81 15.10 545 1985–2016
6 StungTreng 105.95 13.53 635 1985–2016
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Figure 2. The Lancang–Mekong River (LMR) basin and the six in situ hydrological stations (red
triangles) with >20-year daily streamflow observations.

Figure 3 illustrates the details on model calibration and validation. Specifically, a 20-year
calibration period was specified in the historical period, varying from 1981 to 2000, for the Changdu
station (in Upper LMR) and from 1985 to 2004 for the remaining five stations (Chiangkhan, NongKhai,
Mudahan, Parkse, and StungTreng) in the lower portion. During the calibration period, the PGF
data was used to drive VIC for an off-line simulation, and an optimization algorithm (multi-objective
complex evolution of the University of Arizona; MOCOM-UA) [75] was employed to find the optimal
parameter set by comparing the simulated flow with the observed one. Beyond the calibration period,
an additional 10-year period (2005-2014) was specified to validate model robustness at the lower five
gauging stations, where observed flow record is greater than 20-year. Given that the limited PGF
data record before 2010, the bias-corrected TMPA-RT data were used as model driver, to enable the
validation simulation. Here, we introduced two quantitative metrics, i.e., Nash–Sutcliffe efficiency,
Ef and relative error, Er, to evaluate the model performance, either during the calibration or the
validation period. Following the guidelines from [76], the performance of VIC model was considered
as satisfactory when the Nash–Sutcliffe efficiency, Ef, was greater than 0.50 and the magnitude of
relative error, Er, was less than 25%.
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2.3. Operational Lancang–Mekong Drought Monitor (LMDM)

Given that drought is expressed as to what degree current conditions depart from the ‘normal’,
the configuration of LMDM is designed with three types of simulations, using the calibrated VIC
model at a 0.25◦ spatial resolution (see Figure 4):

(1) A daily retrospective simulation from 1951 to 2010, driven by daily gridded meteorological
forcings from the PGF data (hereafter referred as to PGF-VIC). This 60-year historical simulation yields
the climatology or ‘normal’, which is used to derive percentiles of real-time soil moisture (SM).

(2) A short simulation from the end of retrospective simulation to the start date of monitoring
(i.e., from January 2011 to December 2014). This round of VIC simulation is used to bridge the gap of
retrospective and near-real-time simulations.

(3) The near-real-time simulation since January 2015, driven by the RT forcing data (i.e., TMPA-RT
and NCEP-NCAR reanalysis). In this study, the real-time climatic drivers for VIC runs, including
TMPA-RT precipitation (P) and three other reanalysis fields (Tmax, Tmin, and W), were all bias-corrected
against the gauge-based PGF data, using an equal-quantile mapping (QM) approach [77], in order to
remove their systematic errors (inconsistency). To realize operational drought monitoring, real-time
SM estimates driven by the corrected RT forcings were firstly aggregated to the monthly scale and
then converted to percentiles after directly comparing with the ‘normal’ condition (i.e., the 60-year
climatology produced by the first simulation) [78]. Based on the estimated SM percentile, four drought
categories are identified by the LMDM, following the U.S. Drought Monitor (USDM) [79]: moderate
drought (10–20%), severe drought (5–10%), extreme drought (2–5%), and exceptional drought (<2%).

In this study, we selected two reported severe droughts in the 2004/05 [80] and the 2009/10 dry
seasons [49], to assess LMDM’s reliability in drought monitoring and tracking. The corresponding SM
droughts identified from the 60-year climatology were taken as the surrogated observational reference.
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3. Results

3.1. Historical Reconstruction

3.1.1. Model Calibration

Figure 5 compares the VIC-simulated and gauge observed monthly hydrographs at six hydrological
gauging stations during the 20-year calibration period. Results show that the Nash–Sutcliffe efficiency
(Ef ) of monthly streamflow between simulation and observation is greater than 0.70 at all stations,
suggesting that the calibrated VIC model can well capture the monthly variation and seasonal cycle of
the observed streamflow. The relative error (Er) of 20-year monthly mean fluxes at almost all stations
(except for Changdu station in the Upper LMR) is less than 15%, suggesting that the magnitude of
VIC estimates after calibration is close to the observations. The Changdu station with large Er value is
located in the mountainous upper basin, where the meteorological forcing data might be more uncertain
due to limited ground stations. In addition, the imperfect frozen algorithm in the VIC model [81]
may be another source of the streamflow underestimation in cold winter over high-elevation areas
(the case for Changdu station) [82]. Here, we also compared the performance of VIC calibration with
previous studies of similar nature [83,84] that focused on LMR’s hydrological process modeling with a
distributed model driven by satellite/gauging data. Note that the model calibration in [83] is based on
the daily discharge records over a four-year (1998–2001) period. Despite the varying calibration period,
the comparison shows that the performance of VIC modeling in our study is comparable with that
from these similar studies, with the Nash–Sutcliffe efficiency, Ef, greater than 0.60 and the relative error,
Er, less than 10% at the majority of the selected in situ gauging stations. These analyses suggest that
the performance of VIC model is satisfactory in reproducing the observed hydrographs over the LMR
basin, in terms of both interannual variations and long-term means.
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hydrological gauging stations for the 20-year calibration period. (a) Changdu; (b) Chiangkhan;
(c) NongKhai; (d) Mudahan; (e) Parkse; (f) StungTreng.

3.1.2. Reproduction of Major Historical Droughts

Figure 6 presents the monthly drought conditions estimated from the 60-year climatology
reconstructed by PGF-driven VIC simulation (i.e., PGF-VIC) during the reported 2004/05 and 2009/10
drought periods. To assess its reliability in reproducing major historical droughts, the drought
information identified based on the standardized soil moisture index (SSI) was extracted from the
coarse-scale (2/3◦ × 1/2◦) Global Integrated Drought Monitoring and Prediction System (GIDMaPS;
http://drought.eng.uci.edu/) for comparison. Note that, although the quantitative drought information
(e.g., drought area) is not available in GIDMaPS, this global product can provide the drought pattern,
and its temporal evolution month-by-month, for the period of 1980–2016. Comparison shows that
the drought characteristics revealed by PGF-VIC and GIDMaPS is broadly in consistent manner.
During the 2004/05 dry season, they both indicate that the extreme drought swept across almost the
whole lower region (about 60% of the total LMR basin) in December 2004, primarily lying in the
Northeastern Thailand, Lao PDR, and Southern Cambodia. In the following two months (January and
February 2005), the extreme drought still dominated over large portions of Northeastern Thailand
and Lao PDR. However, the drought pattern was found with inconsistency over parts of Cambodia,
where the global system indicated persistent exceptional drought, while our result implied slight
recovery of drought. As for the 2009/10 drought, the PGF-VIC implied two hotspot regions with
SM percentile less than 10%, shown as much of upper portion and lower Mekong Delta suffering
from severe drought at the end of the wet season. When it comes to the dry season, drought in the

http://drought.eng.uci.edu/
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Mekong Delta gradually evolves from severe to moderate, while the upper severe drought expands
to even larger regions than before. These drought implications agree well with the GIDMaPS global
product. In addition to the global product, one similar regional study aided by MODIS NDVI and LST
data [59] was also used to assess PGF-VIC’s reliability. The comparison shows that the PGF-VIC and
MODIS-based monitor, albeit with disparity in the Mekong Delta, can both reasonably identify the
large areas of severe drought in Thailand and Cambodia during the 2004/05 dry season (see Figure 9 in
reference [59]). These analyses above suggest that the PGF-VIC (i.e., historical component of LMDM)
is able to reasonably reproduce the historical droughts in the LMR basin, either in terms of spatial
pattern or with respect to temporal evolution.
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Figure 6. Monthly drought conditions (expressed as SM percentile) estimated from the 60-year VIC
retrospective simulation driven by the PGF forcing data in three typical months during the 2004/05
drought (a–c) and the 2009/10 drought (d–f).

3.2. Real-Time Drought Monitoring

3.2.1. Bias-Correction for Real-Time Meteorological Forcings

Figure 7a compares the cumulative density functions (CDFs) of daily precipitation intensity (P)
derived from the raw (uncorrected) (green dash line) and corrected TMPA-RT data (red dash line)
against the gauge-based PGF data (black solid line) during the 10-year (2001–2010) overlapping period.
Obviously, the CDF of TMPA-RT data after bias-correction shows closer agreement to the precipitation
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distribution from PGF than before. Compared to PGF, the raw TMPA-RT tends to imply 11% fewer days
of light precipitation (<10 mm/d), but suggests a moderate overestimation (~8%) of heavy-precipitation
days (>50 mm/d). After bias-correction, the difference in the number of light- and heavy-precipitation
days reduces to 4% and 2%, respectively. Likewise, the reanalysis data show an evident frequency
overestimation of daily temperature [see Tmax in Figure 7b and Tmin in Figure 7c], with about 30% more
days with Tmax below 30 ◦C/d and nearly 10% more days with Tmin below 20 ◦C/d. Nevertheless, such
overestimations can be significantly removed with bias-correction. The comparison above suggests
that the RT data, either from TMPA-RT or NCEP-NCAR reanalysis, are more consistent with the
gauge-based PGF dataset than the raw one through the bias-correction scheme.
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Figure 7. Comparisons of cumulative density function (CDF) derived from the raw RT data (dark-green
dash line), corrected RT data (red dash line), and the gauge-based PGF data (black solid line) during
2001–2010, for (a) daily precipitation intensity (P), (b) daily maximum temperature (Tmax), and (c) daily
minimum temperature (Tmin). Note that the raw and corrected RT data refer to the TMPA-RT and
NCEP-NCAR reanalysis products.

3.2.2. Validation of Hydrological Simulation

Figure 8 compares the VIC-simulated monthly streamflow forced by raw (rawRT-VIC; blue line)
and bias-corrected (correctRT-VIC; red line) RT forcings against in situ observations (black line) during
a 10-year (2005–2014) validation period (independent from the calibration period) at five gauging
stations. For the simulation with bias-corrected RT forcings, the metrics Ef and Er are both within the
satisfactory catalog for all gauging stations, with the value of Ef greater than 0.70, and the magnitude of
Er less than 20%. This suggests that the VIC model constrained by bias-corrected RT data can reproduce
the observed monthly hydrographs beyond the calibration period well. In contrast, the negative
Nash–Sutcliffe efficiency (Ef < 0) and the large relative error (Er > 70%) are found at almost all gauging
stations for the rawRT-VIC, suggesting its poor performance to capture the variability of observed
streamflow. Overall, the performance of correctRT-VIC is satisfactory and much superior to the
rawRT-VIC, as indicated by the Nash–Sutcliffe efficiency (Ef ) much closer to 1 and the relative error
(Er) closer to zero at all gauging stations.
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Figure 8. Comparisons of VIC-simulated monthly streamflow driven by the TMPA and NCEP-NCAR
RT forcings (Raw and Corrected) against in situ observations during the 10-year validation period
(2005–2014) at five hydrological stations. (a) Chiangkhan; (b) NongKhai; (c) Mudahan; (d) Parkse;
(e) StungTreng.

In addition to streamflow, the SM estimates derived from correctRT-VIC were also assessed by
comparing with the reference PGF-VIC during the overlapping period (2001–2010) (See Figure 9).
To quantify their spatial distribution similarity, the Pearson’s correlation coefficient (R) of SM
was calculated between the estimates from correctRT-VIC and PGF-VIC at each 0.25◦ grid cell.
The correlation analysis shows that the LMR region is dominant with widespread high positive R,
and the low R is only scattered across a small portion of source region. In particular, across more than
70% of regions, the magnitude of R exceeds 0.80, suggesting that the correctRT-VIC and PGF-VIC
bear good spatial resemblance in terms of SM estimates. In addition, we also quantified the relative
difference (%) of 10-year SM mean between the correctRT-VIC and PGF-VIC. The result shows the
mean SM estimate from the correctRT-VIC and the reference is close, with more than 90% of regions
dominant with the bias less than 10%. In sum, the assessment either on streamflow or on SM suggests
that a combination of the bias-corrected satellite RT forcings and the calibrated VIC model is capable of
reasonable hydrological predictions, thus providing confidence of using LMDM for near-real-time
drought monitoring.
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3.2.3. Drought-Monitoring Evaluation

To test the LMDM’s reliability in drought monitoring, Figure 10 compares the SM drought
identified from the LMDM prototype monitor (i.e., correctRT-VIC) with that from the reconstructed
climatology (see Figure 6) during the 2004/05 and 2009/10 historical drought periods. Consistent with
the reference, the LMDM prototype monitor detects large areas of severe (or even extreme) drought
over almost the entire Lower LMR in December 2004. The spatial extent of drought dramatically
shrinks, and a small portion of Northeastern Thailand and Lao PDR are affected in January and
February 2005. Moreover, the monthly drought condition identified by the prototype monitor agrees
well with reference for the 2009/10 drought, with severe drought detected in the Upper LMR (mostly in
China domain) and Mekong Delta in October 2009. As it evolves to February 2010, the severe drought
exacerbates and extends to the Southwest China, but weakens to the moderate level in the Mekong
Delta. Notably, the areas experiencing significant wet conditions within the Thailand domain are also
well reproduced by the prototype monitor. To quantify their spatial similarity, we calculated the spatial
correlation coefficient (R) of SM percentile across all 0.25◦ grid cells within domain. Result shows
the R value is greater than 0.75 for all drought months, and even around or beyond 0.90 during the
2004/05 drought period, suggesting that the LMDM’s drought monitoring has a similar pattern to the
reference. In line with the spatial analyses, the percentage area under drought (SM percentile less
than 20%) simulated by the prototype monitor is similar to that by the reference, corresponding to
66% and 60% (in December 2004), 43% and 40% (in January 2005), 44% and 36% (in February 2005)
during the 2004/05 drought, and 41% and 38% (in October 2009), 52% and 43% (in December 2009),
and 41% and 35% (in February 2010) during the 2009/10 drought, respectively. The above analyses
suggest that the proposed prototype drought monitor achieved through the combination of VIC model
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with bias-corrected RT forcings bears an overall resemblance with the observational reference in terms
of drought location, severity, and evolution.
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Figure 10. Monthly drought monitoring estimated from the combination of the VIC model and the
bias-corrected satellite real-time meteorological data in three typical months during 2004/05 drought
(a–c) and 2009/10 drought (d–f), respectively.

3.2.4. Drought Monitoring in Operational Mode

Figure 11 presents the LMDM’s operational mode from 1 January 2015 to 31 December 2018. Here,
the operational mode indicates the automatic feature of LMDM real-time running mode, consisting of
seven steps in sequence (see Figure 12): (1) identify the current calendar date; (2) freely download the
TMPA real-time (RT) precipitation and NCAR-NCEP reanalysis data (Tmax, Tmin, and W) on the target
date (identified in step 1); (3) bias-correct the RT forcing data; (4) drive the VIC hydrological model;
(5) enable the real-time SM estimate expressed as percentile (relative to the climatology); (6) make
plots; and (7) enable figure plotting of SM percentile online. These steps are integrated into the LMDM
framework and will be automatically updated at the specific time per day. The figures produced in
operational LMDM mainly include the daily percentage area within a percentile range [Figure 11a] and
its spatial pattern [Figure 11(b–e)]. The percentage area within a given percentile range is calculated
as the sum of grid areas with SM percentile falling into the corresponding interval divided by the
total area of LMR. The percentage area under drought is calculated based on grid cells whose SM
percentile is lower than 20%. Overall, during the four-year operational period, the LMDM identifies
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four significant drought episodes (i.e., the 2015 wet season, the 2015/16 dry season, the 2017/18 dry
season, and the 2018/19 dry season), during which more than 30% of the LMR is hit by severe droughts
[see horizontal dash line in Figure 11a]. Particularly in April 2016, the areas affected by drought could
even account for more than half of the LMR region, with nearly 40% of the LMR hit by extreme (2–5%)
and more severe (i.e., exceptional) droughts. To highlight the location of drought, LMDM presents
the spatial patterns of SM percentile on selected dates from the above significant drought episodes
[Figure 11(b–e)]. From 1 July’s monitoring, the significant drought in the 2015 wet season is dominant
over the Upper Lancang River basin within China. In line with the reported 2015/16 drought records
from the official MRC [50], the monitoring system indicates that a large portion of Lower Mekong River
basin (lying in Cambodia and the Mekong Delta) was suffering an unprecedented exceptional drought
in April. In the recent 2018/19 dry season, the monitoring in November detects significant drought
occurring mostly in the lower portion, including the Southern Lao PRD and Cambodia. Overall,
the real-time monitoring results suggest that the LMDM can operationally track drought evolutions
and provide reasonable estimates of the percentage area affected by droughts with different intensities
and the corresponding spatial distribution pattern in the near-real-time mode.
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Figure 11. The LMDM’s operational mode from 1 January 2015 to 31 December 2018. (a) Percentage
area within a percentile range; for example, the red band indicates the fraction of total LMR region for
which the SM percentile on a given day falls into the interval of 2–5%. (b–e) SM percentile pattern on
the representative dates with significant droughts indicated by the vertical lines in Figure 11a.
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4. Discussion

In this study, the LMDM was developed based on three types of VIC hydrological simulations.
Thus, the reliability and robustness of VIC model is critical for the performance of the LMDM system.
Overall, the VIC is capable of reproducing the observed hydrographs in LMR, with the Nash–Sutcliffe
efficiency, Ef, greater than 0.70 and the Er magnitude lower than 25% across almost all gauging stations,
either during the 20-year calibration period or over the additional 10-year validation period. However,
among all gauging stations, the VIC model exhibits evident bias in streamflow at the Changdu and
Mukdahan station, respectively. The Changdu station lies in the high-elevation mountainous Tibetan
Plateau region, where the PGF global product used was demonstrated with considerable biases in
temperature (4–5 ◦C) and in precipitation (1 mm/day). Thus, the uncertainties in meteorological inputs
may partly contribute to the poor model performance. In addition, previous studies [81,82] implied
that frozen soil parameterization scheme in VIC model may be another source of the model bias. As for
the Mukdahan station, the evident bias in flow mainly comes from the underestimation of peak flow
during the unprecedented flood (e.g., during 2009–2011). Such bias in flood peak may be partly due to
the model parameters that were calibrated over a 20-year climatological period.

As for the drought assessment, the open-public GIDMaPS global system was introduced to validate
the drought characteristics estimated from PGF-VIC (i.e., the climatology in LMDM). Noted that the
drought information is identified by the standardized soil-moisture index (SSI) and the associated
classification threshold, while in our LMDM, the index used to identify drought is SM percentile
and the threshold used for drought classification is from the U.S. Drought Monitor (USDM). Thus,
the difference in diagnosis indicator and classification threshold may lead to some uncertainties in
the comparison.

In addition, the assessment in this study is based on a small number of samples. Future efforts
should be devoted to summarize more drought events and the relevant official information to test
LMDM’s robustness. Moreover, the TMPA-RT precipitation was employed as real-time climate driver
in current LMDM. With the availability of long-term retrospective RT record from GPM product,
the following version should be updated with the GPM real-time data.
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5. Conclusions

In this study, we developed a 0.25◦ operational Lancang–Mekong drought monitor (LMDM) based
on the VIC hydrological model, in which a set of 60-year historical simulation forced by the high-quality
PGF global forcing data, a short simulation to bridge the historical and real-time modeling, and the
real-time simulation driven by the bias-corrected TMPA and NCEP-NCAR real-time (RT) forcings
were integrated within a consistent framework. Two devastating droughts reported in the 2004/05
and 2009/10 dry seasons were used to evaluate the LMDM’s ability in real-time drought diagnosis
and detection.

Specifically, we firstly calibrated the VIC model by comparing the PGF-driven off-line simulation
with the 20-year (corresponding to 1981–2000 for Changdu station and 1985–2014 for the remaining
five stations) observed streamflow at six in situ gauging stations in LMR. The result shows the
Nash–Sutcliffe efficiency (Ef ) between VIC simulations and observations is above 0.70 and the relative
error (Er) of monthly mean fluxes is mostly within 15%, suggesting that the VIC model after calibration
can successfully reproduce the observed hydrographs. Note that an obvious flow underestimation was
found for VIC at the mountainous Changdu station, which may be partly attributed to the uncertain
meteorological inputs due to the limited ground stations in Tibetan Plateau (see more details in
Section 4). Based on the calibrated VIC model, we conducted a 60-year retrospective simulation to
form the ‘normal’ SM condition (e.g., SM climatology), from which the real-time SM estimate can be
converted into percentile used for drought monitoring in LMDM. Comparisons with the available
GIDMaPS global product and MODIS-aided regional study show that the LMDM is broadly consistent
with the GIDMaPS to reproduce the drought pattern and evolution, with evident severe and extreme
droughts across Northeastern Thailand, Lao PDR, and Southern Cambodia in December 2004 and
persistent in the early two months of 2005. Moreover, they both indicate widespread severe drought
across the Upper LMR within China domain during the 2009/10 dry season. This suggests that
the climatology (reconstructed from VIC retrospective simulation) can provide reliable reference for
real-time monitoring.

To enable the real-time monitoring consistent with the PGF-derived climatology, the real-time
meteorological forcing data, i.e., TMAP satellite/NCEP-NCAR reanalysis data, employed in LMDM
was bias-corrected against the PGF data. Results show that the raw TMPA-RT precipitation is subject to
evident systematic errors, with about 10% overestimation (underestimation) of heavy precipitation (light
precipitation), while such bias was reduced to around 2% after bias correction. Likewise, an evident
frequency overestimation was also found for the daily temperature (about 30% for Tmax and 10% for
Tmin) from NCEP-NCAR reanalysis, whereas with bias correction such overestimation was significantly
reduced. This suggests the bias-correction approach can effectively remove the inconsistency between
the RT forcing data and the PGF historical record. Furthermore, the VIC-simulated streamflow driven
by the raw (rawRT-VIC) and corrected RT data (correctRT-VIC) were compared with the in situ gauging
records during a 10-year (2005–2014) validation period (beyond the calibration period). The result
shows the rawRT-VIC suffers from large positive bias (Er > 70%) and negative Nash–Sutcliffe efficiency
(Ef < 0), whereas the correctRT-VIC is much superior to the rawRT-VIC, with the two metrics both falling
into the satisfactory category. In addition to streamflow validation, we also evaluated the performance
of correctRT-VIC in terms of reproducing SM pattern by comparing with the reference PGF-VIC
estimates. Result shows the correctRT-VIC bears good spatial similarity to the PGF-VIC, with the
correlation coefficient R exceeding 0.80 over about 70% of the domain and the bias magnitude less than
10% across almost all total region (about 90%). These assessments on hydrological performance suggest
that the correctRT-VIC (i.e., combining the bias-corrected RT forcings and the calibrated VIC model)
is capable of providing reasonable hydrological response, and thus can serve as LMDM prototype
monitor for reliable drought monitoring.

When it comes to drought monitoring, our validation analysis show that the LMDM is able to
reproduce the reported two droughts, with extreme (or even exceptional) drought covering a large
portion of Lower LMR (Thailand and Lao PDR) during the 2004/05 dry season and the significant
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2009/10 drought across much of the Upper portion and the Mekong Delta. Further quantitative
analysis shows that the spatial correlation coefficient R is greater than 0.75 for all drought months,
suggesting the LMDM monitor and the reference can reproduce a similar drought pattern. Consistently,
the percentage drought area implied by the LMDM and the reference is close, corresponding to 66%
and 60% (December 2004), 43% and 40% (January 2005), and 44% and 36% (February 2005) during
the 2004/05 drought, and 41% and 38% (October 2009), 52% and 43% (December 2009), and 41%
and 35% (February 2010) during the 2009/10 drought, respectively. In addition, we present LMDM’s
operational mode from 1 January 2015 to 31 December 2018. In this operational period, the LMDM
identifies four time periods with more than 30% regions experiencing significant drought conditions.
In particular, more than half of the basin (primarily in the Mekong Delta) was detected under extreme
and exceptional drought conditions during the 2015/16 dry season, which are consistent with the
reported 2015/16 drought records from the official MRC. This suggests the value of operational LMDM
in real-time tracking and quantifying drought conditions.

Overall, our results indicate that the satellite-based LMDM framework can reasonably monitor
drought evolutions and summarize the percentage drought area in a real-time manner across the LMR
basin. In the future, the LMDM will be made operationally available to the public with an online and
user-friendly interface to support drought tracking in LMR. It also provides a valuable prototype for
large-scale early warning of drought over other regions where ground observations are not readily
accessible in real time.
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