
remote sensing

Article

Merge-Swap Optimization Framework for Supervoxel
Generation from Three-Dimensional Point Clouds

Yanyang Xiao 1,2, Zhonggui Chen 1,* , Zhengtao Lin 1, Juan Cao 3, Yongjie Jessica Zhang 2,
Yangbin Lin 4 and Cheng Wang 1

1 Fujian Key Laboratory of Sensing and Computing for Smart City, School of Informatics, Xiamen University,
Xiamen 361005, China; xiaoyanyang@stu.xmu.edu.cn (Y.X.); gentle@stu.xmu.edu.cn (Z.L.);
cwang@xmu.edu.cn (C.W.)

2 Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
jessicaz@andrew.cmu.edu

3 School of Mathematical Sciences, Xiamen University, Xiamen 361005, China; juancao@xmu.edu.cn
4 Computer Engineering College, Jimei University, Xiamen 361021, China; yblin@jmu.edu.cn
* Correspondence: chenzhonggui@xmu.edu.cn

Received: 29 December 2019; Accepted: 28 January 2020; Published: 2 February 2020
����������
�������

Abstract: Surpervoxels are becoming increasingly popular in many point cloud processing applications.
However, few methods have been devised specifically for generating compact supervoxels from
unstructured three-dimensional (3D) point clouds. In this study, we aimed to generate high quality
over-segmentation of point clouds. We propose a merge-swap optimization framework that solves
any supervoxel generation problem formulated in energy minimization. In particular, we tailored
an energy function that explicitly encourages regular and compact supervoxels with adaptive size control
considering local geometric information of point clouds. We also provide two acceleration techniques
to reduce the computational overhead. The performance of the proposed merge-swap optimization
approach is superior to that of previous work in terms of thorough optimization, computational efficiency,
and practical applicability to incorporating control of other properties of supervoxels. The experiments
show that our approach produces supervoxels with better segmentation quality than two state-of-the-art
methods on three public datasets.

Keywords: supervoxel generation; point clouds; energy minimization; merging and swapping

1. Introduction

Segmentation of a point cloud is a coarse partition at the object level, whereas over-segmentation is
much finer. Surpervoxels provide over-segmentation of a point cloud. As they provide a more compact
and perceptually meaningful representation than the original point cloud, supervoxels are beneficial for
many applications in point cloud processing, such as semantic labelling [1], classification [2], saliency
detection [3], and object detection [4]. The term of supervoxel is also used in the context of video and
three-dimensional (3D) medical image processing [5,6], where 3D grid pixels are grouped into perceptually
meaningful regions conforming to object boundaries, extending the planar superpixels [7] to 3D space by
clustering pixels in a stack of images. For point clouds produced by 3D laser scanners, supervoxels are
defined as clusters of points with similar geometry or other low-level properties. Different from videos
or RGB-Dimages, point clouds collected from 3D scanners are usually unorganized and include noise,
outliers, and non-uniformities, which impose additional challenges on supervoxel generation.

Remote Sens. 2020, 12, 473; doi:10.3390/rs12030473 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9960-4896
https://orcid.org/0000-0001-6075-796X
http://dx.doi.org/10.3390/rs12030473
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/3/473?type=check_update&version=2

Remote Sens. 2020, 12, 473 2 of 24

Grouping points into small regions can significantly improve the efficiency of algorithms that rely
upon point-based data structure, especially for processing large-scale point clouds. Hence, supervoxels
have been widely used in broad applications ranging from remote sensing to computer vision and graphics.
Hence, the pre-processing techniques for efficiently generating supervoxels from 3D points are increasing
in importance. As a more natural representation of 3D point clouds, supervoxels need to exhibit the
following traits:

• Adherence to boundaries: As supervoxels are commonly used as processing units to segment and
detect objects, the most important property is adherence to object boundaries.

• Regular and compact shape patterns: Supervoxels should exhibit regular and compact shape patterns
in regions without boundaries or features, as they will produce a simpler adjacency graph for
later processing.

• Size adaptive to local contents: To reduce the complexity of a point cloud, the size of supervoxels
should be adaptive to local contents of a point cloud, i.e., larger supervoxels are in plain regions
whereas smaller supervoxels are in complex regions.

The two-dimensional (2D) counterpart of supervoxel segmentation is superpixel segmentation,
which was found to be a useful preprocessing step in many computer vision tasks and has received
considerable attention. A variety of superpixel segmentation methods have been proposed over the past
few years. In stark contrast, oversegmenting point clouds into supervoxels has received far less attention.
This is perhaps due to 3D point clouds being larger and more complex than a 2D image. Extending
a superpixel generation method to 3D point clouds is complex, as existing superpixel methods heavily rely
upon the intrinsic neighboring relationships between pixels and it is theoretically impossible to convert
an unorganized into an organized point cloud. Hence, generating supervoxels from 3D point clouds
is challenging.

Few methods have been devised specifically for supervoxel generation. Voxel cloud connectivity
segmentation (VCCS) [8] was an early supervoxel method that generates over-segmentation from 3D point
clouds. The space is first divided into a voxelized grid with a given resolution, and then a number of seed
points are selected from the voxelized space to initialize the supervoxels. Other points are assigned to
supervoxels using a local k-means clustering method [7]. VCCS generates uniform supervoxels without
considering local features and geometric complexities of a scene. A recent method better boundary
preserved supervoxel segmentation (BPSS) ([9]) formalizes supervoxel segmentation as a subset selection
problem and uses a heuristic method to minimize the objective function. Approximate solutions from the
BPSS method may lead to supervoxels violating object boundaries.

In this study, we focused on generating supervoxels from 3D point clouds. We developed a variational
approach to generate supervoxels with the aforementioned desirable properties. Our specific contributions
are as follows:

• We develop a supervoxel generation framework that solves an energy optimization problem with
a target supervoxel number. The proposed framework is composed of two major components:
merging and swapping. In the merging stage, small supervoxels are greedily merged into big ones
if this operation minimizes the energy increase. The merging process continues until the number
of supervoxels reaches a preset value. Then in the swapping stage, points located at supervoxel
boundaries are swapped if the total energy of their two adjacent supervoxels decreases. The swapping
is repeatedly performed until no further decrease in energy is possible.

• We propose two acceleration techniques for processing large-scale point clouds: the adaptive
octree and the three-level heap. The former generates fine supervoxels according to normal
information, which serves as the input of the merging operation. The latter builds a min-heap
in a divide-and-conquer manner to store the merging pair with globally minimal cost.

Remote Sens. 2020, 12, 473 3 of 24

• We propose an energy function that combines three main desirable properties of the supervoxels:
(1) planarity and normal similarity of points in supervoxels, (2) adherence to object boundaries, and (3)
compact shape patterns. This energy function can be minimized using the proposed framework.
The presented variational approach provides the flexibility to incorporate the control of other
properties of supervoxels, such as color similarity.

The remainder of this paper is organized as follows. After providing a brief review of superpixel
and supervoxel generation methods in Section 2, we introduce the merge-swap framework in detail
in Section 3.1. With the definition of a new energy function for supervoxels, we explain how to
apply the proposed optimization framework to generate supervoxels in Section 3.2. Two acceleration
techniques are introduced in Section 4. The experimental results and comparisons are outlined in Section 5.
Finally, we conclude this paper with an overall discussion that includes the implications of our findings,
the limitations of our research, and future directions in Section 6.

2. Related Work

In contrast to superpixel generation in 2D image processing, less research on supervoxel generation
for 3D point clouds has been published. In this section, we briefly review references most related to
our work.

2.1. Superpixel Generation from RGB-D Images

Many superpixel approaches have been proposed in recent years [10–12] . Stutz et al. [13] presented
a comprehensive evaluation of 28 state-of-the-art superpixel algorithms, and some of them were designed
for or can be extended to processing RGB-D images [11,14–18]. With given depth information, an RGB-D
image can be viewed as a 3D point set with given neighboring relationships in the camera coordinate
system. Depth information can be combined with the colors to measure similarity between superpixels.
For instance, the depth-adaptive superpixel method [14] extends simple linear iterative clustering (SLIC) [7]
to a nine-dimensional feature space composed of colors, 3D coordinates, and normals. Yang et al. [19]
proposed a similar method in which the distance from a cluster center to a pixel depends on the differences
of CIELABcolors, depths, and 2D pixel locations. Different from these two methods, in the approach
proposed by [16], the neighboring relationship between pixels is used to firstly generate a triangular mesh
by triangulating pixels. Then, the triangular mesh is over-segmented into small regions using a defined
weighted geodesic metric.

All these existing superpixel methods heavily rely on the regular structure of pixels and cannot be
directly applied to supervoxel segmentation of unorganized 3D point clouds. The proposed merge-swap
framework for supervoxel generation was inspired by the optimization technique proposed by [20],
which was used to efficiently build superpixels by [11,21]. Equipped with a tailored energy function
for supervoxels and adapted merging and swapping operations for point clouds, the proposed method
generates compact supervoxels that adhere well to object boundaries.

2.2. Supervoxel Generation from 3D Point Clouds

To the best of our knowledge, only a few existing methods focus on supervoxel generation from
3D point clouds. The VCCS method [8] was the first to consider supervoxel segmentation of 3D point
clouds. The input cloud is voxelized using an octree with fixed voxel resolution, and then seed points are
placed by uniformly partitioning the 3D space with the seed resolution controlling the size of supervoxels.
Supervoxels are initially selected as voxels containing seed points and then neighboring voxels are
iteratively absorbed. Despite the efficiency of the VCCS method, it may fail when processing point clouds
with non-uniform density, as some initial voxels may cover more than one object. Seed point selection

Remote Sens. 2020, 12, 473 4 of 24

influences the final segmentation, and boundaries of small objects are difficult to capture if they are missed
by seed points.

Song et al. [22] proposed a supervoxel algorithm for sparse outdoor LiDARdata, which needs to
detect the boundary points first. It first constructs a neighborhood graph by connecting neighboring
points and removing boundary points, and then generates supervoxels by expanding cluster regions on
the neighborhood graph and assigning boundary points to the closest cluster. This algorithm strongly
depends on the boundary detection results and does not work well for complex data with noise and
outliers. Kim and Park [23] improved it by introducing a weighted neighborhood graph. Seed points
of clusters are selected and then expanded to other points by computing the shortest distance on the
weighted graph. The over-segmentation results of this method are affected by the selection of the initial
seed points.

Ref. [9] formulated supervoxel generation as a subset selection problem. Since the subset
selection problem is NP-hard, they proposed a heuristic optimization method to minimize the energy
function. The optimization framework includes fusion and exchange operations, both of which provide
an approximate solution to the original subset selection problem. Due to the sub-optimal results obtained
from the optimization method, some supervoxels may across object boundaries.

Compared with the original points, supervoxels provide a highly approximated representation
with much less data, which helps accelerate the downstream applications, such as segmentation
and classification [24].

3. Methodology

3.1. Merge-Swap Framework

In this section, we propose a simple merge-swap framework to generate supervoxels from 3D point
clouds. For a given point set P with n points, we set each point to be a supervoxel at the beginning.
For each supervoxel Si, we define an energy term ε(Si) that measures the dissimilarity between points
within a supervoxel. Then, we obtain the total energy function:

E(P) = ∑
i

ε(Si). (1)

We provide a detailed definition of the energy function in Section 3.2.1. We aimed to reduce the
total number of supervoxels to a user specified value K while minimizing the increase in the total
energy. To achieve that, we propose a bottom-up optimization method. Starting from the input point
set, the proposed method first generates supervoxels by iteratively merging supervoxel pairs with the
minimal cost of energy. Then, it applies the point swapping operation to neighboring supervoxels to
further decrease the energy function. We describe the details of the merging and swapping operations in
Sections 3.1.1 and 3.1.2, respectively.

3.1.1. Merging

Merging is an operation that groups two supervoxels into one, denoted by Si ∪ Sj. As mentioned
previously, our task was to obtain K supervoxels with minimal energy E(P , K) = ∑K

k=1 ε(Sk). The initial
energy for the input data is ∑n

k=1 ε(Sk). Merging two supervoxels into one generally results in increased
energy. Our strategy was to iteratively choose a supervoxel pair with the slightest energy increase
after merging.

Remote Sens. 2020, 12, 473 5 of 24

For merging Si and Sj, we define the merging cost as:

∆(Si ∪ Sj) = ε(Si ∪ Sj)− ε(Si)− ε(Sj), (2)

which is the increased energy after grouping the original points in Si and Sj together. In each iteration,
we evaluate all candidate supervoxel pairs and choose the one with the minimal merging cost. A min-heap
is used to sort supervoxel pairs and find the minimum.

Note that we only consider neighboring supervoxels for merging for the sake of compactness.
Thus, for a given point cloud, we organize the points using a k-d tree to facilitate the nearest neighbor
searches. For each point, we find its M nearest neighbors and save this connection information in
a neighboring graph G. In our experiments, we set M to 20 by default. A supervoxel Si is considered
a neighbor of a supervoxel Sj if any points of Si and Sj are adjacent in the neighboring graph G.
We initialized the min-heap by inserting all neighboring pairs. In practice, we only consider neighboring
supervoxel pairs with i > j to avoid duplication of supervoxel pairs in the min-heap. The merging stage
stops when the supervoxel number is reduced to the user-specified number K. The pseudo-code of the
merging process is provided in Algorithm 1.

Algorithm 1 Merging

Input: Point cloud P with n points, and target supervoxel number K
Output: K supervoxels
1: compute neighboring graph G;
2: Si ← {i} , i = 1, ..., n;
3: declare an empty minimum heap H sorted by merging cost;
4: for each Si, i = 1, ..., n do

5: find its neighboring supervoxels and insert the pairs into H;
6: end for
7: repeat

8: pop the top element (∆ij, Si, Sj) of H;
9: if both Si and Sj are valid then

10: S′i ← Si ∪ Sj;
11: invalidate Si and Sj;
12: find neighbors of S′i and insert the pairs into H;
13: end if
14: until the number of supervoxels is equal to K

3.1.2. Swapping

The merging operation can be regarded as a greedy method that groups small supervoxels into
big ones. Once a supervoxel is formed, it will not be divided to obtain a better segmentation during
the merging process. Here, we introduced the swapping operation, which is used to further refine
the boundaries of supervoxels generated by the merging operation and leads to a lower value of the
objective function.

For two neighboring supervoxels Sk1 and Sk2 , suppose that a point pi is moved from Sk1 to Sk2 ,
denoted by S′k1

= Sk1 \ {i} and S′k2
= Sk2 ∪ {i}. This point swapping is accepted if the energy function is

reduced, i.e.,
ε(Sk1) + ε(Sk2) > ε(S′k1

) + ε(S′k2
). (3)

To keep the supervoxels compact, we only consider boundary points for swapping. A point pi in
a supervoxel Si is regarded as a boundary point if any of its adjacent points, denoted by Gi, belongs to
another supervoxel. A queue is used to store all boundary points. We iteratively test the front point in

Remote Sens. 2020, 12, 473 6 of 24

the queue to see if it can be swapped. After swapping a point i, we add i and its neighbors Gi into the
queue for further test if they are not in the queue. The swapping test continues until the queue is empty.
See Algorithm 2 for more details about the swapping operation.

Algorithm 2 Swapping

Input: Point cloud P , and K supervoxels.
Output: K supervoxels with a lower energy.
1: push the indices of boundary points of each supervoxel into a queue B;
2: repeat

3: pop the front element i from B;
4: get the supervoxel Sk1 to which i belongs;
5: for each j ∈ Gi do

6: get the supervoxel Sk2 that j belongs to;
7: if swap i from Sk1 to Sk2 is accepted then

8: Sk1 ← Sk1 \ {i}, Sk2 ← Sk2 ∪ {i};
9: B ← B ∪ Gi ∪ {i};

10: break out of for loop;
11: end if
12: end for
13: until B is empty

3.2. Supervoxel Generation

The proposed merge-swap optimization framework works for any energy function in the form of
Equation (1). We will derive an energy function that is tailored for high-quality supervoxel generation in
this section.

3.2.1. Energy Definition

Due to the energy driven property of the proposed framework, the energy function should be carefully
designed so that neighboring points with similar properties can be merged into one supervoxel. According
to the general requirements of a supervoxel representation, our energy definition for a supervoxel includes
the coplanarity of points, normal similarity, and spatial regularity.

The position and normal are two basic attributes of a point; we denote them by xi and ni, i =

1, ..., n, respectively. The normals are either given by the user or estimated using the PCAmethod [25].
The differences in the average position and the average normal between supervoxels are usually used to
measure the quality of an over-segmentation result [8,9]. In contrast, we focused on the differences in the
position and normal of points in a supervoxel. For a supervoxel S, we first compute its average position
xS and average unit normal nS, which determine a plane fitting to the supervoxel S. The fitting error is
given by:

ε f itting(S) = ∑
i∈S

(nS · (xi − xS))
2. (4)

The above fitting energy describes the planarity of points in a supervoxel. However, the fitting energy
cannot separate the points on the different sides of a sharp features well, since the distance from a point to
the fitting plane on the other side of the sharp feature is generally small, as shown in Figure 1a. Note that
the point normals change dramatically across the sharp feature. Thus, we introduced another energy term
to measure the normal similarity of supervoxel S, which is defined as:

εnormal(S) = ∑
i∈S

(
1− (nS · ni)

2
)

. (5)

Remote Sens. 2020, 12, 473 7 of 24

The dot product in the equation is squared to ignore its sign. Thu,s the normals do not need to be
consistently oriented over the entire point cloud.

Both the fitting term and the normal term account for the planarity of supervoxels and make the
segmentation result conform to object boundaries (Figure 1b). However, for two neighboring supervoxels in
a planar region, the boundary between them may be zigzag. To guarantee the compactness of supervoxels,
we added another energy term on the supervoxels. It is defined as the summation of the squared distances
from the center of a supervoxel to all its points:

εcompact(S) = ∑
i∈S
‖xi − xS‖2. (6)

This is a discrete version of the centroidal Voronoi tessellation energy [26], which is able to produce
regular hexagonal patterns when minimized.

(a) (b)

Figure 1. Effect of the normal term: (a) clustering result by considering the fitting error only and
(b) clustering result by considering both the fitting error and the normal similarity.

We formulated our total energy function for a supervoxel S as a weighted combination of the above
three energy terms:

ε(S) = ε f itting(S) + λ1εnormal(S) + λ2εcompact(S). (7)

A proper selection of parameters (λ1, λ2) produces feature preserving supervoxels with high
regularity (Figure 1). We discuss the choice of these parameters in Section 3.2.3. The energy function
defined in Equation (7) explicitly encourages regular and compact supervoxels with a size control adaptive
to local geometric information of point clouds. It is also possible to incorporate the control of other
properties of supervoxels in the same manner, such as color and intensity.

3.2.2. Fast Computation

The efficiency of computing the energy value for supervoxels after each merging or swapping
operation is critical since it will be performed many times. A direct method is to traverse all the member
points of a supervoxel and compute the accumulated energy value, which costs O(n) time, where n is the
number of member points. We propose a method to compute the energy function. For each supervoxel S,
we first define two matrices MS and NS:

MS = ∑
i∈S

(xi − xS)(xi − xS)
T , NS = ∑

i∈S
nini

T . (8)

Remote Sens. 2020, 12, 473 8 of 24

Then, the above three energy items can be calculated using MS and NS, respectively. We have:

ε f itting(S) = nS
T MSnS,

εnormal(S) = |S| − nS
T NSnS,

εcompact(S) = Trace(MS),

(9)

where |S| is the point number of S.
We create a new supervoxel S

′
i by merging a pair of neighboring supervoxels Si and Sj. In the

following, we evaluate the energy for S
′
i . The average position of S

′
i can be easily derived from the average

positions of Si and Sj. We have:

xS′i
=
|Si| xSi + |Sj|xSj

|Si|+ |Sj|
. (10)

The average normal of S
′
i can be obtained in the same manner. If we save the matrices MSi and NSi

for each supervoxel Si, we can compute MS′i
and NS′i

following:

MS′i
= MSi + |Si| (xSi − xS′i

)(xSi − xS′i
)T + MSj +

∣∣Sj
∣∣ (xSj − xS′i

)(xSj − xS′i
)T ,

NS′i
= NSi + NSj .

(11)

By substituting Equations (10) and (11) into Equation (9), we obtain the energy value for the new
supervoxel S

′
i . Note that ε(S

′
i) can be calculated in O(1) time using our method without traversing all the

points in S
′
i . For the swapping operation, we can update ε(S

′
i) similarly.

3.2.3. Weighting Parameters

The weighting factors λ1 and λ2 in our energy definition balance the importance of those three energy
terms. A proper choice of weighting factors is crucial for the over-segmentation result. Theoretically,
λ1 should be large enough to distinguish feature boundaries. As shown in the inset of Figure 2d,
a large λ1 results in elongated supervoxels on the features. If λ1 is too small, boundaries are not preserved;
see Figure 2c. In practice, an appropriate choice of λ1 highly depends on the input normals, as these
normals are estimated and are generally inaccurate, especially for points near sharp features. Similarly,
a larger λ2 implies that the supervoxels will be more regular and probably fail to preserve features of the
point cloud; see Figure 2f. A small λ2 generates more zigzag boundaries; see the red circle in Figure 2e.

We conducted a quantitative experiment on the point cloud, as shown in Figure 2, using different
combinations of weighting parameters λ1 and λ2 as shown in Figure 3. We increased λ1 gradually from 0
to 0.1 and decreased λ2 gradually from 0.1 to 0. To quantitatively evaluate the results, we adopted three
metrics: boundary recall, under-segmentation error, and global consistency error, which are introduced in
Section 5.2.1. We also counted the average number of neighbors for each result to indicate the complexity
of the adjacency graph. As shown in Figure 3, the larger the λ1, the better the boundary recall. When λ1

varies in [0.08, 0.1], the boundary recall shows no obvious change. The average number of neighbors
increased with decreasing λ2. The under-segmentation error and the global consistency error achieved their
minimum values when λ1 and λ2 were around (0.01, 0.05). Taken together, we set (λ1, λ2) = (0.01, 0.05)
by default in experiments. The user can adjust λ1 and λ2 to obtain different results according to specific
applications. The suggested range for λ1 and λ2 is [0.001, 0.1].

Remote Sens. 2020, 12, 473 9 of 24

(a) (b) (c)

(d) (e) (f) (g)

Figure 2. over-segmentation results (500 supervoxels) with different weighting parameters. Supervoxel
boundaries are marked as black points. (a) Intermediate result after merging, (λ1, λ2) = (10−3, 0.1);
(b) final over-segmentation result (after swapping) of (a); and (c–g) over-segmentation results with
(λ1, λ2) = (10−5, 0.1), (0.01, 0.1), (10−3, 0.01), (10−3, 0.5), and (0.01, 0.05), respectively.

0 0.003 0.01 0.04 0.07 0.1
0.6

0.7

0.8

0.9

1

B
ou

nd
ar

y
re

ca
ll

0.1 0.08 0.05 0.02 0.005 0

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

U
nd

er
 se

gm
en

ta
tio

n
er

ro
r

0.1 0.08 0.05 0.02 0.005 0

0 0.003 0.01 0.04 0.07 0.1

(b)

Figure 3. Cont.

Remote Sens. 2020, 12, 473 10 of 24

0.008

0.01

0.012

0.014

0.016

0.018

0.02
G

lo
ba

l c
on

si
st

en
cy

 e
rr

or
0.1 0.08 0.05 0.02 0.005 0

0 0.003 0.01 0.04 0.07 0.1

(c)

5

6

7

8

9

A
ve

ra
ge

 n
ei
gh
bo
r n

um
be

r

0.1 0.08 0.05 0.02 0.005 0

0 0.003 0.01 0.04 0.07 0.1

(d)

Figure 3. Effects of different combinations of weighting parameters λ1 and λ2. We set (λ1, λ2) = (0.01, 0.05)
by default in experiments. (a) Boundary recall; (b) under segmentation error; (c) global consistency error;
and (d) average neighbor number.

4. Implementation

In Section 3.2.2, we presented an efficient method for updating the energy function as required by
every single merging and swapping operation. However, the proposed method still has heavy a computing
burden in the merging stage when processing large-scale point clouds, as we need to dynamically maintain
a large min-heap. Thus, in our implementation, we adopt two acceleration techniques to further speed up
our method: three-level heaps and adaptive octree. The basic idea here is to reduce the size of the min-heap.

4.1. Three-Level Heaps

The first acceleration technique idivides the large heap into several small heaps. We adopt
the following three-level structure to build a min-heap based on the concept of divide-and-conquer.
As illustrated in Figure 4, the bottom level consists of min-heaps for each supervoxel. Every supervoxel has
its own min-heap whose elements are the candidate merging pairs formed by its neighboring supervoxels
and itself. In the middle level, we have h (=

√
n) min-heaps. The top element of a min-heap associated with

the supervoxel k in the bottom level is inserted into a middle heap with the index of k mod h. The top level
has only one min-heap, which organizes the heap index and the associated minimal cost of the middle
heaps. Thus, we first collect merging pairs for each supervoxel and store them in the bottom-level heaps.
All the top, elements of each bottom heap are then inserted into the middle heaps with corresponding
indices. After that, we fill the top heap with the top elements of middle heaps.

With these three-level heaps, the top element of the top heap yields the merging pair with the
globally minimal cost, and we can find the indices of two merging supervoxels by traversing down the
three-level min-heaps. The maximal size of the min-heap is reduced from n to

√
n, which notably reduces

the computational load for maintaining min-heaps. Our experiments showed that it improves the efficiency
of the optimization more than two-fold. As demonstrated in Figure 5, the three-level-heap acceleration
technique effectively accelerates supervoxel generation.

Remote Sens. 2020, 12, 473 11 of 24

bottom
heaps

middle
heaps

top heap

(cost, j-th neighbor)
.
.
.

supervoxel 1

… …

(cost, supervoxel id)
.
.
.

heap 1

…

(cost, middle heap id)
.
.
.

(cost, j-th neighbor)
.
.
.

supervoxel k

(cost, j-th neighbor)
.
.
.

supervoxel n

(cost, supervoxel id)
.
.
.

heap h

Figure 4. Illustration of three-level heaps. The bottom-level heap organizes merging pairs formed by
a supervoxel and its neighbors, the middle-level heap organizes the top elements from the bottom-level
heaps, and the top-level heap organizes the top elements from the middle-level heaps.

0 1 2 3 4 5 6
Number of points (million)

0

2

4

6

8

10

12

14

R
un

ni
ng

 ti
m

e
(m

in
)

Original
With three-level heaps
With three-level heaps and adptive octree

Figure 5. Performance of our accelerating techniques. The three-level-heap acceleration technique improves
the efficiency of the optimization significantly, and the adaptive-octree acceleration technique further
improves the efficiency.

Remote Sens. 2020, 12, 473 12 of 24

Figure 6. An adaptive octree of a point cloud. Each octree node is color-coded by the average normal of its
member points.

4.2. Adaptive Octree

An adaptive octree for point clouds consists of voxels with different sizes, where large voxels appear
in smooth regions and small voxels appear at edges, corners, and in complex regions. This kind of octree
is able to preserve object boundaries better than octrees with fixed voxel size, and it has been widely used
in various applications to accelerate calculation, including ray tracing [27], point cloud segmentation [28],
mesh generation [29–32], and finite element analysis [33,34].

For a given point cloud, the normal information is used to build an adaptive octree. Specifically,
an octree is firstly constructed by subdividing the bounding box of the point cloud into uniform grids.
Then, we check each grid to see if the maximum angle between normals of member points in the grid
is greater than 60 degrees. If so, the grid is further subdivided. An example of an adaptive octree is
shown in Figure 6. The adaptive octree actually clusters the points into fine voxels. The original points in
Algorithm 1 are then replaced with voxels. That is, the merging operation starts with fine voxels instead
of the original points of the input point cloud. This improves the convergence speed and reduces the
calculation effort.

Adaptive octree-based merging is reasonable since points with similar normals are supposed to be
grouped together. Even if some points are misclustered in the merging stage, the subsequent swapping
operation will be able to rectify the problem. We provide a comparison in Figure 7, where supervoxels are
generated with and without adaptive octree-based merging for a large-scale point cloud. Three quality
measurements, which will be introduced later in Section 5.2.1, were computed to quantify the results.
Adaptive octree-based merging had a negligible influence on the final supervoxel segmentation results.
Thee speed advantages provided by the adaptive octree are substantial, as demonstrated in Figure 5.
Benefiting from the proposed two acceleration techniques, the final merge-swap scheme is considerably
faster than the original algorithm.

Remote Sens. 2020, 12, 473 13 of 24

(a) (b)

(c)

Figure 7. The 10,000 supervoxels generated by our merge-swap method with and without adaptive
octree-based merging, respectively, from 5.5 million input points. (a) The ground truth; (b) result with
octree-based merging and BR = 0.7002, UE = 0.1471, GCE = 0.0132, and running time = 80 s; and (c) result
without octree-based merging and BR = 0.6975, UE = 0.1434, GCE = 0.0137, and running time = 4.5 min.

5. Results and Discussion

In this section, we present several experimental results to demonstrate the effectiveness of our
merge-swap method, and provide a comparison with the VCCS [8] and the BPSS methods [9]. The VCCS
method was implemented using the Point Cloud Library (http://www.pointclouds.org) (PCL) and the
BPSS method was performed using the authors’ implementation, which is publicly available online (https:
//github.com/yblin/Supervoxel-for-3D-point-clouds). All the experiments were performed on a laptop
with an Intel Core i7 2.3GHz CPU and 16 GB RAM.

5.1. Supervoxel Segmentation Examples

Several examples in Figures 7–10 demonstrate the efficacy of our method. In Figure 8, we compare
the supervoxel results generated by the VCCS method, the BPSS method, and our merge-swap method.
The two enlarged views show that our results conform better to object boundaries than the others.
Our supervoxel segmentation provides a more natural representation of the ground, the wall, and the
roof of the building. Larger supervoxels appear in planar regions, whereas smaller supervoxels appear in
complex regions.

We ran the proposed method with different target numbers of supervoxels and computed the metric
values, as shown in Figure 9. Generally, the larger the target number of supervoxels, the higher the
boundary recall and the lower the segmentation error and the global consistency error. Note that the

http://www.pointclouds.org
https://github.com/yblin/Supervoxel-for-3D-point-clouds
https://github.com/yblin/Supervoxel-for-3D-point-clouds

Remote Sens. 2020, 12, 473 14 of 24

proposed method is able to obtain boundary preserved supervoxel segmentation even when the supervoxel
number is small.

(a) (b)

(c)

Figure 8. The 357 supervoxels generated by (a) the VCCS method [8], (b) the BPSS method [9], and (c) our
merge-swap method. Zoom-in views of the curb in each result are shown in the left-bottom corner. Points
in different supervoxels are encoded using different colors.

Our merge-swap method also works for point clouds with non-uniform density. One main merit of
the BPSS method [9] is that it is capable of producing supervoxels with varying resolution according to
the distribution of the points, so that smaller supervoxels appear in dense regions and larger supervoxels
in sparse regions. Our merge-swap method is also able to distribute similar numbers of points in each
supervoxel by equalizing the energy values of each supervoxel. Therefore, generating supervoxels with
a non-fixed resolution is a built-in capability of our method. A comparison with the BPSS method on
a non-uniform point cloud is shown in Figure 10. Supervoxels with varying resolution can be observed
in the results of both methods. Nevertheless, our method obtains more regular supervoxels than the
BPSS method.

Remote Sens. 2020, 12, 473 15 of 24

(a) The ground truth (b) 5k supervoxels

(c) 10k supervoxels (d) 20k supervoxels

Figure 9. over-segmentation results with different numbers of supervoxels. (a)The ground truth; (b) 5000
supervoxels; BR = 0.4309, UE = 0.1644, GCE = 0.0174; (c) 10,000 supervoxels; BR = 0.5394, UE = 0.1128,
GCE = 0.0122; and (d) 20,000 supervoxels; BR = 0.6217, UE = 0.0784, GCE = 0.0102.

(a) Point cloud with non-uniform density (b) Result by the BPSS method [9]

(c) Result by our merge-swap method

Figure 10. Comparison on a point cloud with non-uniform density. Our merge-swap method generates
supervoxels with varying resolution and more regular shapes than the BPSS method.

Remote Sens. 2020, 12, 473 16 of 24

5.2. Comparisons on Datasets

In this section, we compare our method with the VCCS [8] and BPSS [9] methods on three public
datasets: NYU depth dataset V2 [35] (https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html),
Oakland [36] (http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/), and Semantic3D [37]
(http://www.semantic3d.net/). Before demonstrating the comparison results, we briefly review three
metrics used for measuring the quality of supervoxel segmentation.

5.2.1. Evaluation Metrics

We adopted three metrics, boundary recall (BR), ground truth error (UE), and global consistency error
(GCE), which are natural extensions of metrics of superpixels in 2D image processing [7]. They have already
been used in a supervoxel generation study [9]. To compute these values, a ground truth segmentation T
and a supervoxel segmentation S should be provide. For completeness, we cite their definitions below:

Boundary recall (BR) is defined as the percentage of ground truth boundaries that are covered by
supervoxel boundaries [38], and can be computed by:

BR(T ,S) =
∑p∈∂T (minq∈∂S ‖p− q‖ < ε)

|∂T | , (12)

where ∂T denotes ground truth boundaries and ∂S represents supervoxel boundaries. A point p is called
a boundary if the label of one of its k-nearest neighbor points is different from that of p. A ground truth
boundary point is covered if a supervoxel boundary point lies within the distance of ε to it. The same
as [9], ε was set to 0.01 m for indoor scene benchmarks and to 0.03 m for outdoor scene benchmarks in
our experiments.

Under-segmentation error (UE) is proposed for measuring the degree of supervoxels across the
ground truth boundaries [39]. We compute it by:

UE(T ,S) = 1
n

 M

∑
i=1

 ∑
Sj |Sj∩Ti 6=∅

∣∣Sj
∣∣− n

 , (13)

where T1, ..., TM denote ground truth regions. For each ground truth region Ti, we find all the
supervoxels intersecting it, i.e.,

{
Sj|Sj ∩ Ti 6= ∅

}
. Then, we count the number of points outside the

region, and normalize it by the total point number n. A low under-segmentation error means that most
supervoxels intersect with only one ground truth region and do not cross the ground truth boundaries.

Global consistency error (GCE) is another important metric that simultaneously evaluates
under-segmentation both the over-segmentation error and the under-segmentation error [40]. Firstly,
for a ground truth region Ti and a supervoxel Sj, we define the ground truth to supervoxel error as:

TSij =

(
1−

∣∣Ti ∩ Sj
∣∣

|Ti|

)
×
∣∣Ti ∩ Sj

∣∣ , (14)

and the supervoxel to ground truth error as:

STji =

(
1−

∣∣Ti ∩ Sj
∣∣∣∣Sj

∣∣
)
×
∣∣Ti ∩ Sj

∣∣ . (15)

https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
http://www.cs.cmu.edu/~vmr/datasets/oakland_3d/cvpr09/doc/
http://www.semantic3d.net/

Remote Sens. 2020, 12, 473 17 of 24

Then, we obtain the total number of intersecting points between the ground truth and supervoxels by:

n′ =
M

∑
i=1

K

∑
j=1

∣∣Ti ∩ Sj
∣∣ . (16)

GCE is defined as:

GCE(T ,S) = 1
n′

min

{
M

∑
i=1

K

∑
j=1

TSij,
K

∑
i=1

M

∑
j=1

STij

}
. (17)

The value of GCE lies in [0, 1], where 1 indicates the worst case and 0 corresponds to
a perfect segmentation.

5.2.2. Performance on Datasets

For testing and comparison, we used the NYU depth V2 [35], Oakland [36] and Semantic3D [37]
datasets, varying from indoor scenes to outdoor scenes. As each dataset contains point clouds with
different sizes, we evaluated the three metrics on a dataset as the average of the corresponding metrics of
all point clouds in that dataset. Comparisons were conducted by generating supervoxels on different scales.
Note that the VCCS method cannot control the target number of the supervoxels precisely, as it generates
uniformly distributed supervoxels. To enable a fair comparison, we first ran the VCCS method to generate
supervoxels. Then, we specified the target number of the BPSS method and our merge-swap method to be
the same as the number of supervoxels generated by the VCCS method. In other words, the segmentation
results of three methods were compared against the same average size of supervoxels.

The NYU depth V2 dataset, which contains 1449 labeled RGB-D images, was adopted to test indoor
scenes. The images were firstly converted to 3D point clouds, and each of them had up to 307,200 points.
The metric curves of each method are shown in Figure 11. Our results show the best boundary recall and
global consistency error for all average sizes of supervoxels, and our under-segmentation error curve
is nearly the same as that of the BPSS method. This clearly demonstrates the better performance of the
proposed approach on feature preserving against other existing methods. Note that point clouds converted
from depth images usually contain sharp fluctuations. This highly non-coplanarity prevents all the
compared methods from obtaining segmentation accurately conforming to the ground truth, hence leading
to high UEs.

0.1 0.14 0.18 0.22 0.26 0.3
Average size of supervoxels (m)

0.4

0.5

0.6

0.7

0.8

0.9

B
ou

nd
ar

y
re

ca
ll

VCCS
BPSS
Merge-Swap

0.1 0.14 0.18 0.22 0.26 0.3
Average size of supervoxels (m)

0.1

0.2

0.3

0.4

0.5

0.6

U
nd

er
 se

gm
en

ta
tio

n
er

ro
r VCCS

BPSS
Merge-Swap

0.1 0.14 0.18 0.22 0.26 0.3
Average size of supervoxels (m)

0.02

0.04

0.06

0.08

0.1

G
lo

ba
l c

on
si

st
en

cy
 e

rr
or VCCS

BPSS
Merge-Swap

Figure 11. Experimental results on NYU RGBD V2 dataset. Our merge-swap method achieved the highest
BR and the lowest GCE, and a comparable UE to the BPSS method.

Both Oakland and Semantic3D consist of dense point clouds acquired from outdoor scenes. Oakland
contains 17 clouds with sparse point density, which are labeled as 44 classes. The Semantic3D dataset

Remote Sens. 2020, 12, 473 18 of 24

consists of dense 3D point clouds with up to 4 billion points. The proposed approach typically needs 6GB
memory to handle 10 million points. Limited by the memory size, we randomly down-sampled each cloud
of Semantic3D to around 5 millions points. The comparisons of the three methods on these two datasets
are shown in Figures 12 and 13, respectively. The proposed method achieved the best performance in all
three metrics for the Oakland dataset, and the highest boundary recall and the lowest global consistency
error for the Semantic3D dataset.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Average size of supervoxel (m)

0.8

0.85

0.9

0.95

1

B
ou

nd
ar

y
re

ca
ll

VCCS
BPSS
Merge-Swap

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Average size of supervoxels (m)

0

0.1

0.2

0.3

0.4

U
nd

er
 se

gm
en

ta
tio

n
er

ro
r VCCS

BPSS
Merge-Swap

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Average size of supervoxels (m)

0

0.01

0.02

0.03

0.04

G
lo

ba
l c

on
si

st
en

cy
 e

rr
or VCCS

BPSS
Merge-Swap

Figure 12. Experimental results on Oakland dataset. Our merge-swap method performed the best in all
three metrics.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Average size of supervoxels (m)

0.4

0.6

0.8

B
ou

nd
ar

y
re

ca
ll

VCCS
BPSS
Merge-Swap

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Average size of supervoxels (m)

0

0.1

0.2

0.3

0.4

0.5

U
nd

er
 se

gm
en

ta
tio

n
er

ro
r VCCS

BPSS
Merge-Swap

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Average size of supervoxels (m)

0

0.01

0.02

0.03

0.04

0.05

G
lo

ba
l c

on
si

st
en

cy
 e

rr
or VCCS

BPSS
Merge-Swap

Figure 13. Experimental results on the Semantic3D dataset. Our merge-swap method achieved the highest
BR and the lowest GCE, and a UE close to that of the BPSS method.

5.3. Compactness Comparison

In 2D image processing, the compactness is another property that is desired for superpixel
segmentation. The regularity or compactness of a superpixel was evaluated in [41]. Intuitively, a superpixel
segmentation has higher compactness if superpixels have more round shapes. As the compactness metric
of superpixels involves the computation of superpixel area, its extension to the supervoxel of point clouds
is non-trivial. Here, we only show results of two point clouds randomly selected from the Oakland and
Semantic3D datasets without reporting the compactness metric; see Figure 14. Our algorithm makes
supervoxel shapes more circular in the flat region but preserves the sharp features better in the point
clouds than the VCCS and BPSS methods; see the details marked in red rectangles in Figure 14. We also
tested our algorithm on a simple point cloud, see Figure 15, which more clearly indicates that our method
achieves a better trade-off between the local compactness and feature preservation. Note that the size
of the supervoxels generated by the proposed method is adaptive to local contents of the input point,
i.e., larger supervoxels are in plain regions and smaller supervoxels are in complex regions.

Remote Sens. 2020, 12, 473 19 of 24

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14. Visual comparisons using the point clouds from the Oakland (left) and Semantic3D (right)
datasets. (a,b) Ground truth; (c,d) the VCCS results; (e,f) the BPSS results; and (g,h): our merge-swap
results. Unlabelled points are not shown in the ground truth.

Remote Sens. 2020, 12, 473 20 of 24

(a) VCCS (b) BPSS

(c) Merge-Swap

Figure 15. Compactness comparison. Our merge-swap result produced the best compactness in flat regions.

5.4. Running Time

The timings versus data point numbers of the compared algorithms are plotted in Figure 16. The input
point clouds had different numbers of points sampled from the same scene, and the output number of
supervoxels was fixed to 1,000. The times for data I/O and building the k-d tree were not included for the
three methods. The time for building the octree in our method was included. We ran each program 10
times and computed the average running time. Figure 16 shows the VCCS method is the most efficient
approach as the original problem is reduced to that of generating supervoxels for a smaller number of
regular voxels, resulting in corresponding quality sacrifices. Whereas the BPSS method acts directly on
the original points, the proposed method adopts an adaptive octree to cluster the original points into
fine voxels and starts the merging process from these fine voxels. When the number of points is large,
it produces an obvious acceleration effect. Figure 16 shows that our method is more efficient than the BPSS
method when the data size grows to over 10 million, with improved supervoxel qualities. In addition,
the complexity of a scene has an effect on the efficiency of the proposed method, leading to an octree with
a different number of nodes.

Remote Sens. 2020, 12, 473 21 of 24

0 5 10 15 20
Number of points (million)

0

0.5

1

1.5

2

2.5

3

R
un

ni
ng

 ti
m

e
(m

in
)

VCCS
BPSS
Merge-Swap

Figure 16. Comparison of running time for the VCCS method, the BPSS method, and our
merge-swap method.

6. Summary and Conclusions

In this paper, we presented our proposed merge-swap framework—a simple supervoxel generation
algorithm for point clouds. The framework consists of two stages: merging and swapping. In the merging
stage, the number of supervoxels is reduced by iteratively merging two supervoxels with the minimal
cost into one. To find the supervoxel pair with the minimal cost in each iteration, we propose to maintain
a dynamic min-heap, which is large when processing large-scale point clouds. Thus, we also presented
two acceleration techniques to reduce the size of the min-heap and the speedup ratio is considerable.
In the swapping stage, each boundary point is tested to see if it can be swapped with its neighboring
supervoxel. This operation is crucial for further reducing the total energy value of the supervoxels.

The proposed merge-swap method can be used for solving any supervoxel generation problem
that is formulated in energy minimization. In particular, an energy function is tailored to explicitly
encourage compact supervoxels with a size control adaptive to local geometric information of point
clouds. The control of other properties of supervoxels in the energy function can also be incorporated.
Experimental results, including performance comparisons on three public datasets and several visual
comparisons on point clouds, demonstrated that our merge-swap method produces supervoxels at a lower
computational cost while producing a better segmentation quality than the state-of-the-art BPSS method.

Despite the proposed merge-swap method preserveing sharp features significantly better than two
state-of-the-art supervoxel methods, it suffers from one major limitation: our merge-swap method is less
efficient than the VCCS method, which may limit its use in practical applications. Hence, a future work
direction is to develop parallel algorithms of the merge-swap method to further improve the efficiency. The
proposed method requires extra memory to save min-heaps, requiring about 6 GB memory to process 10
million points, and it is quite common for a terrestrial LiDAR scan to have billions of points, As the merging
and the swapping operations could be applied locally to a point cloud, a possible solution is to divide a
large-scale point cloud into smaller parts and perform our framework on each part individually, and then
merge the results. We leave this for future work. We would also like to explore the applications of our
method to other point cloud processing problems, i.e., line/plane structures extraction, segmentation, and
classification.

Remote Sens. 2020, 12, 473 22 of 24

Author Contributions: Conceptualization, Z.C.; Methodology, Y.X. and Z.C.; Software, Y.X., Z.L., and Y.L.;
Supervision, Y.J.Z., and C.W.; Validation, Y.X., Z.C., and J.C.; Visualization, Y.X. and Z.L.; Writing–original draft, Y.X.;
Writing–review and editing, Z.C., J.C., Y.J.Z., and C.W. All authors have read and agree to the published version of
the manuscript.

Funding: Zhonggui Chen and Juan Cao were funded by the National Natural Science Foundation of China
(Nos. 61872308, 61972327), the Natural Science Foundation of Fujian Province of China (Nos. 2018J01104, 2019J01026),
and the Fundamental Research Funds for the Central Universities (Nos. 20720190011, 20720190063). Yongjie Jessica
Zhang was funded in part by the PECASE Award N00014-16-1-2254. Yangbin Lin was funded by the National Natural
Science Foundation of China (No. 61701191). Cheng Wang was funded in part by the National Natural Science
Foundation of China (No. U1605254).

Acknowledgments: Part of this work was done when Yanyang Xiao was visiting the Department of Mechanical
Engineering, Carnegie Mellon University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Luo, H.; Wang, C.; Wen, C.; Cai, Z.; Chen, Z.; Wang, H.; Yu, Y.; Li, J. Patch-based semantic labeling of road scene
using colorized mobile LiDAR point clouds. IEEE Trans. Intell. Transp. Syst. 2016, 17, 1286–1297. [CrossRef]

2. Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U. Classification of MLS point clouds in urban scenes using detrended
geometric features from supervoxel-based local contexts. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci.
2018, IV-2, 271–278. [CrossRef]

3. Yun, J.S.; Sim, J.Y. Supervoxel-based saliency detection for large-scale colored 3D point clouds. In Proceedings of
the IEEE International Conference on Image Processing, Phoenix, AZ, USA, 25–28 September 2016, pp. 4062–4066.

4. Wang, H.; Wang, C.; Luo, H.; Li, P.; Chen, Y.; Li, J. 3-D point cloud object detection based on supervoxel
neighborhood with Hough forest framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 1570–1581.
[CrossRef]

5. Ban, Z.; Chen, Z.; Liu, J. Supervoxel segmentation with voxel-related gaussian mixture model. Sensors 2018,
18, 128.

6. Tian, Z.; Liu, L.; Zhang, Z.; Xue, J.; Fei, B. A supervoxel-based segmentation method for prostate MR images.
Med Phys. 2017, 44, 558–569. [CrossRef]

7. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art
superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]

8. Papon, J.; Abramov, A.; Schoeler, M.; Wörgötter, F. Voxel cloud connectivity segmentation - supervoxels for point
clouds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA,
23–28 June 2013; pp. 2027–2034.

9. Lin, Y.; Wang, C.; Zhai, D.; Li, W.; Li, J. Toward better boundary preserved supervoxel segmentation for 3D point
clouds. ISPRS J. Photogramm. Remote. Sens. 2018, 143, 39–47. [CrossRef]

10. Hu, K.; Zhang, Y.J. Image segmentation and adaptive superpixel generation based on harmonic edge-weighted
centroidal Voronoi tessellation. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2016, 4, 46–60. [CrossRef]

11. Dong, X.; Chen, Z.; Yao, J.; Guo, X. Superpixel generation by agglomerative clustering with quadratic error
minimization. Comput. Graph. Forum 2019, 38, 405–416. [CrossRef]

12. Pan, X.; Zhou, Y.; Chen, Z.; Zhang, C. Texture relative superpixel generation with adaptive parameters.
IEEE Trans. Multimed. 2019, 21, 1997–2011. [CrossRef]

13. Stutz, D.; Hermans, A.; Leibe, B. Superpixels: An evaluation of the state-of-the-art. Comput. Vis. Image Underst.
2018, 166, 1–27. [CrossRef]

14. Weikersdorfer, D.; Gossow, D.; Beetz, M. Depth-adaptive superpixels. In Proceedings of the 21st International
Conference on Pattern Recognition, Tsukuba, Japan, 11–15 November 2012; pp. 2087–2090.

15. Liu, Y.J.; Yu, C.C.; Yu, M.J.; He, Y. Manifold SLIC: A fast method to compute content-sensitive superpixels.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 651–659.

http://dx.doi.org/10.1109/TITS.2015.2499196
http://dx.doi.org/10.5194/isprs-annals-IV-2-271-2018
http://dx.doi.org/10.1109/JSTARS.2015.2394803
http://dx.doi.org/10.1002/mp.12048
http://dx.doi.org/10.1109/TPAMI.2012.120
http://dx.doi.org/10.1016/j.isprsjprs.2018.05.004
http://dx.doi.org/10.1080/21681163.2015.1027270
http://dx.doi.org/10.1111/cgf.13538
http://dx.doi.org/10.1109/TMM.2019.2895498
http://dx.doi.org/10.1016/j.cviu.2017.03.007

Remote Sens. 2020, 12, 473 23 of 24

16. Pan, X.; Zhou, Y.; Li, F.; Zhang, C. Superpixels of RGB-D images for indoor scenes based on weighted geodesic
driven metric. IEEE Trans. Vis. Comput. Graph. 2017, 23, 2342–2356. [CrossRef] [PubMed]

17. Gao, G.; Lauri, M.; Zhang, J.; Frintrop, S. Saliency-guided adaptive seeding for supervoxel segmentation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver,
BC, Canada, 24–28 September 2017; pp. 4938–4943.

18. Liu, Y.; Yu, M.; Li, B.; He, Y. Intrinsic manifold SLIC: A simple and efficient method for computing
content-sensitive superpixels. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 653–666. [CrossRef] [PubMed]

19. Yang, J.; Gan, Z.; Gui, X.; Li, K.; Hou, C. 3-D geometry enhanced superpixels for RGB-D data. In Proceedings
of the Advances in Multimedia Information Processing—PCM, 14th Pacific-Rim Conference on Multimedia,
Nanjing, China, 13–16 December 2013; pp. 35–46.

20. Cai, Y.; Guo, X.; Zhong, Z.; Mao, W. Dynamic meshing for deformable image registration. Comput.-Aided Des.
2015, 58, 141–150. [CrossRef]

21. Cai, Y.; Guo, X. Anisotropic superpixel generation based on Mahalanobis distance. Comput. Graph. Forum 2016,
35, 199–207. [CrossRef]

22. Song, S.; Lee, H.; Jo, S. Boundary-enhanced supervoxel segmentation for sparse outdoor LiDAR data.
Electron. Lett. 2014, 50, 1917–1919. [CrossRef]

23. Kim, J.S.; Park, J.H. Weighted-graph-based supervoxel segmentation of 3D point clouds in complex urban
environment. Electron. Lett. 2015, 51, 1789–1791. [CrossRef]

24. Che, E.; Jung, J.; Olsen, M.J. Object recognition, segmentation, and classification of mobile laser scanning point
clouds: A state of the art review. Sensors 2019, 19, 810. [CrossRef]

25. Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W. Surface reconstruction from unorganized
points. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Seattle,
WA, USA, 27–31 July 1992, pp. 71–78.

26. Du, Q.; Faber, V.; Gunzburger, M. Centroidal Voronoi tessellations: Applications and algorithms. SIAM Rev.
1999, 41, 637–676. [CrossRef]

27. Whang, K.Y.; Song, J.W.; Chang, J.W.; Kim, J.Y.; Cho, W.S.; Park, C.M.; Song, I.Y. Octree-R: An adaptive octree for
efficient ray tracing. IEEE Trans. Vis. Comput. Graph. 1995, 1, 343–349. [CrossRef]

28. Vo, A.V.; Truong-Hong, L.; Laefer, D.F.; Bertolotto, M. Octree-based region growing for point cloud segmentation.
ISPRS J. Photogramm. Remote. Sens. 2015, 104, 88–100. [CrossRef]

29. Zhang, Y.J. Geometric Modeling and Mesh Generation from Scanned Images, 1st ed.; Chapman and Hall/CRC:
Boca Raton, FL, USA, 2016; pp. 107–134.

30. Zhang, Y.; Bajaj, C.; Sohn, B.S. 3D finite element meshing from imaging data. Comput. Methods Appl. Mech. Eng.
2005, 194, 5083–5106. [CrossRef] [PubMed]

31. Zhang, Y.; Bajaj, C. Adaptive and quality quadrilateral/hexahedral meshing from volumetric data.
Comput. Methods Appl. Mech. Eng. 2006, 195, 942–960. [CrossRef] [PubMed]

32. Zhang, Y.; Hughes, T.J.; Bajaj, C.L. An automatic 3D mesh generation method for domains with multiple
materials. Comput. Methods Appl. Mech. Eng. 2010, 199, 405–415. [CrossRef]

33. Chernyshenko, A.Y.; Olshanskii, M.A. An adaptive octree finite element method for PDEs posed on surfaces.
Comput. Methods Appl. Mech. Eng. 2015, 291, 146–172. [CrossRef]

34. Marco, O.; Sevilla, R.; Zhang, Y.; Ródenas, J.J.; Tur, M. Exact 3D boundary representation in finite element
analysis based on Cartesian grids independent of the geometry. Int. J. Numer. Methods Eng. 2015, 103, 445–468.
[CrossRef]

35. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor segmentation and support inference from RGBD images.
In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 746–760.

36. Munoz, D.; Bagnell, J.A.D.; Vandapel, N.; Hebert, M. Contextual classification with functional max-margin
Markov networks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Miami, FL, USA, 20–25 June 2009.

http://dx.doi.org/10.1109/TVCG.2016.2621763
http://www.ncbi.nlm.nih.gov/pubmed/28113770
http://dx.doi.org/10.1109/TPAMI.2017.2686857
http://www.ncbi.nlm.nih.gov/pubmed/28358673
http://dx.doi.org/10.1016/j.cad.2014.08.009
http://dx.doi.org/10.1111/cgf.13017
http://dx.doi.org/10.1049/el.2014.3249
http://dx.doi.org/10.1049/el.2015.1580
http://dx.doi.org/10.3390/s19040810
http://dx.doi.org/10.1137/S0036144599352836
http://dx.doi.org/10.1109/2945.485621
http://dx.doi.org/10.1016/j.isprsjprs.2015.01.011
http://dx.doi.org/10.1016/j.cma.2004.11.026
http://www.ncbi.nlm.nih.gov/pubmed/19777144
http://dx.doi.org/10.1016/j.cma.2005.02.016
http://www.ncbi.nlm.nih.gov/pubmed/19750180
http://dx.doi.org/10.1016/j.cma.2009.06.007
http://dx.doi.org/10.1016/j.cma.2015.03.025
http://dx.doi.org/10.1002/nme.4914

Remote Sens. 2020, 12, 473 24 of 24

37. Hackel, T.; Savinov, N.; Ladicky, L.; Wegner, J.D.; Schindler, K.; Pollefeys, M. SEMANTIC3D.NET:
A new large-scale point cloud classification benchmark. In Proceedings of the ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, ISPRS Hannover Workshop, Hannover,
Germany, 6–7 June 2017; pp. 91–98.

38. Martin, D.R.; Fowlkes, C.C.; Malik, J. Learning to detect natural image boundaries using local brightness, color,
and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 530–549. [CrossRef]

39. Levinshtein, A.; Stere, A.; Kutulakos, K.N.; Fleet, D.J.; Dickinson, S.J.; Siddiqi, K. TurboPixels: Fast superpixels
using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2290–2297. [CrossRef]

40. Martin, D.; Fowlkes, C.; Tal, D.; Malik, J. A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the Eighth IEEE
International Conference on Computer Vision, Vancouver, BC, Canada, 7–14 July 2001; pp. 416–423.

41. Schick, A.; Fischer, M.; Stiefelhagen, R. An evaluation of the compactness of superpixels. Pattern Recognit. Lett.
2014, 43, 71–80. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2004.1273918
http://dx.doi.org/10.1109/TPAMI.2009.96
http://dx.doi.org/10.1016/j.patrec.2013.09.013
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Superpixel Generation from RGB-D Images
	Supervoxel Generation from 3D Point Clouds

	Methodology
	Merge-Swap Framework
	Merging
	Swapping

	Supervoxel Generation
	Energy Definition
	Fast Computation
	Weighting Parameters

	Implementation
	Three-Level Heaps
	Adaptive Octree

	Results and Discussion
	Supervoxel Segmentation Examples
	Comparisons on Datasets
	Evaluation Metrics
	Performance on Datasets

	Compactness Comparison
	Running Time

	Summary and Conclusions
	References

