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Abstract: In Austria, more than a half of all electricity is produced with the help of hydropower
plants. To reduce their ecological impact, dams are being equipped with fish passages that support
connectivity of habitats of riverine fish species, contributing to hydropower sustainability. The
efficiency of fish passages is being constantly monitored and improved. Since the likelihood of
fish passages to be discovered by fish depends, inter alia, on flow conditions near their entrances,
these conditions have to be monitored as well. In this study, we employ large-scale particle image
velocimetry (LSPIV) in seeded flow conditions to analyse images of the area near a fish passage
entrance, captured with the help of a ready-to-fly consumer drone. We apply LSPIV to short image
sequences and test different LSPIV interrogation area sizes and correlation methods. The study
demonstrates that LSPIV based on ensemble correlation yields velocities that are in good agreement
with the reference values regarding both magnitude and flow direction. Therefore, this non-intrusive
methodology has a potential to be used for flow monitoring near fish passages on a regular basis,
enabling timely reaction to undesired changes in flow conditions when possible.
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1. Introduction

As a form of energy, electricity is of strategic importance for industries, businesses and homes.
It is not only a source of modern conveniences. Electricity has changed the way people store and
exchange information, share knowledge, automate production of goods, travel, grow crops, or address
medical needs. In recent decades, economies around the globe recognised the necessity to reduce
the use of fossil fuels. The new understanding of sustainability also led to a thorough analysis of
traditional alternative energy sources, such as hydropower.

Being clean and renewable, hydropower has numerous advantages. Its use, however, also has
trade-offs. One of them is the creation of obstacles for migratory fish, since many fish species must
travel upstream in order to reach suitable spawning areas. This kind of migration can be blocked
or delayed by hydropower dams causing habitat fragmentation [1] and leading to fish population
decline [2]. Public environmental policies are addressing this issue by focusing on the restoration of
ecological continuity of rivers [1]. In the year 2000, the European Commission confirmed the high

Remote Sens. 2020, 12, 384; doi:10.3390/rs12030384 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8291-900X
http://dx.doi.org/10.3390/rs12030384
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/3/384?type=check_update&version=3


Remote Sens. 2020, 12, 384 2 of 25

priority of water protection by issuing the Water Framework Directive [3]. As a result, a series of
corresponding laws were generated by European Union Member States, including Austria, where
hydropower plants are responsible for approximately 59.5% of total electricity production [4]. At the
beginning of 2010, the Federal Ministry of Sustainability and Tourism in Austria released NGP 2009, a
national water management plan that targeted the improvement of water condition and aimed at the
resolving the problem of habitat defragmentation, while at the same time enabling the use of rivers by
the energy industry. In 2012, the “Guideline to the construction of fish passages” [5] set out essential
planning and sizing criteria for the fish passages, which enable the upstream fish migration.

A critical point in the construction of fish passages (also referred to as fishways or fish ladders)
is their discoverability [6]. The discoverability of the fish passages depends on two major factors:
location of the fishway entrance [6] and presence of “attraction conditions” [7]. The placement of
the entrance into the fish ladder has been discussed in many publications [6,8–10], and there exist
clear recommendations concerning the best location for constructing a fish ladder entrance [6,10]. The
concept of “attraction conditions”, however, is less precisely defined. Factors that can influence the
level of attraction include turbulence [7], oxygenation [11–13], smell, temperature, sound effects [11,13]
and light conditions [11]. At the same time, based on the fact that fish inhabiting rivers turn to face
the oncoming current (a behaviour called rheotaxis), some publications consider the attraction of
the fishways to be mostly dependent on the discharge from their entrance, calling it the “attraction
flow” [6,10]. For example, in the publication “Location of fishways”, Larinier [6] states that “the only
active stimulus used to guide the fish towards the entrance <of the fishway> is the flow pattern at the
obstruction” (p. 39). The Austrian “Guideline to the construction of fish passages” [5], referencing this
publication, requires that discharge from a fish passage must be between 1% and 5% of the competing
river flow. Yet, some studies show that relying solely on the discharge for manipulation of the attraction
rate of the fish passages is not necessarily an optimal strategy. For example, Wagner et al. [14] show that
attractiveness of a fishway can vary among species which may be explained by the fact that rheotaxis
is more pronounced in some of them than in others. German Association for Water, Wastewater and
Waste [15] states that the flow leaving the entrance of a fish passage has a short reach. Therefore, it
cannot attract fish, which are not in the close proximity of the fish ladder. Increasing the reach of the
flow from the fishway by means of increasing its overall discharge or injecting an auxiliary flow near
its entrance can lead to the creation of flow velocities, which are too high for fish to overcome, thus
reducing the attractiveness of the fishway for species with incompatible swimming abilities. Relying
on discharge to be the major factor responsible for the discoverability of the fish passages can lead to
overbuilt fishways that are unreasonably expensive in construction and operation [16].

Many studies made efforts to assess the fish passage efficiency [7,14,16–18], and some of them
noted the necessity to correlate the flow patterns caused by the hydropower plant operation with
the discoverability of the fishway [14]. Nevertheless, we have not found any published attempts to
correlate the discoverability of fish passages with the empirically determined flow patterns near their
entrances. Since each of the hydropower dams and fishways is in a way unique, the conclusions drawn
about one of them cannot be directly applied to all of the rest. In order to prove that certain flow
patterns are associated with increased efficiency of a particular fishway, flow pattern analysis has to be
performed repeatedly in different flow conditions for the same test site. Flow conditions have seasonal
variations and change depending on the operation mode of the hydropower plant. They can change
rapidly and significantly as a result of flood events, especially in the case of a flood release from the
reservoir. Thus, determining flow patterns near a fish ladder should not be viewed as a one-time
event, but rather as a regular activity. On one hand, repeated flow pattern analysis correlated with
corresponding fish counts will help determining optimal flow condition for a given site or a group
of comparable sites. Equipped with this knowledge, the hydropower plant operator will be able to
ensure, when possible, that optimal flow conditions are created at times of peak fish migration, e.g.,
the most suitable operation mode of the hydropower plant is selected. On the other hand, flow pattern



Remote Sens. 2020, 12, 384 3 of 25

analysis after flood events will allow timely reaction to undesired changes in flow conditions, e.g., if
the flow gets unfavourably obstructed by flushed sediments.

A possibility to perform a regular in-field analysis of flow patterns relies on the existence of an
efficient methodology. Such methodology should allow getting information about the flow pattern with
the necessary level of detail and accuracy while keeping the level of required resources at reasonable
minimum. Traditional in situ measurements with the help of flowmeters, such as a current meter
or an acoustic Doppler current profiler (ADCP), are time-consuming and limited to the selected
locations (points or cross-sections). The flow velocities between those locations are determined by
means of interpolation. Application of different interpolation techniques may lead to computation of
significantly different velocities for the same target area, especially in cases of heterogeneous flow [19],
which is often characteristic for the areas near fish passages. Hence, it is reasonable to consider other
methods of determining flow patterns, such as optical methods of flow analysis.

Optical analysis of the flow relies on the idea that flow patterns can be calculated from video
recordings. The first step includes the capture of video data or an image sequence depicting the flow;
then, the recordings are calibrated. After that, images may be enhanced to reduce the amount of the
background noise and to increase the visibility of traceable particles. Next, evaluation of the data is
performed with the goal to determine particle displacements between consequent images. Further,
results may be filtered in order to remove invalid measurements. Optical analysis of the flow, unlike
other flow measurement methods mentioned above, is non-intrusive, allows instantaneous determining
of a complete flow field and does not necessarily require the use of high-cost equipment [20]. When
applied to rivers, optical analysis of the flow mostly aims at measurement of surface velocities. Surface
velocities are in turn representative of the depth-averaged flow velocities [21]. Therefore, surface
velocity fields calculated with optical analysis methods can be used to draw conclusions about flow
patterns in general.

A widely applied approach to data acquisition in natural flow conditions is aerial video recording
with the help of unmanned aerial systems (UAS), often called drones [22–27]. The advantage of using
UAS as a camera-carrying platform is their applicability in previously inaccessible locations and the
possibility to record nadir videos of large regions of interest (ROI). Since nadir videos are free from
perspective distortions resulting from oblique camera angles, they do not require orthorectification,
and thus it is possible, at least in part, to avoid errors associated with image transformations.

Optical analysis of the flow may be performed with the use of different methods of data
evaluation, including Kanade–Lucas–Tomasi image velocimetry [27], optical tracking velocimetry [28],
surface structure image velocimetry [29], space-time image velocimetry [30], and the most explored
technique, particle tracking velocimetry (PTV) [31–33] and particle image velocimetry (PIV) [34,35]. A
comprehensive review of the latter two methods can be found in [36,37].

PTV, a Lagrangian approach, is based on identification and tracking of individual particles
across consequent video frames. It is designed for low density particle distribution and, in most
implementations, requires that particles are round-shaped [36]. Some implementations, such as
PTV-Stream [38], can deal with tracers of any shape, but they have other limitations, e.g., the necessity
to know in advance the direction of the flow average velocity. This is challenging in heterogeneous
flow conditions, where velocities in the sub-regions of the ROI can have opposite directions.

PIV is used for in-field flow observations more frequently than PTV [36], and in the literature
it is often referred to as large-scale PIV (LSPIV) [39–44]. In this paper, we use the terms PIV and
LSPIV interchangeably.

PIV is based on tracking of the displacement of particle groups rather than individual particles.
With the PIV method, flow velocities are determined over a regular grid, thus describing the surface
velocity field (SVF) from the Eulerian point of view. Each of the cells of the regular grid is referred
to as an interrogation area (IA). PIV algorithms cross-correlate particle patterns in each IA with the
sub-images in the successive video frame, looking for the most probable particle displacement.
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The correlation methods most commonly applied within the framework of PIV are direct
cross-correlation (DCC) and Fourier transform (FT) [45]. DCC performs cross-correlation in the spatial
domain. It requires two parameters: the size of the IA and the size of the search area (SA), such that
the size of the SA exceeds the size of the IA. For each pair of images in a frame sequence, DCC searches
for the pattern present in the IA in the first image within the SA in the second image [34]. Thus, the
size of the SA has to be selected in a way that accounts for the magnitude of particle displacement
between the consequent images. For instance, if the magnitude of particle displacement is equal to N
px/frame, then, for a reliable correlation, the size of IA should be set to 2N × 2N px, and the size of SA
should constitute 4N × 4N px [45].

An alternative to DCC in the space domain is the correlation in the frequency domain by means of
FT [34]. Fast Fourier Transform (FFT) is an efficient implementation of FT that reduces the computational
complexity of the correlation procedure from O(N2) to O(N log2N) [34]. With FFT, the size of SA equals
to the size of IA. Therefore, in order to reliably identify the N px/frame displacement with FFT, the
size of IA must be set to 4N × 4N px. Running several passes of FFT can improve the correlation
results [34,45]. Each of the passes can be run with the change of the IA offset based on the displacement
identified in the previous pass [46], and with the refinement of the size of the IA [47] such that the
resulting SVF has a higher spatial resolution. Additionally, there exist procedures for IA deformation
that account for non-uniform particle motion within the IA [45].

Though PIV can be applied without artificial seeding of the flow, in cases when dense and
homogeneous seeding is absent, it tends to underestimate the flow velocities [48,49]. This may be
due to the fact that in its most common implementations PIV averages velocity vectors, which were
calculated for each IA across a large number of frames. If in some of these frames there was no
identifiable particle displacement in a particular IA, for such frames, PIV will assume zero velocities
within this IA. These zero velocities will consequently decrease the final velocity for the IA that is
calculated through averaging. One way to avoid this is to provide consistently dense and homogeneous
seeding of the ROI across the entire video recording. Depending on the complexity of the flow conditions
and the size of the ROI, providing such seeding may be challenging. Another way to increase the
quality of PIV results is (1) to identify homogeneously seeded sub-regions in each of the frames, (2) to
perform PIV calculations for these sub-regions only, (3) and then to calculate a mosaic for the entirety
of the ROI. For the mosaic calculation, vectors in overlapping sub-regions have to be averaged across
the frames that contain velocity data, and vectors from the non-overlapping sub-regions have to
be transferred directly to the resulting SVF. This approach allows avoiding underestimated values,
caused by averaging across frames with false zero velocities. However, it is labour-intensive, since, to
the best of our knowledge, there is no standard software that would automate the identification of
homogeneously seeded sub-regions and calculate the SVF as a mosaic.

In PIV applied at microscopic scales (micro-PIV), the problem of low-density or inhomogeneous
seeding is solved through the use of ensemble correlation for identification of particle displacements [50].
The benefit of the ensemble correlation is that the search for the correlation peak is preceded by averaging
correlation matrices of a frame sequence. As a result, the effective image density increases proportionally
to the number of images in the analysed sequence [51]. According to Westerweel et al. [51], ensemble
correlation is suitable for the calculation of velocities in (quasi-) stationary flows with low seeding
density. Since the basic assumption that allows averaging LSPIV results across the sequence of
frames is the stationary character of the flow within each IA during the time of video recording,
the use of ensemble correlation with LSPIV could have advantages over the standard correlation
approach. However, ensemble correlation as a tool for displacement identification has not found a wide
application with LSPIV. This may be due to the fact that in micro-PIV ensemble correlation is commonly
performed on sequences of 10–20 consecutive images [51], while in field conditions this number of
images can rarely be considered sufficient [20,40,52,53]. Still, the application of ensemble correlation
based LSPIV with a relatively short sequence of 100–150 image pairs may provide improvements in
LSPIV accuracy, and therefore should be explored.
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In this study, we investigated the applicability of LSPIV to flow pattern analysis in the vicinity of
a fish passage entrance. We used a ready-to-fly, low cost consumer UAS with a built-in camera for data
acquisition, and an Open Source software PIVlab [45] for data processing. We explored the differences
in LSPIV results associated with varying IA sizes and correlation approaches, testing a hypothesis
that ensemble correlation could be successfully applied for processing short image sequences (100+

image pairs), improving LSPIV accuracy. We compared the calculated flow velocities to the reference
measurements made with the help of a propeller current meter and determined that LSPIV results
were in a good agreement with the reference data. The results of this study can be viewed as the first
step towards a creation of an efficient methodology of flow analysis near fishways, contributing to
measures that target the increase in their discoverability.

2. Materials and Methods

The test site selected for this research is located on an Alpine river with a nivo-glacial hydrological
regime, which has a drainage area of 1057 km2 and a mean flow discharge of over 32 m3/s. The
associated flood discharge values are 160 m3/s (one year) and 530 m3/s (100 years). Within the study
area, the river is relatively narrow (up to 35 m). The size of the study area is approximately 80 × 45 m2

(Figure 1a). The entrance of the fish ladder is located 30 m downstream from the turbine outlet, on the
same side as the turbine outlet itself.

Figure 1. The study area: (a) at the time of the described experiment, in August 2019 (yellow arrows
indicate visually identified flow directions, red rectangles show locations of river thresholds; orange
rectangles contain areas where flow is obstructed by obstacles); (b) in June 2019; (c) in February 2019.
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Within the region of interest, the river is not particularly deep, between 0.1 and 2.0 m. The colour
of water in the river has variations, changing from transparent (Figure 1a,c) to turbid green (Figure 1b).
The riverbed is rocky, almost black in winter (Figure 1c) and brown-green in the summer months
(Figure 1a). Water level is characterised by fluctuations, and parts of the riverbed may be exposed to
the air depending on the season. In the middle of the river there are islands made up by boulders
and cobbles. The locations and shapes of the islands change to some extent after each flood as well as
depending on the water level (compare Figure 1a–c). The test site is characterised by heterogeneous
flow with partially opposite flow directions (Figure 1a) and velocities ranging between zero and
approximately 2 m/s.

To acquire reference flow velocities, we used a propeller current meter OTT C31 and performed
measurements in 23 locations directly under the water surface (Figure 2). These locations were selected
in a way that enabled assessment of performance of non-intrusive measurements for all the important
components of the flow in the FOV. These components included the main flow from the turbine outlet,
areas around the main flow curve, two branches of the main flow after its split, and the flow from the
fish entrance. To perform velocity measurements, the current meter was placed in water in such a
way that propeller axis aligned with the direction of the flow. The duration of measurement at each
point was one minute. Flow directions were determined with 10◦ precision with the help of a compass.
Differential GPS with a 2–3 cm positioning accuracy was used to determine the coordinates of the
reference flow measurements.

Figure 2. Locations of reference measurements with flow velocity magnitudes in m/s.

Data acquisition (Please find in Supplementary) was performed with the use of a DJI Mavic Pro
drone. This lightweight (0.8 kg) quadcopter has a horizontal positioning accuracy of ±30 cm + 1 ppm
and a vertical positioning accuracy ±10 cm. Its built-in camera has the following parameters: 1/2.3”, 26
mm F/2.2, 78.8◦, equivalent to 35 mm, distortion 1.5%. Maximum video resolution for this camera
is 3840 x 2160 px at 24, 25 or 30 fps. In addition to its relatively low cost (approximately EUR 1000),
another advantage of this UAS is an automatic correction of the barrel distortion. The video was
captured in a hovering mode at 25 fps from the altitude of 50 m.

Eleven ground control points (GCPs) were present in the field of view (FOV) in the captured
video. The GCP markers were produced from white plastic with black printed patterns. The marker
dimensions were 80 x 80 cm. In order to increase the contrast between the markers and the background,
pieces of black pond liner approximately 130 x 130 cm in size were placed under each of the GCP
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markers. The locations of the GCP markers were determined with the use of the differential GPS with
a 2–3 cm positioning accuracy.

For seeding of the flow, we used ecofoam of different colours (azure, pink, yellow and light green).
The choice of tracer was motivated by the fact that ecofoam has proved to be a good seeding material
for LSPIV analysis [40,54,55]. The tracers were introduced into the flow from seven different locations:
from over the turbine outlet, from over the entrance into the fishway, from one of the islands in the
direction of the dominant flow, from two other islands and from the two banks. The ecofoam was
purchased from the seller of ecological packaging materials Biobiene. These tracers are made out of
corn and coloured with environmentally friendly dyes, are buoyant and biodegradable. Individual
ecofoam pieces have cylindrical shape, 1.5–2 cm in diameter and 4.5–6 cm in length. Once in water, the
pieces tend to stick together, forming clusters of different size and shape that are easy to recognise in a
video recorded from a 50 m altitude.

The video recording started about 40 seconds before the introduction of tracers into the flow. A
signal horn was used in order to indicate the start of the seeding. Starting with the second minute
of the recorded video, most of the areas of interest had some tracers present. The best seeding of the
area near the entrance into the fish ladder was achieved in about three and half minutes from the start
of the video recording and was present for about 30 seconds. The complete video duration was five
minutes, with approximately two minutes of the video file featuring relatively dense seeding in the
areas of interest within the FOV.

As mentioned above, we used PIVlab [45] to perform data evaluation. PIVlab is a popular
MATLAB-based software that has proven its quality in many previous studies [20,22,26,36,56–61]. It is
Open Source and can be used for free, and it is actively developed and well supported. PIVlab offers a
series of image pre-processing options and post-processing techniques. Another advantage of this
software is its intuitive GUI. The newest version of the software (v.2.31, released October 2019) features
ensemble correlation and can automatically calculate recommended PIV settings for the selected region
of interest. PIV can process bmp, jpeg/jpg and tiff/tif image files. Image extraction from video files and
image stabilisation do not belong to the PIVlab functionality.

To extract images from the video file, we used a custom MATLAB script. We sub-sampled the
frames, extracting each second frame, thus creating an image sequence with a time interval of 80 ms
between the consequent frames. This frame rate was a compromise that allowed simultaneous PIV
application to different areas of the heterogeneous flow in the FOV. The original frame rate of 25 fps was
too high to analyse the areas with low flow, while further increase of time interval between analysed
frames reduced the quality of correlation in the areas with high flow velocities. Image calibration
resulted in a ground sampling distance (GSD) of 0.021 m/px.

The selected image sequence had to be stabilised before PIV application. Due to the camera
movement, images in the sequence experienced a vertical shift of approximately 13 px and a slight
(1.6◦) clockwise rotation. We performed image stabilisation with the use of MATLAB and some of the
built-in methods of PIVlab, applying a six-step algorithm:

1. Visual identification of motionless features that can be tracked, e.g. GCP markers that are present
in all the frames across the analysed sequence.

2. Identification of coordinates of these motionless features (in pixels) in the reference image.
3. Optional: Image enhancement in order to increase the contrast between the tracked features and

the background.
4. Calculation of the displacements of the motionless features with regards to a reference image with

the help of multipass the FFT with the 2 × 3-point Gauss sub-pixel estimator (a PIVlab method).
5. Calculation of the new coordinates of the tracked features based on determined displacements.
6. Affine image transformation with the help of two sets of coordinates of the tracked features: in

the reference image and in the currently analysed frame.



Remote Sens. 2020, 12, 384 8 of 25

The root mean square error (RMSE) of stabilisation for any two consecutive frames was on average
0.17 px. Thus, velocities calculated by means of PIV from these frames were a subject to a stabilisation
error of 0.045 m/s on average.

Out of the stabilised frame sequence, we selected 121 consecutive images with the goal to perform
a series of analyses varying the PIV settings. The images featured relatively dense but inhomogeneous
seeding near the fishway. Seeding of this area was particularly important, since a wave pattern near
the fishway complicated the non-intrusive calculation of the correct flow pattern. Figure 3 illustrates
the flow pattern derived by means of PIV based solely on wave pattern, with no seeding. It shows no
flow out of the fishway, which is known to be wrong. The actual flow pattern, featuring a flow out of
the fishway entrance, was revealed when tracers were added into the water, which is demonstrated in
the Results section of this paper.

Figure 3. Wave pattern near the fishway.

After selecting the frames, we cropped them to the area in the close proximity of the fishway, with
the dimensions of 1800 × 1000 px, which corresponded to approximately 38 × 21 m2. The decision to
crop the images was motivated by the necessity to reduce the computational cost of the comparison
of velocities associated with different PIV settings. The area selected for the comparative analysis
provided a good representation of overall flow conditions in the FOV due to the complex flow structure.
It featured a confluence and two swirls. Moreover, the flow was obstructed in some locations, creating
turbulent spots and areas that were difficult to seed. The reference velocities near the fishway measured
at seven locations where at least some tracers were present, ranged from 0.21 m/s to 1.62 m/s.

Viewing the cropped frames as a sequence of 120 image pairs, we performed velocimetry with
eight sets of PIV settings given in Table 1. Across all sets of settings, we used the spline deformation of
the IA, 5 × repeated correlation and 2 × 3-point Gauss sub-pixel estimator.

Table 1. Particle image velocimetry (PIV) settings for comparative analysis of the cropped
image sequence.

IA Size in px

Correlation Method and IA Size

Standard Correlation with Subsequent
Velocity Averaging Across the Frames Ensemble Correlation

S1 S2 S3 S4 E1 E2 E3 E4

1st pass 64/32 32/32 96/48 48/48 64/32 32/32 96/48 48/48
2nd pass 32/16 32/16 48/24 48/24 32/16 32/16 48/24 48/24
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The PIV settings resulting in velocities that were in the most agreement with the magnitudes of
reference velocities were used further to analyse the second image sequence. The second sequence
included 230 images (120 of which belonged to the first image set) which were used as 115 image pairs.
The seeding density and homogeneity in different areas of the ROI varied across the second image
sequence. Regions, which were poorly seeded in some of the frames, were well seeded in others. For
example, the density of seeding near the fishway varied between 6.8 × 10−4 and 3.3 × 10−3 particles per
pixel (ppp). The seeding density of the dominant flow was between 1.2 × 10−3 and 9.2 × 10−3 ppp. The
flow from the fish passage along the bank was seeded with the density of 1.1 × 10−3 to 3.1 × 10−3 ppp.
Sizes of identifiable particles varied depending on the flow conditions, too: in the areas of low flow,
ecofoam often built large clusters containing dozens of particles, while in areas where flow velocities
were high, individual particles or small clusters could be observed. In swirls, tracers accumulated
over time.

Image pre-processing within our workflow included an automatic contrast stretch and the
application of a high-pass filter with 60 px Kernel size. Both of these pre-processing procedures were
carried out with the use of the standard functionality of PIVlab. An example of image pre-processing
results juxtaposed to a portion of an original image is given by Figure 4.

Figure 4. An example of image pre-processing results juxtaposed to a portion of an original image.

Image post-processing was performed with the use of the standard PIVlab tools. Erroneous vectors
were removed with the use of the standard deviation filter with a threshold of seven standard deviations,
and applying the local median filter with default settings. Other methods of data post-processing
such as manual vector removal or imposing limits on flow velocity were not applied. The results
of the PIV analysis of the second frame sequence were compared with the complete set of reference
measurements, in terms of both velocity magnitudes and flow directions.

3. Results

3.1. Comprison of Velocimetry Results Associated with Different PIV Settings

To compare reference velocities with the PIVlab values, we used the following approach:

1. Reference measurements were converted into relative coordinates in metre, such that point (0;
0) corresponded to the top left corner of the FOV. Image coordinates of GCP markers used for
transformation were identified manually in a free image editor GIMP.
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2. Continuous velocity and direction fields produced by means of PIVlab were exported into
tab-separated text files. The resolution of the acquired dense velocity field (split in two files,
magnitude and direction) corresponded to GSD.

3. Then, we identified the cells in the exported dense velocity field, which corresponded to the
locations of reference measurements: indexes of corresponding rows and columns were calculated
by dividing relative coordinates of reference measurements by GSD.

4. The PIV value for each of the reference measurements was calculated as a median of nine cell
values, the cell identified in the previous step and eight surrounding cells, since accuracy of
reference data coordinates was 2–3 cm, plus and uncertainty of approximately 1 cm was associated
with coordinate transformation.

5. Information on the reference measurements and corresponding PIV values associated with each
set of the analysis settings are provided in Table 2. Relative differences (in %) between the PIV
velocities and the reference values, and their statistics are given in Table 3.

Table 2. Reference measurements and PIV velocities for eight sets of analysis settings.

Reference Velocity
Magnitude, m/s

PIV Velocities, m/s

pass S1 S2 S3 S4 E1 E2 E3 E4

1st 64/32 32/32 96/48 48/48 64/32 32/32 96/48 48/48
2nd 32/16 32/16 48/24 48/24 32/16 32/16 48/24 48/24

0.21 0.04 0.05 0.04 0.07 0.18 0.24 0.14 0.22
0.26 0.24 0.24 0.23 0.25 0.30 0.30 0.27 0.27
0.79 0.71 0.72 0.67 0.73 0.70 0.71 0.68 0.68
0.97 0.83 0.80 0.82 0.88 1.01 1.08 1.02 1.03
1.13 0.88 0.82 0.96 0.96 1.03 1.03 1.01 0.98
1.24 1.15 1.13 1.14 1.17 1.13 1.14 1.16 1.14
1.62 1.62 1.58 1.58 1.57 1.61 1.58 1.58 1.56

Table 3. Relative differences (in %) between the calculated PIV velocities and the reference measurements.
Statistics are grouped by (a) the interrogation area (IA) size and the correlation method (b) the correlation
method only.

Reference Velocity
Magnitude

Relative Differences (in %) between the PIV Velocities and the Reference
Values

pass S1 S2 S3 S4 E1 E2 E3 E4

1st 64/32 32/32 96/48 48/48 64/32 32/32 96/48 48/48
2nd 32/16 32/16 48/24 48/24 32/16 32/16 48/24 48/24

0.21 −81.0 −76.2 −81.0 −66.7 −14.3 14.3 −33.3 4.8
0.26 −7.7 −7.7 −11.5 −3.8 15.4 15.4 3.8 3.8
0.79 −10.1 −8.9 −15.2 −7.6 −11.4 −10.1 −13.9 −13.9
0.97 −14.4 −17.5 −15.5 −9.3 4.1 11.3 5.2 6.2
1.13 −22.1 −27.4 −15.0 −15.0 −8.8 −8.8 −10.6 −13.3
1.24 −7.3 −8.9 −8.1 −5.6 −8.9 −8.1 −6.5 −8.1
1.62 0.0 −2.5 −2.5 −3.1 −0.6 −2.5 −2.5 −3.7

Mean Magnitude
(Unsigned) (a)

20.4 21.3 21.3 15.9 9.1 10.1 10.8 7.7

Median −10.1 −8.9 −15.0 −7.6 −8.8 −2.5 −6.5 −3.7
RMSE 32.7 31.8 32.6 26.4 10.3 10.8 14.7 8.7

Mean Magnitude
(Unsigned) (b)

19.7 9.4

Median −9.7 −5.1
RMSE 31.0 11.3
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As initially expected, PIV settings that relied on the standard FFT correlation and subsequent
velocity averaging (S1–S4) resulted in SVFs that systematically underestimated the flow velocities. The
calculated values were lower in comparison to the reference values by 0.11 m/s and 19.7% on average,
with median difference values of −0.10 m/s and −9.7%. In about 2/3 of the cases, PIV based on the
ensemble correlation (settings E1–E4) also underestimated flow velocities. However, for the settings
associated with the ensemble correlation, mean differences between the reference measurements and
the calculated values were 0.07 m/s and 9.4%, whereas median differences equalled to −0.05 m/s
and −5.1%.

Figure 5 displays the spatial distribution of reference measurements near the fishway. Surface
velocity fields calculated for each set of PIV settings are visualised in Figure A1. The reference velocity
0.21 m/s is located very close to the fishway entrance near the right wall. In order to increase the flow
velocity near the opposite wall, the flow near the right wall is artificially obstructed, and a circular flow
pattern is formed. None of the PIV settings based on the standard FFT correlation (S1–S4) led to an
accurate calculation of the flow velocity in this area, underestimating the actual value by 0.14–0.17
m/s. Ensemble correlation (settings E1–E4), however, yielded results that were within a difference of
0.01–0.07 m/s from the reference measurement.

Figure 5. Spatial distribution of reference measurements near the fishway and a surface velocity field
(SVF) calculated by means of PIV with settings S4.

PIV velocities at the location of the reference value 0.26 m/s (measured at the fishway entrance)
were characterised by high accuracy, within 0.01–0.04 m/s across all eight sets of analysis settings.
Settings E1–E4 overestimated this value by 0.01–0.04 m/s, while settings S1–S4 underestimated it by
0.01–0.03 m/s. The same trend was observed near the reference value 0.97 m/s, where settings based
on ensemble correlation overestimated the velocity by 0.04–0.11 m/s, while the standard correlation
approach led to values underestimated by 0.09–0.17 m/s.

For the reference value 1.62 m/s, the associated PIV velocities had an accuracy of 0–0.06 m/s with
no significant differences between the settings. PIV velocities downstream from the fishway entrance
near the riverbank were determined with lower accuracy across all analyses. The values calculated
with analysis settings E1–E4 were 0.10–0.15 m/s lower that the reference velocity of 1.13 m/s; settings
S1–S4 underestimated this value by 0.17–0.31 m/s. Calculated low values are unlikely to be associated
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with insufficient seeding since the reference measurement was done in one of the best seeded areas of
the ROI. Velocities at other reference locations were underestimated within 0.06–0.12 m/s depending on
analysis settings. It is remarkable, that PIV velocities determined with the highest accuracy across all
analysis settings, 0.26 m/s and 1.62 m/s, are the velocities of the flow from the fishway and the velocity
of the dominant flow, respectively.

The calculated flow pattern (Figure 5) contained all the elements known to be present in the ROI.
Two circular flow structures, near the fishway entrance and near the island, were correctly identified.
Dominant flow was located correctly, too. As expected, the flow near the riverbank was characterised
by lower velocities than the dominant flow. Places where the flow was obstructed could be identified
from the SVF as well: the flow velocity at obstacles visibly dropped and flow direction changed. An
apparent unexpected drop in flow velocity in some areas was associated with the presence of river
thresholds. Here the application of PIV was challenging due to both the high turbulence influencing
the visibility of tracers and the vertical direction of tracer movement.

Independent of the applied analysis settings, all SVFs contained two areas of apparent low flow
velocities that did not necessarily describe the flow with the due level of accuracy. One such area
was behind an obstacle, downstream from the reference measurement of 1.13 m/s, and another one
was in the centre-right part of the image. Since they were poorly seeded, no visually identifiable
movement could be observed within these areas in the majority of analysed images, likely leading to
underestimated velocity values. An application of settings E1–E4 yielded slightly higher flow velocities
in the area downstream from the obstacle than the use of settings S1-S4 (Figure A1: compare images in
the left column [S1–S4] with the images in the right column [E1–E4]).

Special attention should be paid to streamlines near the entrance into the fish passage. Though
some of the processed frames contain information about the seeding particles moving along the left
wall and continuing their way in the downstream direction along the riverbank, none of the flow
patterns derived with eight sets of PIV settings yielded an SVF that would depict such flow pattern.
On the contrary, the streamlines at the fishway entrance in most SFVs were pointed away from the
actual flow direction. This is due to the fact that the wave pattern discussed above interfered with the
calculation of velocity vectors near the fish ladder. To avoid this interference, a larger size of IA should
be used for PIV analysis. Figure 6 shows an example of SVF calculated with a two-pass standard
correlation FFT with IA sizes of 96/96 px and 96/48 px.

Figure 6. A flow pattern near the fishway calculated with the use of large IA: 96/96 px in the first pass
and 96/48 px in the second pass.
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The streamlines in the Figure 6 correctly represent the flow in the area influenced by the wave
pattern in previous analyses. However, the used IA size is too large to determine the circular flow
pattern near the right fishway wall, and the overall spatial resolution of the SVF is too low. Thus, it
is suitable for the first, high-level analysis of the flow structure but cannot be considered sufficient
for the task in hand. Among the more detailed SVFs calculated with the use of settings S1–S4 and
E1–E4, the patterns described by images Figure A1a–c,e,g in Appendix A characterise the flow more
realistically. They reflect the fact that most of the tracers in the recorded image sequence first moved
into the direction of the right wall and only then joined the main flow.

After comparing the results of application of different PIV settings, we selected a set of settings
for the analysis of the second frame sequence. Considering the fact that a number of reference
measurements within the FOV of the first image sequence was small, we decided to base our choice on
several factors rather than on a single statistic. We proceeded in the following way:

• Since settings based on the ensemble correlation in many cases led to more accurate PIV results,
we decided to limit our choice to one of the settings from the group E1–E4.

• Among the settings E1–E4 we selected those where the statistics of differences between the PIV
values and the reference values were the lowest, namely E1 and E4.

• Finally, we selected settings E4 for the final analysis since they underestimated PIV values less
often. In addition, both the RMSE and the mean magnitude of differences (without consideration
of sign) were lower for E4 than for E1. Another reason for analysing the large image sequence
with settings E4 was the less typical size of the IA than the one used in E1. Since the majority of
studies employ interrogation areas of 64/32/16 px, we considered it useful to demonstrate that
PIV analysis may be performed with alternative IA sizes. Though initially the application of FFT
required that IA had dimensions making the power of two (8, 16, 32, 64, 128, etc.), these days it is
not the case [62], and therefore one can be more flexible in using other IA sizes when necessary.

3.2. Full-Scale Analysis of Flow Patterns

230 full-scale images (3840 × 2160 px) were analysed with the help of two-pass PIV based on
ensemble correlation; the IA sizes were 48/48 px in the first pass and 48/24 px in the second pass. In the
resulting SVF (Figure 7), the distance between vectors corresponded to approximately 50 cm.

Figure 7. SVF calculated with the help of PIV with ensemble correlation, first pass IA 48/48 px, second
pass IA 48/24 px. Maximum velocity value is located in a turbulent sub-region near the turbine outlet
and constitutes 2.06 m/s.
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PIV has correctly determined the important elements of the flow structure: the dominant flow, the
flow from the fishway entrance, and circular flow patterns near the fishway, near the turbine outlet
and in the vicinity of the larger island. Changes in flow direction and velocity caused by obstacles
were clearly indicated. The connection between the flow from the fishway entrance and the main flow
was clearly indicated as well. It is represented through a streamline that averages two observed tracer
trajectories: along the left wall directly into the main flow and, alternatively, towards the vortex near
the right wall, and then into the main flow. To the right from the turbine outlet, below the nearby
vortex, almost no tracers could be observed in the video recording. The velocity vectors calculated in
this area are based exclusively on the wave pattern and are not necessarily accurate. The area in the
right bottom part of the ROI experienced poor illumination and therefore was masked out for the PIV
analysis. This resulted in an interrupted streamline below the island where a GCP marker with an
hourglass pattern was placed.

Table 4 (columns A–D) juxtaposes the calculated velocity magnitudes and the reference
measurements. In the majority of cases, PIV slightly underestimates the reference velocities; however,
in some of the areas (e.g. in the bottom part of the main flow right after the split), the velocity values
appear to be slightly overestimated.

Table 4. PIV results for the entire ROI compared to the reference measurements and statistics of
differences. Values in parenthesis in column B are PIV results from the analysis of the first image
sequence. Differences in flow direction are given as magnitudes (unsigned) since angles are circular data.

Reference Velocity
Magnitude, m/s

PIV Velocity
Magnitude, m/s

Absolute Difference
in Velocity

Magnitude, m/s

Relative Difference
in Velocity

Magnitude, %

Reference Flow
Direction, ◦

PIV Flow
Direction, ◦

Unsigned Difference
in Flow Direction, ◦

A B C D E F G

0 0.08 0.08 n/a n/a n/a n/a
0 0.08 0.08 n/a n/a n/a n/a

0.21 0.14 | (0.22) −0.07 −33.3% 170 309 139
0.23 0.21 −0.02 −8.7% 230 205 25
0.26 0.27 | (0.27) 0.01 3.8% 140 120 20
0.31 0.30 −0.01 −3.2% 180 161 19
0.35 0.08 −0.27 −77.1% 60 20 40
0.45 0.46 0.01 2.2% 150 148 2
0.47 0.41 −0.06 −12.8% 160 193 33
0.54 0.5 −0.04 −7.4% 180 193 13
0.56 0.57 0.01 1.8% 140 158 18
0.6 0.63 0.03 5.0% 190 199 9
0.6 0.53 −0.07 −11.7% 230 176 54
0.79 0.70 | (0.68) −0.09 −11.4% 160 168 8
0.97 0.93 | (1.03) −0.04 −4.1% 190 218 28
1.13 0.97 | (0.98) −0.16 −14.2% 160 157 3
1.14 0.88 −0.26 −22.8% 170 176 6
1.24 1.12 | (1.14) −0.12 −9.7% 170 168 2
1.28 1.19 −0.09 −7.0% 180 177 3
1.44 1.43 −0.01 −0.7% 90 115 25
1.49 1.40 −0.09 −6.0% 180 178 2
1.62 1.58 |(1.56) −0.04 −2.5% 170 167 3
1.63 1.59 −0.04 −2.5% 170 171 1

Mean Magnitude (Unsigned) 0.07 11.8% Mean Magnitude 22
Median −0.04 −7.0% Median 13
Standard Deviation 0.09 17.7% Standard Deviation 31
RMSE 0.10 20.2%

Flow velocity at the location of the reference value 0.35 m/s is the only one strongly underestimated
(the calculated value is 0.08 m/s, −77.1% difference), which can be explained by the fact that almost no
visible tracer movement could be observed in this area. Flow velocity in the vortex near the fishway
entrance (reference value 0.21 m/s) appears to be underestimated, too, though less considerably (the
measured value is 0.14 m/s, −33.3% difference, compared to 0.22 m/s in the previous analysis with
settings E4). At the same time at the location to the left from the vortex, where reference velocity has
the magnitude of 0.26 m/s, the current PIV result is 0.27 m/s (the same as in the previous analysis with
settings E4). The mean absolute difference between the calculated and the measured values is 0.07 m/s,
the RMSE is 0.10 m/s, and the median lies by −0.04 m/s. The mean relative difference between the
reference velocities and the PIV values is 11.8% (RMSE 20.2%). This value is strongly influenced by
a large difference of −77.1% observed in the poorly seeded area near one of the islands. For seeded
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regions (excluding the one where the reference velocity 0.35 m/s was acquired), the mean relative
difference between the reference values and the PIV velocities is 8.5% (RMSE 11.5%). RMSE of absolute
differences between reference velocities and PIV values in seeded areas is 0.09 m/s.

The use of an extended frame sequence (Table 4, column B) has slightly decreased PIV performance
near the fish passage. A large difference from previous PIV values (0.07 m/s and 0.10 m/s) was observed
twice; in other cases, the calculated velocities remained nearly the same. 86% (18 out of 23) reference
velocities were estimated to be within 15% of the measured values, 66% (14 out of 21)—within 10%
and over 40% (9 out of 21) – within 5%. Though these are promising results, one has to keep in mind
that a small number of reference measurements was available for comparison, and that the flow was
reasonably well seeded. In unseeded areas, errors associated with PIV values are expected to be much
higher, as becomes evident in the location where the reference velocity of 0.35 m/s was acquired.

Table 4 contains raw velocity values measured by means of a propeller current meter and calculated
with the help of PIV. Comparison of raw velocity values, though common in the literature, is a simplified
analysis method. Both flow measurement methods that are being compared deliver results within a
certain uncertainty interval. For PIV, this uncertainty may be associated with the magnitude of the
stabilisation error, with possible errors due to image noise, or errors resulting from the use of not
optimal IA sizes. Some of these uncertainties, e.g., the uncertainty introduced by the image noise,
are difficult to estimate in field conditions; for others, quantitative assessment can be performed. In
this study, the stabilisation error introduces an uncertainty of 0.045 m/s on average. The accuracy of
a propeller current meter lies within 2% of the measured value, which corresponds to 0.01–0.03 m/s
for the range of velocity magnitudes in the study area. Figure 8 provides a visual representation of
velocity magnitude comparison, including the consideration of uncertainties associated with current
meter accuracy and image stabilisation. In 47% of cases, the uncertainty intervals associated with the
reference measurements and the PIV velocity magnitudes completely or partially overlap. In cases of
non-overlapping uncertainty intervals, the difference between them constitutes 0.06 m/s on average.

The last step of the analysis was the comparison of reference flow directions with flow directions
determined with the help of PIV (Table 4, columns E–G). Since in PIVlab 0◦ corresponds to East of the
image, and possible angle values range from −180◦ to 180◦, the extracted PIV angle values were first
unified with the reference directions by adding 360◦ to negative angle values and then aligning the
0◦ with North. Figure 9 provides a visual representation of comparison of measured and calculated
flow directions. To the best of our knowledge, there exists no standard approach to estimation of
direction uncertainty associated with image stabilisation when dealing with LSPIV. In Figure 9, the
uncertainty associated with the 10◦ precision of reference measurements is depicted as an interval
surrounding reference velocities. A direction uncertainty associated with image stabilisation could
not be calculated for each of the reference measurements based on average stabilisation error or main
direction of camera movement, and therefore it was not analysed. Figure 9 shows that the majority
of the directions determined by PIV are consistent with reference measurements, with an average
difference between the reference angle and the measured angle constituting 22◦ (12.2% of maximum
possible difference of 180◦) and a median difference of 13◦ (7.2%).

The largest difference between the measured and the calculated flow direction across all reference
measurements was associated with the velocity of 0.21 m/s. A possible reason is that this velocity
was measured inside a vortex. Thus, it is not excluded, that the reference direction of the flow was
determined incorrectly.

In the majority of cases, flow direction is more accurately identified for higher flow velocities. This
can be explained by the fact that low flow velocities are associated with small particle displacement
between frames, which makes angle calculation more difficult. For flow velocities that exceed 1 m/s
(which roughly corresponds to a particle displacement of 4 px/frame), the unsigned difference between
reference flow directions and PIV flow directions was less than 10◦ for all but one measurements.
The only larger difference (25◦) was associated with a value measured in a turbulent sub-region near
the turbine outlet, where correct identification of flow direction is challenging regardless of the used
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measurement approach. In homogeneous low flow conditions, a higher accuracy of flow direction
calculation with the help of PIV could be achieved by means of image sub-sampling and increasing the
time interval between subsequent image frames.

Figure 8. Comparison of measured and calculated flow velocity magnitudes.
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Figure 9. Comparison of measured and calculated flow directions. Markers that represent the
measured angle of the flow direction (green horizontal lines) are surrounded with an uncertainty
interval associated with the precision of reference measurements (a striped pattern). Grey areas that
visualise a range of ±31◦, which corresponds to 1 standard deviation, are added in order to simplify the
visual assessment of PIV performance.

Analysis results indicate that LSPIV can accurately determine the major elements of a
heterogeneous flow pattern near a fish passage in seeded flow conditions. The largest error in
PIV results in terms of velocity magnitude is observed in a poorly seeded area. The largest differences
between a measured and a calculated flow direction is observed in a swirl where correct identification
of flow direction may be challenging regardless of a measurement method used.

When dealing with sequences of a little over 100 image pairs, where seeding is present but not
homogeneous, multipass ensemble correlation improves PIV results in comparison to the traditional
FFT correlation approach. Varying interrogation area size affects not only the density of the resulting
SVF, but also the accuracy of velocity assessment. Refinement of the IA size in each FFT pass does
not always benefit the velocimetry results, e.g., keeping the IA size low and constant in the first pass
may be advantageous for the areas with lower velocities. Flow directions determined with the help of
LSPIV are in a good agreement with the reference directions. This is an important finding, considering
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the fact that identification of flow directions plays an important role when dealing with the analysis of
flow conditions near fish passages.

4. Discussion

It is well known that the size of IA used for PIV analysis influences the ability of the algorithm to
correctly determine flow velocities [34]. In this study, the velocities range from zero to approximately
2 m/s. Considering the GSD of 0.021 m/px, the observed displacement of tracer particles may be as
high as 7.5–8 px/frame. Thus, if one-pass FFT correlation with no IA deformation is used, reliable
velocimetry results may be yielded for the IA of at least 32 × 32 px. This IA size, corresponding
to approximately 0.6 x 0.6 m in reality, is not necessarily optimal for capturing finer circular flow
structures present in the FOV. The use of multipass FFT with IA size refinement allows accounting for
both the necessity to accurately calculate high velocities, and the need to determine the presence and
to measure the velocities in small and circular flow structures.

The comparison of eight sets of multipass PIV settings has shown that for low velocities it is
advantageous to start with a smaller IA and keep it constant in the first pass, and then to refine it
in the second pass. At the same time, since small IA size makes PIV more sensitive to small-scale
flow variations, this choice of settings may obscure more general flow patterns. For instance, in the
vicinity of the fishway entrance, small waves that move in the direction opposite to the flow distort the
calculated flow pattern when small IA sizes are used. The distorted vector field shows no flow from
the fishway joining the main flow (Figure A1c,d), even when the IA size before the first refinement is
sufficiently large to capture a more general pattern (Figure A1f).

Since IA size has a significant influence on PIV results, it is advisable to preliminary analyse the
flow with a reasonably large IA and a two-pass FFT with no IA refinement in the first pass. Such an
analysis is likely to result in underestimated velocity values, but it can provide a good understanding
of high-level flow structure and main flow directions, and its computational cost is little. Image
enhancement for this preliminary analysis may be done in a way different from the main analysis, e.g.,
denoise filters can be set to higher values, because small-scale local flow variations at this stage can be
ignored. The preliminary analysis may be helpful for later SVF validation: the refinement of the IA
should add more detail and increase spatial resolution of the SVF, but should not completely inverse
flow directions (unless within circular structures).

The performance of PIV in this study is consistent with the previous studies that exploited LSPIV
for flow analysis [24]. Previous research has shown that LSPIV based on standard FFT correlation
or DCC is prone to underestimating flow velocities due to insufficient seeding density [48,49,63,64].
Our results have also indicated that independent on the correlation method employed, LSPIV tends
to underestimate flow velocities; however, the use of ensemble correlation that averages correlation
matrices before determining the correlation peak, in many cases reduces the magnitude of differences
between the reference velocities and the PIV values. The unsigned differences between the reference
velocity magnitudes and PIV values constituted on average 0.11 m/s (19.7%) for a standard multipass
FFT correlation method and 0.07 m/s (9.4%) for ensemble correlation, with RMSE of 0.13 m/s (31.0%)
and 0.08 m/s (11.3%), respectively.

Our tests included sequences of 115 and 120 image pairs where seeding of the flow was not
homogeneous: in some frames, the main flow was well seeded, but the flow from the fishway was
seeded insufficiently; other frames where characterised by the opposite trend. In these conditions,
ensemble correlation had an advantage over the standard FFT correlation approach. The mean absolute
difference in velocity magnitude between the PIV values and the reference measurements was 0.07 m/s
for both frame sequences, with RMSE of 0.08 m/s for the first frame sequence (across settings E1–E4)
and 0.10 m/s for the second frame sequence.

It is important to stress, that ensemble correlation is usually used with short image sequences.
A significant increase in the number of processed image pairs will increase the computational costs
of data processing and may negatively influence correlation results. Therefore, the frames used for
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analysis have to be selected carefully. Seeding in the areas of interest may be inhomogeneous, but each
area of interest should be seeded with tracers at least in some of the analysed frames.

Our results indicate that changing the correlation approach in the areas with no seeding had little
influence on PIV results. A PIV velocity that was calculated with ensemble correlation for an unseeded
area with no visible movement was largely underestimated (reference value 0.35 m/s vs. PIV value
0.08 m/s, 77.1% difference). In the seeded areas, the difference between PIV velocities and reference
values rarely exceeded 15%. Since no natural tracers were present in the flow, in unseeded areas flow
patterns could only be calculated from the wave patterns. However, the very idea of deriving flow
patterns based solely on wave patterns should be viewed critically, especially in low flow conditions
and in cases of heterogeneous flow. For instance, in our study, certain areas within the FOV were
characterised by a wave pattern dissimilar from the flow pattern. In the centre-right part of the FOV, a
wave pattern could indicate flow velocities of up to 0.80 m/s. During the experiment, we did not target
this area with seeding since it was of less interest considering the task in hand. However, some of the
tracers could be found here, and they experienced no apparent movement. Thus, the observed wave
pattern and the pattern of tracer displacement clearly contradicted each other. A similar situation was
observed directly near the fishway entrance, as was discussed above. Therefore, in flow conditions
similar to ones presented in this study, successful application of LSPIV cannot be ensured for unseeded
flow. To avoid the effect of misleading standing waves that are known to negatively influence PIV
results [24], in the absence of natural seeding, artificial eco-friendly tracers should be used.

The performance of PIV varied in different areas of the observed heterogeneous flow. For example,
flow directions determined by means of PIV were subject to a greater error in the areas of low flow than
in the areas where flow velocities were higher. The accuracy of calculation of flow directions in the
areas of low flow can be improved by increasing the time interval between the analysed video frames
(e.g., reducing the frame rate to 5 fps). In heterogeneous flow conditions, as presented in the current
study, this will simultaneously reduce the performance of PIV in areas of higher velocities. Ideally, an
optimal frame rate should be selected individually for different sub-regions of heterogeneous flow
based on individual flow characteristics in each sub-region. Unfortunately, processing image sequence
with variable time intervals between the frames and adjusting PIV settings to the characteristics of
individual sub-regions within the FOV is not yet supported by PIVlab or other comparable software.

The analysis of the second image sequence has shown that PIV underestimated the velocities
associated with the flow from the fish passage to a greater extent than the velocities in other seeded
sub-regions of the FOV. However, underestimating flow velocities in this area is less critical than
overestimating them: it means that, in fact, fish have higher probability of discovering an entrance into
the fish passage than estimated. At the current stage of method development, considering the main
goal of the research, the performance of PIV can be considered acceptable: it correctly determines the
major elements of the flow in the FOV, and identifies differences between sub-regions of the FOV. The
results of PIV analysis unambiguously state, which of the FOV sub-regions are characterised by the
highest and the lowest velocities. They show that after the split the velocity of the main flow near the
fishway is higher than the velocity of the flow from the fishway entrance, and that the second branch
of the main flow is characterised by lower velocities than those from the fishway entrance. For the
task in hand, the ability to quickly acquire this information is of great value. Further development
of the non-intrusive flow analysis approach will address the improvement of measurement accuracy.
Possible directions of improvement may include optimisation of flow seeding and local adjustments of
PIV settings. In general, the development of an analysis approach that supports variable frame rates
and PIV settings for sub-regions of the FOV will be beneficial for PIV performance in heterogeneous
flow conditions that are observed near fish passages.

The use of a drone for video data acquisition provides a lot of flexibility in selecting an area for an
optical analysis of the flow. The wider the river, the more uncertainty is introduced to a video recording
from the riverbank due to an increasing degree of perspective distortion. Though this angle of video
recording may be still suitable for estimating the average flow velocity or discharge [41,53,65,66], it
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does not allow to recognise small-scale flow patterns, especially in the areas that are closer to the
riverbank opposite to the one where the camera is mounted. The use of cameras mounted on and
under bridges limits data acquisition to areas where bridges are present. UAS as a camera-carrying
platform has no such limitations. This proves to be very useful, for example, when dealing with flood
events [27]. Helicopters have also been successfully used for aerial data capture during floods [42], but
the cost of their use is substantially higher than the cost of a drone-based data collection. Therefore, in
the scientific community there is a clear trend of shifting towards drone-based video data acquisition
for optical flow measurements (compare [39,42] to [25], [57] to [20], [67] to [48]).

With flexibility to collect data in a wide variety of areas, a successful application of LSPIV is
limited by the necessity of flow seeding. Though natural tracers can be present in water in abundance,
this is not always the case. During flood events, artificial seeding of the flow is mostly unnecessary [66].
Wave crests can sometimes be used as features to track [57]. In less extreme flow conditions, wave
patterns may not be representative as our study and other studies [40] have shown, and other traceable
features may be absent. Thus, the choice of area for data acquisition for further processing with LSPIV
has to take into account the possibility of artificial flow seeding. In most experiments that included an
artificial seeding of the flow, tracers were introduced from the bridge over the river [20,60,68], and
river width rarely exceeded 20 m. When using LSPIV to determine flow patterns near fish passages
at hydropower dams, one deals with the necessity to seed a large area (river width 35 m and more).
Introducing tracers from the dam is unreasonable since most of them will be captured in the areas
near the dam where water is steady. In this study, there were islands present in the middle of the
river, which simplified the seeding of the area of interest. On many other sites near fish passages, it
is only possible to use riverbanks as seeding positions, making it hard to ensure that river middle is
sufficiently seeded. Further research is necessary for the development of an efficient seeding workflow
in such conditions.

One current limitation of LSPIV flow measurements near fish passages is the maximum resolution
of affordable video cameras, most of which can record videos of no more than 4096 × 2160 px. The
development of technology is likely to naturally overcome this limitation in the following years.
Current solutions of this problem include the use of drone swarms and image stitching, or reducing
the level of detail in the entirety of ROI while also recording a video at lower altitude in the direct
proximity of the fishway.

Since PIV is sensitive to the IA size, further research may address an issue of ROI segmentation and
automatic adjustment of PIV settings to velocity ranges that characterise different ROI segments. The
first step in this direction has already been done, with the new functionality of PIVlab offering automatic
calculation of PIV settings for a selected region. Varying PIV settings depending on differences in ROI
segments may increase PIV accuracy in heterogeneous flow conditions, such as near fish passages at
hydropower dams.

5. Conclusions

River sections near fish passages at hydropower dams are characterised by heterogeneous flow
conditions, including varying and sometimes opposite flow directions, presence of circular flow
structure and wide velocity ranges. Being a part of research devoted to the increase in fish passage
efficiency, this study explored a possibility of application of LSPIV for flow pattern analysis near fish
passages. Within the region of interest, the river was up to 35 m wide, with small islands in the middle.
Turbine outlet and fishway entrance were present in the field of view.

Flow data was collected with a low-cost UAS with a built-in 4K camera. Pointwise reference
measurements were made with the help of a propeller current meter, and flow directions were
identified with the help of a compass with 10◦ accuracy. MATLAB based software PIVlab was used for
PIV analysis.

First, we analysed a sequence of 120 image pairs cropped to the area in the close proximity of the
fishway entrance using eight sets of PIV settings. A high pass filter with 60 px Kernel size was applied
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for image enhancement. The analyses showed that, probably due to inhomogeneous seeding, PIV
with standard FFT correlation approach systematically underestimated flow velocities by 0.11 m/s and
19.7% on average. PIV based on the ensemble correlation, on the other hand, improved the analysis
accuracy and yielded results that were in a better agreement with reference values (mean absolute
difference 0.07 m/s, mean relative difference 9.4%).

The second sequence of 115 inhomogeneously seeded frame pairs depicting the entire region of
interest was analysed with a two-pass PIV based on the ensemble correlation. The selection of frames
was done in a way that some seeding was present in each area of interest at least in some of the frames.
Interrogation area of 48 × 48 px was kept constant in the first pass and refined to 24 × 24 px in the
second pass. Analysis results show that multipass LSPIV based on the ensemble correlation can be
successfully applied to short frame sequences in order to calculate flow patterns near fish passages.
Though it still tends to slightly underestimate flow velocities (mean unsigned difference of 11.8% for
the whole FOV and 8.5% for the seeded areas), it correctly determines the major elements of the flow,
and unambiguously identifies differences between sub-regions of the FOV. In seeded conditions, even
if the tracers are not homogeneously distributed, velocity magnitudes and directions derived with
LSPIV based on the ensemble correlation are in good agreement with reference measurements, with
an absolute difference of 0.07 m/s and 22◦ on average. In areas where no visible movement can be
observed, LSPIV cannot be applied. However, all optical methods of flow analysis have this limitation.

Further studies are needed in order to test the approach discussed in this study on wider rivers
where seeding of the flow is likely to be more challenging and deriving small-scale flow structures
may require more effort. However, for the rivers as wide as 35 m, LSPIV is a promising method for
flow pattern analysis near fish passages at hydropower dams. It has a potential to be used as a part of
the flow monitoring methodology, facilitating, when possible, timely reaction to undesirable changes
in flow conditions with the goal to increase fish passage efficiency.

Supplementary Materials: The dataset used in this study referred to Strelnikova et al. (2020): https://doi.org/10.
4121/uuid:d75cb9e1-5a22-4946-bf51-4da658a789a3.
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Appendix A

Figure A1. Visual comparison of velocities calculated with different PIV settings: (a) S1: Mean
64/32-32/16; (b) E1: Ensemble 64/32-32/16; (c) S2: Mean 32/32-32/16; (d) E2: Ensemble 32/32-32/16; (e) S3:
Mean 96/48-48/24; (f) E3: Ensemble 96/48-48/24; (g) S4: Mean 48/48-48/24; (h) E4: Ensemble 48/48-48/24.

References

1. Buadoin, J.-M.; Burgun, V.; Chanseau, M.; Larinier, M.; Ovidio, M.; Sremski, W.; Steinbach, P.; Voegtle, B.
Assessing the Passage of Obstacles by Fish. Concepts, Design and Application; Onema: Paris, France, 2015.

2. Larinier, M. Environmental issues, dams and fish migration. In Dams, Fish and Fisheries: Opportunities,
Challenges and Conflict Resolution; Marmulla, G., Ed.; FAO: Rome, Italy, 2001; pp. 45–89.

3. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a
framework for Community action in the field of water policy (OJ L 327 22.12.2000 p. 1). Eur. Community
Environ. Law 2010, 327, 879–969.



Remote Sens. 2020, 12, 384 23 of 25

4. Biermayr, P. Renewable Energy in Numbers 2018: Development in Austria based on 2017 data [in German].
December 2018. Available online: https://www.bmnt.gv.at/dam/jcr:939cb822-6f5f-41e3-bad4-6546feaf88e5/

eEiZ2018-Brosch%C3%BCre.pdf (accessed on 19 January 2020).
5. BMLFUW. Guideline to the construction of fish passages [in German]. Available online:

https://www.bmnt.gv.at/dam/jcr:6069bf1d-68b9-4a5d-8825-a4e9dac64ee6/Leitfaden%20zum%20Bau%
20von%20Fischaufstiegshilfen_19_12_2012_final.pdf (accessed on 19 January 2020).

6. Larinier, M. Location of fishways. Bulletin Français de la Pêche et de la Pisciculture 2002, 39–53. [CrossRef]
7. Piper, A.T.; Wright, R.M.; Kemp, P.S. The influence of attraction flow on upstream passage of European eel

(Anguilla anguilla) at intertidal barriers. Ecol. Eng. 2012, 44, 329–336. [CrossRef]
8. Larinier, M. Baffle fishways. Bulletin Français de la Pêche et de la Pisciculture 2002, 83–101. [CrossRef]
9. Larinier, M.; Marmulla, G. Fish passes: types, principles and geographical distribution - an overview. In

Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries,
Sustaining Livelihoods and Biodiversity in the New Millennium, Phnom Penh, Cambodia, 11–14 February
2003; pp. 183–205.

10. Nordlund, B. Anadromous Salmonid Passage Facility Design. Available online: https://www.westcoast.
fisheries.noaa.gov/publications/hydropower/fish_passage_design_criteria.pdf (accessed on 19 January 2020).

11. Larinier, M. Fishways - general considerations. Bulletin Français de la Pêche et de la Pisciculture 2002, 21–27.
[CrossRef]

12. Powers, P.D.; Orsborn, J.F. New Concepts in Fish Ladder Design: Analysis of Barriers to Upstream Fish Migration,
Volume IV of IV, Investigation of the Physical and Biological Conditions Affecting Fish Passage Success at Culverts
and Waterfalls, 1982-1984 Final Report; Bonneville Power Administration: Portland, OR, USA, August 1985.

13. Williams, J.G.; Armstrong, G.; Katopodis, C.; Larinier, M.; Travade, F. Thiking like a fish: A key ingredient
for development of effective fish passage facilities at river obstructions. River Res. Applic. 2012, 28, 407–417.
[CrossRef]

14. Wagner, R.L.; Makrakis, S.; Castro-Santos, T.; Makrakis, M.C.; Dias, J.H.P.; Belmont, R.F. Passage performance
of long-distance upstream migrants at a large dam on the Paraná River and the compounding effects of entry
and ascent. Neotropical Ichthyol. 2012, 10, 785–795. [CrossRef]

15. DWA. Fact Sheet DWA-M 509. Fish Ladders and Fish Passable Structures - Design, Dimensioning, Quality Assurance;
German Association for Water, Wastewater and Waste: Hennef, Germany, 2014.

16. Gisen, D.C.; Weichert, R.B.; Nestler, J.M. Optimizing attraction flow for upstream fish passage at a hydropower
dam employing 3D Detached-Eddy Simulation. Ecol. Eng. 2017, 100, 344–353. [CrossRef]

17. Da Silva, L.G.M.; Nogueira, L.B.; Maia, B.P.; De Resende, L.B. Fish passage post-construction issues: analysis
of distribution, attraction and passage efficiency metrics at the Baguari Dam fish ladder to approach the
problem. Neotropical Ichthyol. 2012, 10, 751–762. [CrossRef]

18. Tummers, J.S.; Winter, E.; Silva, S.; O’Brien, P.; Jang, M.-H.; Lucas, M.C. Evaluating the effectiveness of
a Larinier super active baffle fish pass for European river lamprey Lampetra fluviatilis before and after
modification with wall-mounted studded tiles. Ecol. Eng. 2016, 91, 183–194. [CrossRef]

19. Goode, D. Particle velocity interpolation in block-centered finite difference groundwater flow models. Water
Resour. Res. 1990, 26, 925–940. [CrossRef]

20. Detert, M.; Johnson, E.D.; Weitbrecht, V. Proof-of-concept for low-cost and non-contact synoptic airborne
river flow measurements. Int. J. Remote. Sens. 2017, 38, 2780–2807. [CrossRef]

21. Hauet, A.; Morlot, T.; Daubagnan, L. Velocity profile and depth-averaged to surface velocity in natural
streams: A review over alarge sample of rivers. E3S Web Conf. 2018, 40, 06015. [CrossRef]

22. Bandini, F.; Bauer-Gottwein, P.; Garcia, M. Hydraulics and drones: observations of water level, bathymetry
and water surface velocity from Unmanned Aerial Vehicles. Ph.D. Thesis, Department of Environmental
Engineering, Technical University of Denmark, Lyngby, Denmark, December 2017.

23. Sasso, S.F.D.; Pizarro, A.; Samela, C.; Mita, L.; Manfreda, S. Exploring the optimal experimental setup for
surface flow velocity measurements using PTV. Environ. Monit. Assess. 2018, 190, 460. [CrossRef] [PubMed]

24. Detert, M.; Weitbrecht, V. A low-cost airborne velocimetry system: proof of concept. J. Hydraul. Res. 2015, 53,
1–8. [CrossRef]

25. Fujita, I.; Notoya, Y.; Shimono, M. Development of UAV-based river surface velocity measurements by STIV
based on high-accurate image stabilization techniques. In Deltas of the future and what happens upstream:

https://www.bmnt.gv.at/dam/jcr:939cb822-6f5f-41e3-bad4-6546feaf88e5/eEiZ2018-Brosch%C3%BCre.pdf
https://www.bmnt.gv.at/dam/jcr:939cb822-6f5f-41e3-bad4-6546feaf88e5/eEiZ2018-Brosch%C3%BCre.pdf
https://www.bmnt.gv.at/dam/jcr:6069bf1d-68b9-4a5d-8825-a4e9dac64ee6/Leitfaden%20zum%20Bau%20von%20Fischaufstiegshilfen_19_12_2012_final.pdf
https://www.bmnt.gv.at/dam/jcr:6069bf1d-68b9-4a5d-8825-a4e9dac64ee6/Leitfaden%20zum%20Bau%20von%20Fischaufstiegshilfen_19_12_2012_final.pdf
http://dx.doi.org/10.1051/kmae/2002106
http://dx.doi.org/10.1016/j.ecoleng.2012.04.019
http://dx.doi.org/10.1051/kmae/2002109
https://www.westcoast.fisheries.noaa.gov/publications/hydropower/fish_passage_design_criteria.pdf
https://www.westcoast.fisheries.noaa.gov/publications/hydropower/fish_passage_design_criteria.pdf
http://dx.doi.org/10.1051/kmae/2002104
http://dx.doi.org/10.1002/rra.1551
http://dx.doi.org/10.1590/S1679-62252012000400011
http://dx.doi.org/10.1016/j.ecoleng.2016.10.065
http://dx.doi.org/10.1590/S1679-62252012000400008
http://dx.doi.org/10.1016/j.ecoleng.2016.02.046
http://dx.doi.org/10.1029/WR026i005p00925
http://dx.doi.org/10.1080/01431161.2017.1294782
http://dx.doi.org/10.1051/e3sconf/20184006015
http://dx.doi.org/10.1007/s10661-018-6848-3
http://www.ncbi.nlm.nih.gov/pubmed/29998453
http://dx.doi.org/10.1080/00221686.2015.1054322


Remote Sens. 2020, 12, 384 24 of 25

Proceedings of 36th IAHR World Congress: The Hague, The Netherlands, 28 June–3 July 2015; Mynett, A., Ed.;
Curran Associates Inc.: Red Hook, NY, USA, 2016; pp. 6602–6611.

26. Lewis, Q.W.; Rhoads, B.L. Lspiv measurements of two-dimensional flow structure in streams using small
unmanned aerial systems: 1. accuracy assessment based on comparison with stationary camera platforms
and in-stream velocity measurements. Water Resour. Res. 2018, 54, 8000–8018. [CrossRef]

27. Perks, M.T.; Russell, A.J.; Large, A.R.G. Technical note: advances in flash flood monitoring using unmanned
aerial vehicles (UAVs). Hydrol. Earth Syst. Sci. 2016, 20, 4005–4015. [CrossRef]

28. Tauro, F.; Tosi, F.; Mattoccia, S.; Toth, E.; Piscopia, R.; Grimaldi, S. Optical tracking velocimetry (OTV):
leveraging optical flow and trajectory-based filtering for surface streamflow observations. Remote Sens. 2018,
10, 2010. [CrossRef]

29. Leitão, J.P.; Peña-Haro, S.; Lüthi, B.; Scheidegger, A.; De Vitry, M.M. Urban overland runoff velocity
measurement with consumer-grade surveillance cameras and surface structure image velocimetry. J. Hydrol.
2018, 565, 791–804. [CrossRef]

30. Fujita, I.; Watanabe, H.; Tsubaki, R. Development of a non-intrusive and efficient flow monitoring technique:
The space-time image velocimetry (STIV). Int. J. River Basin Manag. 2007, 5, 105–114. [CrossRef]

31. Nishino, K.; Kasagi, N.; Hirata, M. Three-dimensional particle tracking velocimetry based on automated
digital image processing. J. Fluids Eng. 1989, 111, 384–391. [CrossRef]

32. Lloyd, P.M.; Stansby, P.K.; Ball, D.J. Unsteady surface-velocity field measurement using particle tracking
velocimetry. J. Hydraul. Res. 1995, 33, 519–534. [CrossRef]

33. Brevis, W.; Niño, Y.; Jirka, G.H. Integrating cross-correlation and relaxation algorithms for particle tracking
velocimetry. Exp. Fluids 2011, 50, 135–147. [CrossRef]

34. Raffel, M.; Willert, C.E.; Scarano, F.; Kähler, C.J.; Wereley, S.T.; Kompenhans, J. Particle Image Velocimetry. A
Practical Guide, 3rd ed.; Springer: Cham, Switzerland, 2018.

35. Adrian, R.J. Twenty years of particle image velocimetry. Exp. Fluids 2005, 39, 159–169. [CrossRef]
36. Tauro, F.; Petroselli, A.; Grimaldi, S. Optical sensing for stream flow observations: a review. J. Agricult.

Engineer. 2017, 49, 199–206. [CrossRef]
37. Cenedese, A. Eulerian and Lagrangian velocity measurements by means of image analysis. J. Vis. 1999, 2,

73–83. [CrossRef]
38. Tauro, F.; Piscopia, R.; Grimaldi, S. PTV-Stream: A simplified particle tracking velocimetry framework for

stream surface flow monitoring. Catena 2019, 172, 378–386. [CrossRef]
39. Fujita, I.; Hino, T. Unseeded and seeded PIV measurements of river flows videotaped from a helicopter. J.

Vis. 2003, 6, 245–252. [CrossRef]
40. Dramais, G.; Le Coz, J.; Camenen, B.; Hauet, A. Advantages of a mobile LSPIV method for measuring flood

discharges and improving stage–discharge curves. J. Hydro-Environ. Res. 2011, 5, 301–312. [CrossRef]
41. Dermisis, D.C.; Papanicolaou, A.N. Determining the 2-D Surface Velocity Field around Hydraulic Structures

with the Use of a Large Scale Particle Image Velocimetry (LSPIV) Technique. In Impacts of Global Climate
Change, Proceedings of the 2005 World Water and Environmental Resources Congress, May 15-19, 2005, Anchorage,
AK, USA; Walton, R., Ed.; American Society of Civil Engineers: Reston, VA, USA, 2005; pp. 1–12.

42. Fujita, I.; Kunita, Y. Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter
mounted high density video camera. J. Hydro-Environ. Res. 2011, 5, 323–331. [CrossRef]

43. Jin, T.; Liao, Q. Application of large scale PIV in river surface turbulence measurements and water depth
estimation. Flow Meas. Instrum. 2019, 67, 142–152. [CrossRef]

44. Huang, W.-C.; Young, C.-C.; Liu, W.-C. Application of an automated discharge imaging system and lspiv
during typhoon events in taiwan. Water 2018, 10, 280. [CrossRef]

45. Thielicke, W.; Stamhuis, E.J. PIVlab – towards user-friendly, affordable and accurate digital particle image
velocimetry in MATLAB. J. Open Res. Softw. 2014, 2, 1202. [CrossRef]

46. Westerweel, J.; Dabiri, D.; Gharib, M. The effect of a discrete window offset on the accuracy of cross-correlation
analysis of digital PIV recordings. Exp. Fluids 1997, 23, 20–28. [CrossRef]

47. Scarano, F.; Riethmuller, M.L. Iterative multigrid approach in PIV image processing with discrete window
offset. Exp. Fluids 1999, 26, 513–523. [CrossRef]

48. Tauro, F.; Petroselli, A.; Arcangeletti, E. Assessment of drone-based surface flow observations. Hydrol. Process.
2016, 30, 1114–1130. [CrossRef]

http://dx.doi.org/10.1029/2018WR022550
http://dx.doi.org/10.5194/hess-20-4005-2016
http://dx.doi.org/10.3390/rs10122010
http://dx.doi.org/10.1016/j.jhydrol.2018.09.001
http://dx.doi.org/10.1080/15715124.2007.9635310
http://dx.doi.org/10.1115/1.3243657
http://dx.doi.org/10.1080/00221689509498658
http://dx.doi.org/10.1007/s00348-010-0907-z
http://dx.doi.org/10.1007/s00348-005-0991-7
http://dx.doi.org/10.4081/jae.2018.836
http://dx.doi.org/10.1007/BF03182553
http://dx.doi.org/10.1016/j.catena.2018.09.009
http://dx.doi.org/10.1007/BF03181465
http://dx.doi.org/10.1016/j.jher.2010.12.005
http://dx.doi.org/10.1016/j.jher.2011.05.003
http://dx.doi.org/10.1016/j.flowmeasinst.2019.03.001
http://dx.doi.org/10.3390/w10030280
http://dx.doi.org/10.5334/jors.bl
http://dx.doi.org/10.1007/s003480050082
http://dx.doi.org/10.1007/s003480050318
http://dx.doi.org/10.1002/hyp.10698


Remote Sens. 2020, 12, 384 25 of 25

49. Tauro, F.; Porfiri, M.; Grimaldi, S. Surface flow measurements from drones. J. Hydrol. 2016, 540, 240–245.
[CrossRef]

50. Santiago, J.G.; Wereley, S.T.; Meinhart, C.D.; Beebe, D.J.; Adrian, R.J. A particle image velocimetry system for
microfluidics. Exp. Fluids 1998, 25, 316–319. [CrossRef]

51. Westerweel, J.; Geelhoed, P.F.; Lindken, R. Single-pixel resolution ensemble correlation for micro-PIV
applications. Exp. Fluids 2004, 37, 375–384. [CrossRef]

52. Bradley, A.A.; Kruger, A.; Meselhe, E.A.; Muste, M.V.I. Flow measurement in streams using video imagery.
Water Resour. Res. 2002, 38, 51-1–51-8. [CrossRef]

53. Dobson, D.W.; Holland, K.T.; Calantoni, J. Fast, large-scale, particle image velocimetry-based estimations of
river surface velocity. Comput. Geosci. 2014, 70, 35–43. [CrossRef]

54. Sutarto, T.E. Application of Large Scale Particle Image Velocimetry (LSPIV) to Identify Flow Pattern in a
Channel. Procedia Eng. 2015, 125, 213–219. [CrossRef]

55. Muste, M.; Hauet, A.; Fujita, I.; Legout, C.; Ho, H.-C. Capabilities of Large-scale Particle Image Velocimetry
to characterize shallow free-surface flows. Adv. Water Resour. 2014, 70, 160–171. [CrossRef]

56. Detert, M.; Trachse, J.; Weitbrecht, V. Quadrokopterbasierte Messung von Oberflächengeschwindigkeiten.
Wasser Energie Luft 2015, 107, 211–217. (In German)

57. Detert, M.; Weitbrecht, V. Helicopter-based surface PIV experiments at Thur River. In Proceedings of the
International Conference on Fluvial Hydraulics (River Flow 2014), Lausanne, Switzerland, 3–5 September
2014; Schleiss, A.J., de Cesare, G., Franca, M.J., Pfister, M., Eds.; CRC Press/Balkema: Boca Raton, FL, USA;
London, UK; New York, NY, USA; Leiden, The Netherlands, 2014; pp. 2003–2008.

58. Detert, M.; Weitbrecht, V. Quadrokoptergestütztes Oberflächen-PIV an der Töss. In Berichte des Lehrstuhls und
der Versuchsanstalt für Wasserbau und Wasserwirtschaft: Nr. 134. Wasserbau - mehr als Bauen im Wasser. Beiträge
zum 18. Gemeinschafts-Symposium der Wasserbau-Institute TU München, TU Graz und ETH Zürich, Wallgau,
Germany, 29 June–01 July 2016; Rutschmann, P., Ed.; TU Munich: Munich, Germany, 2016; pp. 924–932.
(In German)

59. Le Coz, J.; Patalano, A.; Collins, D.; Guillén, N.F.; García, C.M.; Smart, G.M.; Bind, J.; Chiaverini, A.; Le
Boursicaud, R.; Dramais, G.; et al. Lessons learnt from recent citizen science initiatives to document floods in
France, Argentina and New Zealand. E3S Web Conf. 2016, 7, 16001. [CrossRef]

60. Lewis, Q.W.; Lindroth, E.M.; Rhoads, B.L. Integrating unmanned aerial systems and LSPIV for rapid,
cost-effective stream gauging. J. Hydrol. 2018, 560, 230–246. [CrossRef]

61. Lewis, Q.W.; Rhoads, B.L. Resolving two-dimensional flow structure in rivers using large-scale particle
image velocimetry: An example from a stream confluence. Water Resour. Res. 2015, 51, 7977–7994. [CrossRef]

62. Gui, L.; Merzkirch, W. Generating arbitrarily sized interrogation windows for correlation-based analysis of
particle image velocimetry recordings. Exp. Fluids 1998, 24, 66–69. [CrossRef]

63. Tauro, F.; Petroselli, A.; Porfiri, M.; Giandomenico, L.; Bernardi, G.; Mele, F.; Spina, M.; Grimaldi, S. A novel
permanent gauge-cam station for surface-flow observations on the Tiber River. Geosci. Instrument. Methods
Data Syst. 2016, 5, 241–251. [CrossRef]

64. Tauro, F.; Piscopia, R.; Grimaldi, S. Streamflow Observations From Cameras: Large-Scale Particle Image
Velocimetry or Particle Tracking Velocimetry? Water Resour. Res. 2017, 53, 10374–10394. [CrossRef]

65. Huang, H. The importance of ADCP alignment with GPS in moving-boat streamflow measurements. Flow
Meas. Instrum. 2019, 67, 33–40. [CrossRef]

66. Jodeau, M.; Hauet, A.; Le Coz, J.; Bercovitz, Y.; Lebert, F. Laboratory and field LSPIV measurements of flow
velocities using Fudaa-LSPIV a free user-friendly software. In Proceedings of the HydroSenSoft, International
Symposium and Exhibition on Hydro-Environment Sensors and Software, Madrid, Spain, 1–3 March 2017.

67. Tauro, F.; Porfiri, M.; Grimaldi, S. Orienting the camera and firing lasers to enhance large scale particle image
velocimetry for streamflow monitoring. Water Resour. Res. 2014, 50, 7470–7483. [CrossRef]

68. Kim, Y.; Muste, M.; Hauet, A.; Krajewski, W.F.; Kruger, A.; Bradley, A. Stream discharge using mobile
large-scale particle image velocimetry: A proof of concept. Water Resour. Res. 2008, 44, 261. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2016.06.012
http://dx.doi.org/10.1007/s003480050235
http://dx.doi.org/10.1007/s00348-004-0826-y
http://dx.doi.org/10.1029/2002WR001317
http://dx.doi.org/10.1016/j.cageo.2014.05.007
http://dx.doi.org/10.1016/j.proeng.2015.11.031
http://dx.doi.org/10.1016/j.advwatres.2014.04.004
http://dx.doi.org/10.1051/e3sconf/20160716001
http://dx.doi.org/10.1016/j.jhydrol.2018.03.008
http://dx.doi.org/10.1002/2015WR017783
http://dx.doi.org/10.1007/s003480050151
http://dx.doi.org/10.5194/gi-5-241-2016
http://dx.doi.org/10.1002/2017WR020848
http://dx.doi.org/10.1016/j.flowmeasinst.2019.04.002
http://dx.doi.org/10.1002/2014WR015952
http://dx.doi.org/10.1029/2006WR005441
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results 
	Comprison of Velocimetry Results Associated with Different PIV Settings 
	Full-Scale Analysis of Flow Patterns 

	Discussion 
	Conclusions 
	 
	References

