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1 General Formulation of a Least Square Inversion

We have a n number of observations l, and we want to determine p unknown physical quantities x. We

have n > p. We also have a function F with several variables.

F :
Rp −→ Rn

(x1, . . . , xp) 7−→ F (x1, . . . , xp) = (l1, . . . , ln)
(1)

The exact values (ẋ1, ẋ2, . . . , ẋp) of (x1, x2, . . . , xp) are inherently inaccessible because the observations

are tainted with errors. Thus, we try to estimate values close to (x̂1, x̂2, . . . , x̂p). We introduce the notion

of residuals v, which is the difference between the actual observations li (called stochastic model) and the

theoretical values λi obtained by the model based on the estimated parameters x̂i (called functional model)

(Sillard, 2001). So that:

We have :

∀i ∈ J1, nK vi = li − f (x̂1, . . . , x̂p) = li − λi (2)

Then, we impose a condition on the residuals : we want the quadratic sum of the latter
∑n

i v
2 to be

minimal. It is called the least squares condition (Legendre, 1805; Gauss, 1809).

We call L the vector of the actual observations (length n):

L =


l1

l2
...

ln

 (3)
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We call X the vector of the unknown parameters to estimate (p length):

X =


x1

x2

...

xp

 (4)

And we call V is the vector of the residuals associated with each observation at the end of the inversion

(length n):

V =


v1

v2

...

vn

 (5)

The problem must be linearized near a solution close enough to (ẋ1, ẋ2, . . . , ẋp): this solution is called

the solution a priori and write it X0 = (x0,1, x0,2, . . . , x0,p). To do this, we introduce the matrix of partial

derivatives or Jacobian J of the function F , of size (n, p) :

JF(X) =


df1

dx1
· · · df1

dxp
...

. . .
...

dfn
dx1

· · · dfn
dxp

 (6)

And we call A the matrix of partial derivatives in the neighborhood of X0, also called design matrix.

We have A = JF(X0)

We call Λ the vector of modeled observations associated with a priori values such as:

F (X0) = Λ =


λ1

λ2

...

λn

 (7)

We set B the vector of the differences between the actual observations li and the modeled observations

associated with the a priori values λi. We have B = L−Λ.

Lastly, we introduce the notion of weight, which indicates the quality of the observations, and allows to

homogenize them if they are of different nature: each observation bi is associated to a standard deviation

ςi quantifying its accuracy. The more accurate the measurement, the lower the standard deviation. We

then define for each ςi weight πi such that πi =
1

ς2
i

. The more reliable the measurement, the greater the
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weight. The associated matrix called weights is a diagonal matrix 1, such as :

P =



1
ς21

0 . . . 0

0 1
ς22

. . .
...

...
. . .

. . . 0

0 . . . 0 1
ς2n

 =


π1 0 . . . 0

0 π2
. . .

...
...

. . .
. . . 0

0 . . . 0 πn

 =



1
ς21

0 . . . 0

0 1
ς22

. . .
...

...
. . .

. . . 0

0 . . . 0 1
ς2n

 (8)

If the weight matrix is considered, the least squares condition becomes:

n∑
i

v2
i

σ2
i

= VtPV minimal (9)

And the optimal solution in the least squares sense X̂ = X0 + δX, where δX is the correction to make

to the a priori initial estimate, is estimated by the following system:{
AδX + V = B

VtPV minimal
(10)

If we call the matrix N = AtPA the normal matrix, the correction δX is obtained by solving the

normal equation:

NδX = AtPB (11)

Which gives :

δX = N−1AtPB (12)

The residues are obtained as follows:

V̂ = B−AX̂ = L− f(X̂) (13)

Following an iterative process, the new estimate X̂ becomes the new a priori X0 in the next inversion

step. We have, at the k -th iteration of the inversion:

X̂k = X0,k+1 (14)

We stop the iterations when the convergence criterion is fulfilled, i.e. when ‖δXk‖ < κ (where κ is a

predetermined threshold).

1.1 About the observation function

The function F is an ad hoc multivariate function of Rp −→ Rn, specific to each problem. It can be

separated into n observation equations fi.

For each observation li, we have the associated functional model:

λi = fi(x1, . . . , xp,Ωli) (15)

where Ω is a set of additional observations.

1in the simplified case where the uncorrelated observations are assumed
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We can then define F :

F (x1, . . . , xp) =


f1(x1, . . . , xp,Ωl1) = λ1

...

fn(x1, . . . , xp,Ωln) = λn

(16)

We call the function F , common to all observations, the observation function.

1.2 Constraints from the Helmert Method

In our case, some additional information links the unknowns to one another. Thus, it is necessary to

augment the system with additional equations. We use the constraining method described by the German

geodesist Friedrich Helmert (Helmert, 1872). It allows to set some unknowns with predefined values, or to

specify some relations linking the unknowns to one another.

It aims to “surround” the normal matrix N with a matrix C representing the constraints on the

parameters (Ghilani, 2011): [
N Ct

C 0

][
δX

Γ

]
=

[
AtPB

Φ

]
(17)

If there are q constraint equations, C is a q× p-sized matrix that describes the relationships between p

parameters, and Φ is a vector of length q where the constraints values are stored. Γ denotes the vector of

Lagrange multipliers, estimated in addition to δX.

This new normal equation is solved in the same way as the classical version, by inverting the augmented

normal matrix.

2 Generic design matrix definition

If nR transponders are used, the associated design matrix ASMA is block-diagonal, of size (nτ ·nR, 3nR), in

the ideal case where each transponder has responded to nτ pings sent from the surface. In a more realistic

case, its size is (
∑nR

iR=1 nτ,Ri , 3nR) where we have a number nτ,Ri of pings for each receiver Ri

ASMA =


ASMA,R1 0 · · · 0

0 ASMA,R2 · · · 0
...

...
. . .

...

0 0 · · · ASMA,RnR

 (18)

with :

ASMA,Ri =



dfSMA,τ1
dxRi

dfSMA,τ1
dyRi

dfSMA,τ1
dzRi

dfSMA,τ2
dxRi

dfSMA,τ2
dyRi

dfSMA,τ2
dzRi

...
...

...
dfSMA,τnτ

dxRi

dfSMA,τnτ
dyRi

dfSMA,τnτ
dzRi

 (19)

fSMA,τi is the observation function associated to a two-way travel time τi as defined in relation 2 of

the main article. It can be differentiated numerically using a method described in Abramowitz and Stegun
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(1965) or Burden and Faires (1998) for instance. In our study, we implemented the three-point midpoint

formula.

To each acoustic observation, a weight πτ,i is associated, to complete the weight matrix PSMA.

3 Baseline length observations

Starting from the observation function 15 of the main article, we have the following derivatives :

dfD(XRA ,XRB )

dXRA

=

[
xRA − xRB

DAB
,
yRA − yRB
DAB

,
zRA − zRB
DAB

]
(20)

et
dfD(XRA ,XRB )

dXRB

=

[
xRB − xRA

DAB
,
yRB − yRA
DAB

,
zRB − zRA
DAB

]
(21)

The observation vector L is enhanced so as :

L =

[
LSMA

LD

]
=



τ1

...

τnτ

D12

...

Dij

...

DnR−1,nR


(22)

And the design matrix is also enhanced :

A =

[
ASMA

AD

]
(23)

where ASMA is the design matrix defined in the main article section 2.3, and AD the design matrix of

baseline length measurements, of size (nD, 3nR).

We have (with n = nR):

AD =



xR1
−xR2
D12

yR1
−yR2
D12

zR1
−zR2
D12

xR2
−xR1
D21

yR2
−yR1
D21

zR2
−zR1
D21

0 · · · 0 · · · 0
...

...
...

...
...

...
...

...
...

0 · · ·
xRi−xRj
Dij

yRi−yRj
Dij

zRi−zRj
Dij

· · · 0 · · ·
xRj−xRi
Dji

xRj−xRi
Dji

xRj−xRi
Dji

· · · 0
...

...
...

...
...

...
...

...
...

0 · · · 0 · · · 0
xRn−1−xRn
Dn−1,n

yRn−1−yRn
Dn−1,n

zRn−1−zRn
Dn−1,n

xRn−xRn−1

Dn,n−1

xRn−xRn−1

Dn,n−1

xRn−xRn−1

Dn,n−1


(24)
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Or, in a simplified form :

AD =



AD12 AD21 0 · · · 0 · · · 0
...

...
...

...
...

0 · · · ADij · · · 0 · · · ADji · · · 0
...

...
...

...
...

0 · · · 0 · · · 0 ADn−1,n ADn,n−1


(25)

With :

ADij =
[
xRi−xRj
Dij

yRi−yRj
Dij

zRi−zRj
Dij

]
(26)

It is also necessary to add weights πD,i corresponding to the lengths of baselines in the corresponding

matrix P , since we add observations of different nature to the problem.

4 Direct estimation of the barycentrer coordinates

Relation 9 in the main article stipulates that :

nR∑
i=1

∆XRi = 0 (27)

meaning that the sum of the coordinate differences between all transponders must be equal to zero.

For n transponders on the seafloor, the vector of unknowns is :

X =



xG

yG

yG

∆xR1

∆yR1

∆zR1

...

∆xRn

∆yRn

∆zRn



(28)

Since
dfSMA,τ

dXG
=

dfSMA,τ

d∆XR
(29)

by analogy with the relations 18 and 19, the design matrix ASMA takes the following form:

ASMA =


ASMA,R1 ASMA,R1 0 · · · 0

ASMA,R2 0 ASMA,R2 · · · 0
...

...
...

. . .
...

ASMA,RnR
0 0 · · · ASMA,RnR

 (30)
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Following the Helmert’s method described in section 1.2 (equation 17), the matrix C and the vector Φ

are respectivively equal to :

C =

0 0 0 · · · 1 0 0 · · ·
0 0 0 · · · 0 1 0 · · ·
0 0 0 · · · ︸ ︷︷ ︸

nRtimes

0 0 1 · · ·

 (31)

Φ =

0

0

0

 (32)

5 Estimation of a single depth

If we assume a single common depth for all seafloor transponders, then the vector of unknowns becomes :

X =



xR1

yR1

...

xRn

yRn

z̄


(33)

The design matrix takes the following shape :

ASMA =


ASMA,R1 0 · · · 0

dfSMA,τ1
dz̄

0 ASMA,R2 · · · 0
dfSMA,τ2

dz̄
...

...
. . .

...
...

0 0 · · · ASMA,RnR

dfSMA,τnτ ,RnR
dz̄

 (34)

In this case:

ASMA,Ri =



dfSMA,τ1
dxRi

dfSMA,τ1
dyRi

dfSMA,τ2
dxRi

dfSMA,τ2
dyRi

...
...

dfSMA,τnτ ,Ri
dxRi

dfSMA,τnτ ,Ri
dyRi

 (35)

7



6 Depth differences as observables in the least-squares sense

If we arbitrarily consider the transponder R1 and its depth zR1 as a depth reference, we can enhance the

observation vector L with depth differences. Thus, we have :

L =

[
LSMA

Lz

]
=



τ1

...

τnτ

δz12

...

δz1j

...

δz1,nR


(36)

The design matrix, as described in equation 12 of the main article, is concatenated with the binary

array Az of size (nR, 3 + 3nR):

Az =



0 0 0 0 0 −1 0 0 1 0 0 0
...

...
...

...
...

...
. . .

...
...

... 0
0 0 0 0 0 −1 0 0 1
...

...
...

...
...

... 0
...

...
...

. . .

0 0 0 0 0 −1 0 0 0 0 0 1


(37)

The column of the component zR1 of the transponder taken as depth reference (here from transponder

R1) is filled with coefficients −1. The elements corresponding to the observation δz1,j and the vertical

component zRj of each transponder Rj are equal to 1. It is also necessary to introduce a specific πz

weighting the depth difference observations.
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