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Abstract

:

We introduce a multi-platform portable implementation of the NonLocal Means methodology aimed at noise removal from remotely sensed images. It is particularly suited for hyperspectral sensors for which real-time applications are not possible with only CPU based algorithms. In the last decades computational devices have usually been a compound of cross-vendor sets of specifications (heterogeneous system architecture) that bring together integrated central processing (CPUs) and graphics processor (GPUs) units. However, the lack of standardization resulted in most implementations being too specific to a given architecture, eliminating (or making extremely difficult) code re-usability across different platforms. In order to address this issue, we implement a multi option NonLocal Means algorithm developed using the Open Computing Language (OpenCL) applied to Hyperion hyperspectral images. Experimental results demonstrate the dramatic speed-up reached by the algorithm on GPU with respect to conventional serial algorithms on CPU and portability across different platforms. This makes accurate real time denoising of hyperspectral images feasible.
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1. Introduction


Technology for sensors onboard satellites and aircraft is undergoing a fast evolution in terms of better spatial, spectral and time resolution. As a consequence the amount of gathered data dramatically increases. This calls for unprecedented challenges in terms of data transmission, storing and processing. In this respect we mention among imagers the hyperspectral ones (with a number of channels over 200), like AVIRIS [1], Hyperion [2] and PRISMA [3]. A noteworthy category is given by high spectral resolution sounder interferometers (e.g., IASI [4] with its 8K spectral channels). The advent of new concept imaging interferometers onboard geostationary platforms (expected with ongoing METEOSAT Third Generation [5]) boosts the amount of data because of the combination of full hemisphere coverage (8M pixels), hyperspectrality (2K channels) and the low repetition time (60 min). All these concepts are the perfect ground for the big data paradigm, with its challenges in terms of storing, computing and modeling capabilities. In many remote sensing applications methodologies are well consolidated and storing capabilities are sufficient; however computational speed is a critical issue when computational cost scales more than linearly with the size of data and real-time processing is necessary. In this respect Graphical Processing Units (GPUs) are an important part of the rapid development of the general computing architecture and they have received much attention as a hardware platform that is complementary to Central Processing Units (CPU) in modern computers; they became a key technology for big data science for the abatement of computational time and also for boosting Artificial Intelligence (IA) applications. GPUs have small volume and moderate price, providing floating point calculations and highly intensive computation capacity. Signal and image processing for remotely sensed data are an active area of research encompassing dimensionality reduction [6,7,8,9], features extraction [10,11] and compression [12], all tools that are now a firm part of big data science.



Therefore it is easily understandable that during the past few years GPUs have been fast introduced in the remote sensing community for those algorithms that show an inherent parallelization suitable for the architecture. For a general use of GPUs in remote sensing we defer to [13,14,15], which, besides showing general GPU programming designs for remote sensing, also compare Multicore and GPU architectures. The most successful application can be considered the spectral unmixing, where, among other things, algorithms have been developed for estimating the Pixel Purity Index [16], endmember identification [17,18], matrix factorization [19] and unmixing [20,21]. Among other remote sensing applications we recall orthorectification [22], image registration [23], NDVI computation [24] and classification [25,26].



Many proprietary standards and tools have been designed that cover a closed set of architectures and make them work in a suited way really close to the architecture features, but still one of the key challenges in parallel computing is development of a broadly accepted programming model truly supported by a large set of architectures. The lack of standardization results in most applications being too specific for a given architecture, making the portability extremely difficult, that means the possibility of reusing code across different platforms. In turn, the need to improve portability has driven the development of an open computing language (OpenCL) [27,28], that has become a free-standard for cross-platform modern multiprocessors.



In the present paper we consider the problem of noise removal, a preliminary step of many algorithms that process remotely sensed images. Numerous methods have been specifically developed for the remote sensing community, both for optical and active sensors, exploiting the GPU architecture. They are generally sorted according to whether they work in physical space [29,30], in a transformed space [31,32,33] or use variational methods [34,35].



A powerful method among the image processing community for denoising images is NonLocal Means (NLM) [36]. This can be considered a filtering algorithm; however differently from conventional spatial filters, it searches for the closest pixels in the signal domain rather than in the spatial one. In addition the closeness criterion is sought in a region instead of single pixels. Therefore the method is claimed to effectively keep the integrity of the image while removing its noise. The improvement of denoising has a counterpart in that NLM is not local anymore but for each pixel it spans the full image in the search of regions showing similar textures. This makes NLM computational cost in principle quadratic with respect to the number of pixels in an image and therefore highly demanding in terms of computational time. Nevertheless some limited approximated implementations for remote sensing exist exploiting traditional CPU architectures, especially in the SAR community (e.g., [37,38,39]). However they are not suited for real-time applications and are very time consuming even for the preliminary step of bandwidth selection.



Since the pioneering work by NVIDIA [40], variants of the algorithm have been proposed (e.g., [41]). Application to Magnetic Resonance Imaging (MRI) has been developed during recent years [42,43]. The MRI framework naturally adapts to the original NVIDIA work because the T1, T2, PD images acquired there well resemble the RGB images dealt with in [40]. Application of GPU algorithms for NLM to Remote Sensing is limited to Interferometrics Phase Denoising [44]. This is surprising if one considers that the size of the images involved in Remote Sensing is quickly increasing (e.g., very high spatial resolution sensors, increased temporal frequency, high spectral resolution). In particular a high number of spectral bands (up to thousands with respect to the three RGB considered initially by NVIDIA and T1, T2, PD in MRI applications) possibly calls for new and portable algorithms able to better implement this framework even for embedded devices with no available GPUs. In addition the algorithm from NVIDIA of course was explicitly developed for their CUDA programming model, and all applications known in the literature followed the same trend.



Therefore the aim of the paper is to develop a GPU based algorithm for denoising remotely sensed images by NLM at a very high speed, and to estimate its speed-up with respect to traditional architectures on images coming from optical sensors. In addition we intend to develop a multi-platform implementation of NLM able to be run on most computing equipments, including GPU of different architectures and also multi-core CPU.




2. Nonlocal Means for Image Denoising


NonLocal Means (NLM) filter [36] tries to take advantage of the high degree of redundancy of any natural image and it is nowadays considered the state-of-art algorithm for denoising images. It belongs to the class of filtering methodologies but uses a weight function that takes into account the intensity values not only of pixels, but also of their neighborhoods.



Let  Ω  be a noisy image of size   (  N x  ,  N y  )   pixels, with   N =  N x   N y    being the total number of pixels, and let   x i   be a corresponding pixel,    x i  ∈ Ω  . We denote by   u i   and    u ¯  i   the original and denoised intensity at pixel   x i  , respectively. In the formulation [36] of the NLM filter the restored intensity at a generic pixel   x i   is computed as a weighted average (also called kernel convolution) of all the pixels   x j   in the image belonging to a search volume    V i  ⊆ Ω  , centered at the pixel   x i  :


    u ˜  i  =  ∑   x j  ∈  V i    w  (  x i  ,  x j  )   u j  ,  



(1)




where   w (  x i  ,  x j  )   is the weight assigned to   u j   in removing noise from pixel   x i  . To be more specific, the weight is an estimate of the similarity between the intensities of two neighborhoods    D i  ⊆ Ω   and    D j  ⊆ Ω   centered at pixels   x i   and   x j  , respectively, such that


  w  (  x i  ,  x j  )  ∈  [ 0 , 1 ]  ,   ∑   x j  ∈  V i    w  (  x i  ,  x j  )  = 1 .  











The definition of the classical NLM filter does not make any assumption about the search volume, it only requires that each pixel can be linked to the others. However for computational reasons it is usually assumed that both neighbors   V i   and   D i   are taken as boxes of size    ( 2  v x  + 1 )   ( 2  v y  + 1 )    and    ( 2  d x  + 1 )   ( 2  d y  + 1 )   , with   v = (  v x  ,  v y  )   and   d = (  d x  ,  d y  )   being the window radii of   V i   and   D i  , respectively, along each spatial direction x, y.



Efros and Leung [45] showed that the   L 2   distance is a reliable measure for estimating the similarity of image windows in a texture patch. Therefore it can be estimated as the (possibly Gaussian weighted) Euclidean distance    u  (  D i  )  − u  (  D j  )   2 2   between the patches   u (  D i  )   and   u (  D j  )  . The weights associated to the quadratic distance introduced in [36] are


  w  (  x i  ,  x j  )  =  1  Z i   exp  −    u  (  D i  )  − u  (  D j  )   2 2   h 2    ,  








where   Z i   is a normalization constant to ensure that    ∑   x j  ∈  V i    w  (  x i  ,  x j  )  = 1   and h is a filtering parameter that controls the decay of the exponential function.



Indeed, for each pixel in the image, the distances between the intensity neighborhoods   u (  D i  )   and   u (  D j  )   are computed for all pixels   x j   contained in   V i  . The complexity of the filter is of the order of   O ( N  ( 2  v x  + 1 )   ( 2  v y  + 1 )   ( 2  d x  + 1 )   ( 2  d y  + 1 )  )  . The NLM algorithm is proved by [36] to be consistent for every nonnegative h, even if it is usually chosen of order of the standard deviation of the noise, which means to assume that patches can be considered alike if they differ in such quantity. That notwithstanding, the assumption of uniform variance over the image leads to sub-optimal results wherever nonstationary noise is present, so Manjón et al. [46] proposed a local adaptive estimate at the pixel k:


    (  σ k  )  2  =  min  S k    ( d  ( R  (  S k  )  , R  (  S l  )  )  )  ,  k ≠ l ,  R  (  S l  )  =  u l  − ϱ  (  u l  )  ,  



(2)







  S l   being the patch centered at the pixel l and   ϱ (  u l  )   the low-pass filtered intensity estimated as its average in the patch   S l   centered on pixel l. Based on experimental arguments we use:


    (   σ i  ˜  )  2  = δ   (  σ i  )  2  ,  w i t h  δ ∈  ( 0 , 1 ]  .  



(3)







This allows one to regulate the reduction of the overestimation of noise variance occurring in similar patches.



2.1. Multi-Platform NLM OpenCL Implementation


We have developed multi-platform NLM algorithms using an OpenCL C language, a restricted version of the   C 99   language with extensions appropriate for executing data-parallel code. The level of complexity imposed by OpenCL is similar to other dedicated programming models such as Compute Unified Device Architecture (CUDA) developed by NVIDIA. OpenCL defines an application programming interface (API) for cross-platform modern multiprocessors by a group of manufacturers such as Apple, Intel, AMD, or NVIDIA itself. OpenCL is managed by the no-profit technology consortium KhronosGroup (Apple, IBM, NVIDIA, AMD, Intel, ARM, etc.).



In OpenCL, a system consists of a host (the CPU), and one or more devices, which are massively parallel processors, allowing one to define a kernel or group of kernels that exploit multi-thread-based parallelism and are loaded and executed on a multicore platform.



A kernel is a function which contains a block of instructions that are executed by the work-thread group. The kernels exhibit the important property of data parallelism, allowing arithmetic operations to be simultaneously performed on different parts of the data by means of several work-items. A group of work-items forms a work group that runs on a single compute unit. The maximum dimension of each work-group depends on the specifications of the device in use, usually up to 1024 work-items in GPUs.



In practice, work-items (threads) are gathered in work-groups (threads blocks).



A work-item is distinguished from other executed work-items within the collection by its global ID and local ID. Each work-item is identified by its global ID   (  g x  ,  g y  )   or by the combination of the work-group ID   (  w x  ,  w y  )  , the size of each work-group   (  S x  ,  S y  )  , and the local ID   (  s x  ,  s y  )   inside the work-group.



The memory hierarchy of GPUs is different from that of CPUs. In practice, there are private memory, local memory, constant memory, and global memory. Global memory is the largest memory, but with high latency; it is typically used to store input and output data structures. Constant memory is a small read-only memory, supporting low latency and high bandwidth access when all threads simultaneously access the same location. Local memory can be allocated to a work-group and accessed at a very high speed in a highly parallel manner. Private memory is the region of memory private to a work-item.



As all threads in a work-group can read and write their own local memory, it is a very efficient way for threads to share their input data, and intermediate results can be synchronized via barriers and memory fences.



In the initial section of the program, the system is queried, defining the appropriate operating context, specifically the characteristics of the available OpenCL devices, such as the amount of processing units and threads available for computation. Discovering the computational devices available we create two different lists of available devices: One for the CPU device type and the other one for GPU device type, allowing one to choose which kind of device to prefer. If no GPU type device is available, then a CPU device is automatically chosen. Consequently, the OpenCL task scheduler can conveniently split the workload and perform a balanced computation across the system’s resources.



Each block image is processed by a corresponding thread block that executes the NLM filter on a portion of the image and writes back the restored values to the output structure from the device memory to the CPU structure.



Furthermore some support structures are defined as device and host buffers and I/O parameters to regulate the algorithm call. These can be listed as follows:



 Ω : Device buffers to load the data;



  Ω ˜  : Host buffers containing the restored data.



  σ 2  : Host/device buffer containing the estimate noise variance.



  u s e _ a d p _ σ  : boolean host/device variable: If this is true then the adaptive noise variance is performed according to (2)–(3).



 δ : Host/device buffer with the noise variance regulation measure whenever   u s e _ a d p _ σ   is true (we recall that we use (3)).



d: Similarity radius, constant device buffer.



v: Window radius, constant device buffer.



  N x   and   N y  : Constant device buffers representing the image dimension, width and height, respectively.



  u s e _ C P U  : Host/device boolean value determining which kind of platform is preferred to operate the computation. If no GPU platform is available then CPU platform is automatically chosen.   



Algorithm 1 describes the classical sequential operations of NLM, whereas Algorithm 2 presents our portable OpenCl implementation.








	Algorithm 1NLM_SEQUENTIAL( Ω ,   Ω ˜  ,   σ 2  ,   u s e _ a d p _ σ = false  ,  δ ,   N x  ,   N y  , d, v)



	
	
   patch _ area = ( ( 2 ∗ d + 1 ) ∗ ( 2 ∗ d + 1 ) )   



	
for all   x ∈ N _ x   do



	
 for all   y ∈ N _ y   do



	
    s u m _  w  x , y   = 0  



	
    c l  r  x , y   = 0  



	
  for j from   − v   to   + v   do



	
   for i from   − v   to   + v   do



	
       w  i , j   = 0  



	
    for m from   − d   to d do



	
     for n from   − d   to d do



	
         w  i , j   + = d  (  Ω  x + j + m , y + i + n   ,  Ω  x + m , y + n   )   



	
     end for



	
    end for



	
       w  i , j   = exp  −   w  i , j   /  h 2  / p a t c h _ a r e a    



	
      c l  r  x , y   + =  Ω  j , i   ∗  w  i , j    



	
      s u m _  w  x , y   + =  w  i , j    



	
   end for



	
  end for



	
    s u m _  w  x , y   = 1 / s u m _  w  x , y    



	
    c l  r  x , y   ∗ = s u m _  w  x , y    



	
      Ω ˜   x , y   = c l  r  x , y    



	
 end for



	
end for
















	Algorithm 2 NLM_OPENCL( Ω ,   Ω ˜  ,   σ 2  ,   u s e _ a d p _ σ = false  ,  δ ,   N x  ,   N y  , d, v,   u s e _ C P U  )



	
	
  G _ GPU ← ∅  // list GPU platforms available



	
  G _ CPU ← ∅  // list CPU platforms available



	
// Initialization step:



	
   numPlatforms ← clGetPlatformIDs   // recover the number of platforms



	
  G _ GPU ← clGetDeviceIDs ( … , CL _ DEVICE _ TYPE _ GPU , … )  // number of available GPUs on the system



	
  G _ CPU ← clGetDeviceIDs ( … , C L _ D E V I C E _ T Y P E _ C P U , … )  // number of available CPUs on the system



	
if   G _ GPU = ∅  OR  use _ CPU   then



	
    device ← FIRST ( G _ CPU )   



	
else



	
    device ← FIRST ( G _ GPU )   



	
end if



	
// Computation of the NLM filtered signal step:



	
  cl _ context ← clCreateContext ( … , device , … )  // used by the OpenCL runtime for



	
// managing objects such as command-queues, memory, program and kernel objects



	
  cl _ command _ queue ← clCreateCommandQueue ( cl _ context , device , … )  // creates a command queue associate with the context



	
  cl _ program ← clCreateProgramWithSource ( cl _ context , … , kernel _ source _ code , … )  // creates a program object for a context, and loads the source code specified values   { … , d , v , N _ x , N _ y }  



	
to store into constant memory



	
if   clBuildProgram ( cl _ program , … , device , { … , d , v , N _ x , N _ y } , … ) = CL _ SUCCESS   then



	
 // compiles and links a program executable from the program source cl_program passing the constant parameters



	
  cl _ mem ← clCreateBuffer ( context , { CL _ MEM _ READ _ ONLY | CL _ MEM _ USE _ HOST _ PTR } , | Ω | , Ω , … )   // creates a kernel read only buffer object and referenced by host ptr thanks to {CL_MEM_READ_ONLY|CL_MEM_USE_HOST_PTR} flags



	
   cl _ kernel ← clCreateKernel ( cl _ program , kernel _ name , … )  // according to   use _ adp _ σ   creates a kernel object with a specific name based on the cl_program to call



	
 // recover information about the thread work group



	
   wg _ multiple ← clGetKernelWorkGroupInfo ( cl _ kernel , device ,  



 C_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,   … )  



	
 According to wg_multiple determines work-group size and number of work-groups all over the data



	
 // set the value to kernel arguments



	
   clSetKernelArg ( kernel , … , | Ω | , Ω )  



	
   clSetKernelArg ( kernel , … , |  Ω ˜  | ,  Ω ˜  )  



	
   clSetKernelArg ( kernel , … , | δ | , δ )  



	
   clEnqueueNDRangeKernel ( cl _ commandQueue , cl _ kernel , … ,   number of work-groups, work-group size,   … )  // execute all the operations into cl_commandQueue into a cl_kernel on a device



	
 Wait until all the kernel operations have been performed



	
 Collect the restored data to   Ω ˜  .



	
else



	
 return "Build Program Error!"



	
end if











The denoising filter is computed for all the pixels considering the similarity and window search size.



By observing the program flow in Algorithm 2 the OpenCL runtime is defined by a set of functions that can be globally grouped in Query Platform Info, Contexts, Query Devices, and Runtime API as shown in Figure 1.





3. Materials


3.1. Hardware Work Environment


The experiments have been carried out on a heterogeneous system based on an Intel(R) Core(TM) i7-9750H CPU @2.60GHz processor with six cores and 16GB of DDR4 memory. The following two types of OpenCL Platforms have been considered:




	
A CPU, Intel(R) Core(TM) i7-9750H CPU @2.60GHz and Platform Version: OpenCL 2.0 with




	
CL_DEVICE_GLOBAL_MEM_SIZE: 15749 MByte,



	
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 64 KByte,



	
CL_DEVICE_LOCAL_MEM_SIZE: 48 KByte



	
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE: 128



	
CL_DEVICE_MAX_WORK_ITEM_SIZES: 8192 / 8192 / 8192



	
CL_DEVICE_MAX_WORK_GROUP_SIZE: 8192








	
An NVIDIA GeForce GTX 1650 GPU with 1024 CUDA® Cores operating at 1245 MHz and having 4GB of on-board memory, compute capability 7.5, microarchitecture Turing Generation released on February 2019 and Platform Version: OpenCL 1.2




	
CL_DEVICE_GLOBAL_MEM_SIZE: 15749 MByte,



	
CL_DEVICE_MAX_CONSTANT_BUFFER_SIZE: 128 KByte,



	
CL_DEVICE_LOCAL_MEM_SIZE: 32 KByte



	
CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE: 32



	
CL_DEVICE_MAX_WORK_ITEM_SIZES: 1024 / 1024 / 1024



	
CL_DEVICE_MAX_WORK_GROUP_SIZE: 1024














3.2. Data Sets


We consider images obtained from the Hyperion sensor onboard EO/1 satellites. Hyperion can be considered as a good proxy of sensor PRISMA, having similar spectral coverage, spectral resolution and spatial resolution.



For this study, we have taken into consideration three Hyperion images with different sizes (see Table 1 for a summary). As the computational time of the algorithms does not depend on the scene of the image, but only on its size, the images are shown only as a reference.



Ajka (small size). It is a resize of 400 × 256 pixels extracted from the Hyperion image (id EO1H1890272010282110KF_1R) acquired on 19 October 2010. The image shows the impact on urban and rural areas of the alumina sludge spill of a refinement factory occurred on 4 October 2010 in Ajka, Hungary (Figure 2).



Oil Spill (medium size). It is a resize of 1200 × 256 pixels obtained by the Hyperion image (id EO1H0210402010195110KF_1R) acquired on 14 July 2010 on an area of the Gulf of Mexico (center image coordinate: 29   ∘  19   ′  44.55   ′     ′  N, 89   ∘  28   ′  51.07   ′     ′  W) interested by the huge oil-spill phenomenon occurred between April and July 2010 (Figure 3).



Desert (big size). It is an image of   6981 × 256   pixels (id: EO1H1790412015255110P0_1R) acquired on 15 September 2015 on a uniform Egyptian desert area (center image coordinate: 27   ∘  05   ′  01.55   ′     ′  N, 25   ∘  34   ′  48.29   ′     ′  E).





4. Experiments on Hyperion Images


In this section we show the speed-up achievable with our parallel portable algorithm with respect to conventional CPU architecture in the heterogeneous platform. In particular we consider the parallel OpenCL code applied separately to the GPU and CPU platforms (therefore exploiting the parallel capabilities of both) and the serial code (working on a single core) for the CPU. As a consequence we evaluate the speed-up reachable by the parallel OpenCL code running on the GPU and the CPU with respect to the serial code running on a single-core CPU.



First of all we observe that our multi-platform portable implementation of NLM yields the same numerical results as its sequential implementation. Moreover, in order to strictly highlight performance of OpenCL, the overhead of transferring the image between the main memory of the host and the device is not included in the measured execution time.



The parallel code includes the same algorithm operations executed sequentially as shown in the Appendix A.



We compare the computational time of the parallel OpenCL algorithm for GPU and CPU of Section 2.1 with the sequential CPU code for different configurations of the NLM method in terms of search and similarity windows. Table 2 reports the running time of the the OpenCL parallell Algorithm 2 applied to the GPU and CPU and of the serial Algorithm 1 for CPU for size of the similarity window   d =  d x  =  d y  = 1 , 2   and of the search window   v =  v x  =  v y  = 3 , 4 , 8 , 16 , 32 , 64 , 128 , 256   for both versions of the algorithm, when relevant, for any spectral band of the Ajka image. The speed-up of the parallel algorithm on the GPU with respect to the same algorithm on the CPU and to the serial algorithm on the CPU is also shown. Table 3 and Table 4 show the same results for the Oil Spill and Desert images, respectively.



To analyze the behaviour with respect to the search window v, Figure 4 graphically shows the plot computational time vs. v of the serial algorithm for CPU for the considered images (similarity window   d = 1  ). Plot is given on a logarithmic scale for both axes, meaning a power relationship between computational time t and search window v as


  t = a  v b  ;  



(4)




the estimated exponent is   b ≈ 1.94   close to 2 and the corresponding fit is shown in the plot as a dashed line.



Figure 5 shows the analogous plot for the parallel algorithm on the GPU architecture. Now the estimated   b ≈ 1.73 − 1.80 < 2  .



The resulting plot of speed-up of the parallel code on the GPU architecture with respect to the serial code on the CPU is shown in Figure 6.



Finally to estimate dependence of the computational time on the size of the images, Figure 7 shows the computational time for CPU (left axis) and GPU (right axis) architecture in the NLM configuration   v = 8  ,   d = 1  .




5. Results and Discussion


Table 2, Table 3 and Table 4 show that the computational time increases with d and v for all hardware configurations, as expected. Similarity window   d = 1   always yields higher speed-up than   d = 2  . Instead the behaviour with respect to the search window v is more intricate. When we consider speed-up of the parallel code on the GPU architecture with respect to the serial code on the CPU we observe an irregular (often decreasing with v) behaviour up to   v = 16 , 32   and then a clear increase with v. This pattern depends on the size of the image. On the contrary the speed-up of the same parallel algorithm on the CPU with respect to the serial algorithm on the same CPU is much less dependent on the search window and also on the size of the image and hardware work-group size. The reason for the different behaviour is that v has better performance when is a multiple of   C L _ K E R N E L _ P R E F E R R E D _ W O R K _ G R O U P _ S I Z E _ M U L T I P L E   due to the work-size. For example for   v = 128   there are necessary     ( 128 × 2 + 1 )  2  = 66049   threads to process the search window; this means that considering the maximum work item size of each device, they are 1024 ad 8192 for NVIDIA GPU and INTEL CPU, respectively. Then the number of work-groups used is 66,049/1024   ≈ 65   for NVIDIA GPU with 511 idle threads and 66,049/8192   ≈ 9   for INTEL CPU with 7679 idle threads. This observation emphasizes the importance of selecting parameters to get optimum block dimensions that are multiples of the   C L _ K E R N E L _ P R E F E R R E D _ W O R K _ G R O U P _ S I Z E _ M U L T I P L E   size also called warp. As a consequence the configurations that yield the highest speed-up (boldface in Table 2, Table 3 and Table 4) are obtained for different values of v. In the case of speed-up of the parallel code on GPU the highest values occur for high values of v (798 at   v = 256   for the small Ajka image; 761 at   v = 256   for the medium size Oil Spill image, 827 at   v = 128   for the big Desert image) and can be considered little depending on the size. For the speed-up of the parallel code on the CPU best values are obtained for   v = 16   (42),   v = 32   (39) and   v = 4   (50) for the small, medium and large size images, respectively, that is for smaller values than the parallel code on GPU. Anyway in all configurations speed-up is never lower than 300 independently of v and size of the image for the parallel code on the GPU and 32 for the same code on the CPU.



The Tables show that our multi-platform parallel code is able to speed-up a serial code on a same CPU of a significant factor (up to 40–50). In addition we remark that the amplification factors reached are beyond the ones theoretically possible with the multicore capability of our CPU architecture (6-cores). The performance difference comes from the different architectural characteristics between CPUs and GPUs, the number of work-items and the amount of work done by a work-item that affect performance differently on CPUs and GPUs. Furthermore a huge number of work groups having a few work-items hurt performance on CPUs but help performance on GPUs. On GPUs, a single work-item is processed by a scalar processor or one single SIMD (Single Instruction Multiple Data) lane. On the contrary GPUs are specialized for supporting a large number of concurrently running threads. In addition, on CPUs the high thread-level parallelism is limited by the number of cores, so using more threads to do the same amount of work does not help performance on CPUs but hurts it due to the overhead of emulating a large number of concurrently executing work-items on a small number of cores.



We observe that the computational time for CPU based architecture increases around   2 ×   going from   d = 1   to   d = 2   for all images and search windows. On the contrary for GPU architectures the increase is somewhat higher (depending on v but systematically greater than 4); as a consequence speed-up for   d = 1   is always higher than   d = 2  .



Now we specifically analyze dependence on the search window v. For CPU architecture the computational time of the serial code approximately scales as the square of v for all images, which is the value theoretically expected from the two-dimensional nature of the search window (Figure 4). The situation is different for the GPU architectures. The estimated value (  b ≈   1.7–1.8; Equation (4)) from Figure 5 for the parallel algorithm on the GPU indicates that the computational time increases less than quadratically with v on CPU, meaning a gain of efficiency. As a consequence the plot of speed-up of the parallel code for GPU architecture with respect to the serial code on CPU (Figure 6) is intricate but the general trend shows an increasing speed-up for large search windows (from   v =   16–32), whereas for small windows there is still some constant when not decrease of the speed-up with v. This behaviour can be explained with a huge number of work groups having a few work items which do not help performance on CPUs and GPUs.



Finally the even small departures of the power relationship computational time of the serial algorithm for CPU and the parallel algorithm for GPU vs. the search window lead to an intricate behaviour of the corresponding speed-up as a function of v. However the general trend of higher speed-up when the size of the image increases is clear (Figure 7).



Even though the present paper is not aimed at choosing an optimal or automatic bandwidth, nor to evaluate effectiveness of NLM as a denoising methodology compared to other competitors, Figure 2 and Figure 3 (middle) show the denoised images (Ajka and Oil Spill, respectively) obtained for the window sizes   d = 2  ,   v = 8  . The bandwidth of the method is chosen as the standard deviation of the noise   σ i   for each spectral channel   i = 1 , … , 242  .   σ i   is estimated starting from the available characteristics of the Hyperion SNR [2] basing on the actual signal strength of the images. As a rule-of-the-thumb the windows sizes (  d = 2  ,   v = 8  ) have been chosen for these images, as we observe a negligible difference in the denoised images using larger windows. For images from other sensors with a different SNR the choice of d and v could be based on different arguments. We remark again that the computational time does not depend on bandwidth h. Finally Figure 2 (right) shows the noise estimated by NLM composing the three difference images at the same RGB spectral bands for the Ajka image.




6. Conclusions


We have developed a multi-platform algorithm for denoising remotely sensed images for CPU and GPU architectures. A major benefit of using an OpenCL algorithm is that the same kernel can be easily executed on different platforms as shown. It is able to dramatically speed-up computational time by a factor ranging from around   300 ×   to   700 ×   depending on the size of the search window and of the image with respect to traditional serial C++ algorithms on CPU. In addition the very same algorithm, when run on commodity CPU, is already able to boost computational performance by a factor up to 40–50 depending on the search window and on the size of the image.



As a consequence NLM, known in the literature as a very effective yet time consuming methodology for denoising images, becomes a viable way to denoise remotely sensed images in real-time; furthermore it makes time consuming tuning bandwidth very fast. Moderate cost of the GPU technology and continuous progress in its architecture are fast spreading its use within the remote sensing community. The proposed algorithm can serve as a firm basis for ongoing and future upgrades of portable multi-platforms algorithms.
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The following abbreviations are used in this manuscript:



	NLM
	NonLinear Means



	GPU
	Graphical Processing Unit



	CUDA
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	NDVI
	Normalized Difference Vegetation Index



	EO
	Earth Observation



	SNR
	Signal to Noise Ratio



	AVIRIS
	Airborne Visible InfraRed Imaging Spectrometer










Appendix A


Source code example to show the difference between the sequential flow operations and the portable parallel kernel OpenCL version of our NLM algorithm. For sake of clarity we denote by:




	
  NLM _ WINDOW = v  , search window radius size.



	
  NLM _ BLOCK _ RADIUS = d  , patch radius size.



	
  WIDTH = N _ x  , image width.



	
  HEIGHT = N _ y  , image height.













	Listing 1: OpenCL NLM Kernel code



	1
2__kernel voidfast_nlm(__global uchar* input, float h_nlm, 2 __global uchar* output){
3   float sumWeights= 0.0f;
4   const int x = get_global_id(0);
5   const int y = get_global_id(1);
6   if(x<WIDTH && y < HEIGHT){
7       const int samples=(2*NLM_BLOCK_RADIUS+1)*(2*NLM_BLOCK_RADIUS+1);
8       float weightIJ =0.0f;
9       float sumWeights =0.0f;
10      float clr =0.0f;
11      float sigma11 =0.0f;
12      #pragma unroll
13      for(int j = -NLM_WINDOW; j <= NLM_WINDOW; j++){
14          for(int i = -NLM_WINDOW; i <= NLM_WINDOW; i++){
15          // Compute the Euclidean distance  beetween the two patches
16          float weightIJ=0.0f;
17          #pragma unroll
18          for(int m = -NLM_BLOCK_RADIUS; m <= NLM_BLOCK_RADIUS; m++){
19              for(int n = -NLM_BLOCK_RADIUS; n <= NLM_BLOCK_RADIUS; n++){
20                  int x1= (x+j + m)>=0?x+ j + m:0;
21                  int y1= (y+i + n)>=0? y+i+n:0;
22                  x1= x1<WIDTH? x1:WIDTH-1;
23                  y1= y1<HEIGHT? y1:HEIGHT-1;
24                  int x2=(x+ m)>=0? x+ m:0;
25                  int y2=(y+ n)>=0 ? y+ n:0;
26                  x2= x2<WIDTH? x2:WIDTH-1;
27                  y2=y2<HEIGHT? y2:HEIGHT-1;
28                  int a=input[y1 *( WIDTH) +x1];
29                  int b=input[y2 *( WIDTH) +x2];
30                  weightIJ += vec_len_int(a,b);
31              }
32          }
33          float factor=max((h_nlm*h_nlm),0.000001f);
34          sigma11=1/factor;
35          int x3= (x+j)>=0? j+x :0;
36          int y3= (y+i)>=0? i +y:0;
37          x3= x3<WIDTH? x3:WIDTH-1;
38          y3= y3<HEIGHT? y3:HEIGHT-1;
39          int clrIJ=input[mad24(y3,WIDTH ,x3)];
40          weightIJ     = exp( -(  (   (weightIJ * sigma11 )    /samples   )));
41          clr += clrIJ * weightIJ;
42          sumWeights  += weightIJ;
43          }
44      }
45
46   sumWeights = 1.0f / sumWeights;
47   clr*= sumWeights;
48   output[mad24(y,WIDTH,x)]=(uchar)clr;
49      }
50  }












	Listing 2: CPU Sequential NLM code



	1    int mask_NLM_WINDOW_RADIUS=NLM_WINDOW_RADIUS;
2    int mask_NLM_BLOCK_RADIUS=NLM_BLOCK_RADIUS;
3    for(int y=0; y<HEIGHT;y++)
4        for(int x=0; x<WIDTH;x++){
5            float sumWeights_0= 0.0f;
6            float weightIJ_media =  0.0f;
7            float clr_0 =  0.0f;
8            for(int j = -mask_NLM_WINDOW_RADIUS; j <= mask_NLM_WINDOW_RADIUS; j++) {
9               for(int i = -mask_NLM_WINDOW_RADIUS; i <= mask_NLM_WINDOW_RADIUS; i++){
10                    //Find color distance from (x, y) to (x + j, y + i)
11                    float weightIJ_0 =0.0f;
12                   //Compute the Euclidean distance  beetween the two patches
13                    for(int m = -mask_NLM_BLOCK_RADIUS; m <= mask_NLM_BLOCK_RADIUS; m++){
14                        for(int n = -mask_NLM_BLOCK_RADIUS; n <= mask_NLM_BLOCK_RADIUS; n++){
15                            int x1= (x+j + m)>=0?x+ j + m:0;
16                            int y1= (y+i + n)>=0? y+i+n:0;
17                            x1= x1<WIDTH? x1:WIDTH-1;
18                            y1= y1<HEIGHT? y1:HEIGHT-1;
19                            int x2=(x+ m)>=0? x+ m:0;
20                            int y2=(y+ n)>=0 ? y+ n:0;
21                            x2= x2<WIDTH? x2:WIDTH-1;
22                            y2=y2<HEIGHT? y2:HEIGHT-1;
23                            int a= src.at<uchar>(x1,y1) ;
24                            int b= src.at<uchar>(x2,y2) ;
25                            weightIJ_0 += vec_len(a,b);
26                        }
27                    }
28                    float factor=0.000001f;
29                    factor=(h_nlm*h_nlm);
30                    sigma11=1/factor;
31                    weightIJ_0     = exp( -(  (   (weightIJ_0 * sigma11 )    /samples )));
32                    int x3= (x+j)>=0? j+x :0;
33                    int y3= (y+i)>=0? i+y:0;
34                    x3= x3<WIDTH? x3:WIDTH-1;
35                    y3= y3<HEIGHT? y3:HEIGHT-1;
36                    int  clrIJ =src.at<uchar>(x3,y3) ;
37                    clr_0      += clrIJ * weightIJ_0;
38                    sumWeights_0  += weightIJ_0;
39                     }
40            }
41            sumWeights_0 = 1.0f / sumWeights_0;
42            clr_0*= sumWeights_0;
43            dst.at<uchar>(x,y) = (uchar)(clr_0);
44        }
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Figure 1. Open Computing Language (OpenCL) runtime functions supporting the parallel execution of NonLocal Means (NLM) kernel using threaded blocks. 
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Figure 2. Original (left) and NLM denoised (middlke) RGB Ajka image. Difference of the two images (estimated noise) is shown on the right composing the differences of the same RGB bands. 
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Figure 3. Original (left) and NLM denoised (middle) RGB Oil Spill image. Difference of the two images (estimated noise) is shown on the right composing the differences of the same RGB bands. 
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Figure 4. Plot of the computational time of the serial algorithm for CPU vs. search window v (similarity window   d = 1  ). Curves refer to the Ajka, Oil Spill and Desert images. The fit by Equation (4) is also shown as a dashed line. 
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Figure 5. Plot of the computational time of the parallel algorithm on the GPU vs. search window v (similarity window   d = 1  ). Curves refer to the Oil Spill, Desert and Ajka images. The fit by Equation (4) is also shown as a dashed line. 
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Figure 6. Plot speed-up of the parallel code on the GPU architecture with respect to the serial code on the CPU vs. search window v (similarity window   d = 1  ) for images Oil Spill, Desert, Ajka. 
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Figure 7. Plot computational time vs. size of the images (number of pixels) for 1 GPU unit and CPU architectures (case   v = 8  ,   d = 1  ). Corresponding regression fit is shown as black dashed lines. 
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Table 1. Summary of information on the Hyperion datasets used for the analysis: Identity, location, date and size of the images.
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	Image
	Identity
	Location
	Date
	Size (Pixels)





	Ajka
	EO1H1890272010282110KF_1
	Ajka (Hungary)
	19 October 2010
	   400 × 256   



	Oil Spill
	EO1H0210402010195110KF_1R
	Gulf of Mexico
	14 July 2010
	   1200 × 256   



	Desert
	O1H1790412015255110P0_1R
	Egypt
	15 September 2015
	   6981 × 256   
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Table 2. Performance of the NLM algorithm applied to any band of the Ajka image (size   400 × 256  ) for different values of the similarity (d, column 1) and search (v, column 2) windows. Computational time of the portable OpenCL code run on GPU and CPU platforms is shown in columns 3 and 5, respectively. Moreover, column 7 reports the computational time of the sequential algorithm for the CPU. The speed-up of the portable parallel algorithm with respect to the sequential one run on the GPU and on the CPU is also shown in columns 4 and 6, respectively. Cases with the highest speed-up are highlighted in boldface.
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Time

	
Speed-up

	
Time

	
Speed-up

	
Time




	
d

	
v

	
GPU

	
GPU vs. CPU

	
CPU (OpenCL)

	
CPU (OpenCL) vs. CPU

	
CPU






	
1

	
3

	
0.0006

	
326

	
0.0063

	
33

	
0.2076




	
2

	
3

	
0.0022

	
195

	
0.0205

	
21

	
0.4232




	
1

	
4

	
0.0009

	
383

	
0.0104

	
32

	
0.3312




	
2

	
4

	
0.0034

	
210

	
0.0367

	
20

	
0.7187




	
1

	
8

	
0.0025

	
487

	
0.0327

	
37

	
1.2017




	
2

	
8

	
0.0121

	
207

	
0.1266

	
20

	
2.5122




	
1

	
16

	
0.0106

	
460

	
0.11726

	
42

	
4.8737




	
2

	
16

	
0.0506

	
184

	
0.4603

	
21

	
9.2751




	
1

	
32

	
0.0364

	
460

	
0.4549

	
37

	
16.7179




	
2

	
32

	
0.1447

	
231

	
1.8073

	
19

	
33.3451




	
1

	
64

	
0.1320

	
500

	
2.0610

	
32

	
65.8862




	
2

	
64

	
0.4877

	
289

	
7.3622

	
20

	
140.6830




	
1

	
128

	
0.4214

	
714

	
7.9215

	
38

	
300.7080




	
2

	
128

	
1.6608

	
350

	
32.0784

	
19

	
580.3900




	
1

	
256

	
1.3367

	
798

	
34.1692

	
32

	
1065.4900




	
2

	
256

	
6.2209

	
361

	
111.8890

	
21

	
2243.2900
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Table 3. Performance of the NLM algorithms applied to any band of the Oil Spill image (size   1200 × 256  ) for different values of the similarity (d, column 1) and search (v, column 2) windows. Computational time of the portable OpenCL code run on GPU and CPU platforms is shown in columns 3 and 5, respectively. Moreover, column 7 reports the computational time of the sequential algorithm for the CPU. The speed-up of the portable parallel algorithm with respect to the sequential one run on the GPU and on the CPU is also shown in columns 4 and 6, respectively. Cases with the highest speed-up are highlighted in boldface.
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Time

	
Speed-up

	
Time

	
Speed-up

	
Time




	
d

	
v

	
GPU

	
GPU vs. CPU

	
CPU (OpenCL)

	
CPU (OpenCL) vs. CPU

	
CPU






	
1

	
3

	
0.0014

	
415

	
0.0185

	
32

	
0.5846




	
2

	
3

	
0.0062

	
195

	
0.0591

	
20

	
1.2013




	
1

	
4

	
0.0021

	
486

	
0.0271

	
38

	
1.0325




	
2

	
4

	
0.0098

	
199

	
0.0977

	
20

	
1.9464




	
1

	
8

	
0.0070

	
497

	
0.0932

	
37

	
3.4612




	
2

	
8

	
0.0396

	
185

	
0.3554

	
21

	
7.2867




	
1

	
16

	
0.0295

	
448

	
0.3512

	
38

	
13.2074




	
2

	
16

	
0.1354

	
198

	
1.3244

	
20

	
26.7487




	
1

	
32

	
0.0987

	
504

	
1.2885

	
39

	
49.7303




	
2

	
32

	
0.3764

	
254

	
4.5136

	
21

	
95.2701




	
1

	
64

	
0.3437

	
593

	
5.694

	
36

	
203.94




	
2

	
64

	
1.3535

	
301

	
20.8591

	
19

	
406.6710




	
1

	
128

	
1.1533

	
666

	
23.2089

	
33

	
767.6080




	
2

	
128

	
5.0774

	
340

	
85.1840

	
20

	
1721.8400




	
1

	
256

	
4.2023

	
761

	
94.8635

	
34

	
3195.8500




	
2

	
256

	
19.3141

	
346

	
340.0810

	
20

	
6667.2400
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Table 4. Performance of the NLM algorithm applied to any band of the Desert image (size   6981 × 256  ) for different values of the similarity (d, column 1) and search (v, column 2) windows. Computational time of the portable OpenCL code run on GPU and CPU platforms is shown in columns 3 and 5, respectively. Moreover, column 7 reports the computational time of the sequential algorithm for the CPU. The speed-up of the portable parallel algorithm with respect to the sequential one run on the GPU and on the CPU is also shown in columns 4 and 6, respectively. Cases with the highest speed-up are highlighted in boldface.
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Time

	
Speed-up

	
Time

	
Speed-up

	
Time




	
d

	
v

	
GPU

	
GPU vs. CPU

	
CPU (OpenCL)

	
CPU (OpenCL) vs. CPU

	
CPU






	
1

	
3

	
0.0074

	
521

	
0.0791

	
49

	
3.8522




	
2

	
3

	
0.0421

	
205

	
0.3277

	
27

	
8.5877




	
1

	
4

	
0.0117

	
507

	
0.1198

	
50

	
5.9438




	
2

	
4

	
0.0626

	
199

	
0.4787

	
26

	
12.4373




	
1

	
8

	
0.0437

	
493

	
0.4614

	
47

	
21.5059




	
2

	
8

	
0.2280

	
197

	
1.8309

	
25

	
44.7047




	
1

	
16

	
0.1706

	
474

	
1.8451

	
44

	
80.7992




	
2

	
16

	
0.5700

	
295

	
7.2114

	
24

	
167.7810




	
1

	
32

	
0.4409

	
669

	
7.2103

	
41

	
294.6210




	
2

	
32

	
1.7229

	
332

	
26.7567

	
22

	
571.6640




	
1

	
64

	
1.5968

	
807

	
33.3146

	
39

	
1287.6400




	
2

	
64

	
7.3676

	
344

	
121.5250

	
21

	
2533.7700




	
1

	
128

	
6.2038

	
827

	
132.5330

	
39

	
5128.4500




	
2

	
128

	
30.8052

	
340

	
455.0150

	
23

	
10448.4000




	
1

	
256

	
24.8274

	
774

	
540.0070

	
36

	
19194.3000




	
2

	
256

	
117.0870

	
334

	
1990.5400

	
20

	
39105.3289
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