
Supplementary Material 
SM1. Post-Processing of Images for Automated Classification 

Imagery was collected without artificial light and using a fisheye lens to maximise light capture, 
therefore each image needed to be processed prior annotation in order to balance colour and to 
minimise the non-linear distortion introduced by the fisheye lens (Figure S1). Initially, colour balance 
and lenses distortion correction were manually applied on the raw images using Photoshop (Adobe 
Systems, California, USA). However, in order to optimize the manual post-processing time of 
thousands of images, more recent images from the Indian Ocean and Pacific Ocean were post-
processed using compressed images (jpeg format) and an automatic batch processing in Photoshop 
and ImageMagick, the latter an open-source software for image processing (www.imagemagick.org). 
In view of this, the performance of the automated image annotation on images without colour balance 
was contrasted against images colour balanced using manual post-processing (on raw images) and 
the automatic batch processing (on jpeg images). For this evaluation, the error metric described in the 
main text (Materials and Methods) was applied to the images from following regions: the Maldives 
and the Great Barrier Reef (Figures S2 and S3). We found that the colour balance applied regardless 
the type of processing (manual vs automatic) had an important beneficial effect on the performance 
of the automated image annotation as errors were reduced for critical labels in both regions (e.g., 
Algae labels; Figures S2 and S3). Importantly, no major differences in the performance of the 
automated annotations were observed between manual and automated adjustments for colour 
balance.  

Once adjusted for colour and lens distortion, images were cropped to 1 m2 in order to standardise 
the observation size (Figures S1d and S1e). Since altitude from the camera to the reef substrate can 
vary do to reef topography, the size of the image will invariably change. To control for this variability 
and standardise the sampling size, images were cropped to 1 m2 using the altitude data logged by 
the Doppler transponder[1].  

 

Figure S1. Post-processing of images for automated classification: (a) Raw image. (b) Lenses distortion 
corrected image. (c) Colour balanced image. (d and e) Cropped quadrat of 1 x 1 m. 



 

Figure S2. Comparison between post-processing methods of precision errors of automated image 
annotation for each label within the Maldives, Central Indian Ocean. Automatic Post-
processing=Automatic PP; Manual Post-processing=Manual PP; Original colour = Non-colour. Error 
bars represent the 95% confidence interval. 

 

Figure S3. Comparison between post-processing methods of precision errors of automated image 
annotation for each of label within the Great Barrier Reef. Automatic Post-processing=Automatic PP; 
Manual Post-processing=Manual PP; Original colour = Non-colour. Error bars represent the 95% 
confidence interval. 

  



SM2. Deep Learning Network design   

In this study, we used the VGG-D 16 network architecture, hereafter denoted VGG. The VGG 
net is a convolutional neural network (CNN) with over 138 million parameters organised in 16 layers 
which directly maps a 224 x 224 RGB input image, x, to a score vector 𝑠𝑠 ∈ ∆𝑘𝑘⊂ 𝑅𝑅𝑘𝑘, representing the 
posterior probabilities that the input belongs to each of a set of K classes. ∆𝑘𝑘 here represents the K 
simplex:  
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where 𝜃𝜃  is the network parameterisation. These network parameters define the weights of each 
connection in the neural network. Classification is given by predicting the class pertaining to the 
highest score: 

𝑦𝑦𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑓𝑓𝜃𝜃(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 (3) 

The net is trained using back-propagation to minimize classification loss on a giving set of 
images and labels [2]. We will refer to a “sample'', as a pair of image x and target label y, and a 
“training-data'' as a set of samples used to learn the parameters of the network. Given a single sample 
(x, y), the loss is given by the cross-entropy:  

𝐸𝐸 = −𝑙𝑙𝑙𝑙𝑙𝑙�𝑠𝑠𝑦𝑦� (4) 

where 𝑠𝑠 ∈ ∆𝑘𝑘, as previously, is given by 𝑓𝑓𝜃𝜃(𝑥𝑥). The cross-entropy loss is intuitive: to minimize the 
loss, the entry of the score vector which corresponds to the correct class, y should be as large as 
possible. In practice, optimization is performed across batches of m samples (𝑥𝑥1,𝑦𝑦1), … , (𝑥𝑥𝑚𝑚 ,𝑦𝑦𝑚𝑚), so 
that m images are simultaneously forward-propagated through the network, and the loss calculated 
as: 
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where 𝑠𝑠𝑦𝑦𝑖𝑖represents the score given to ground truth class 𝑦𝑦𝑖𝑖  of image 𝑥𝑥𝑖𝑖. 
Each region has a unique taxonomic composition represented by the label set (SM3). All 

networks, however, where initialised with ImageNet dataset and then fine-tuned with the manually 
annotated training images for each country or region (Table 1, main text). Similarly, parameters of 
learning rate and image scale in the network were independently optimised for each network. A total 
of 5,255 images, randomly selected from the project’s open-access repository 
(https://espace.library.uq.edu.au/view/UQ:734799), were manually annotated for training of the 
deep learning networks. The manual annotation was conducted on CoralNet, an online platform 
designed for image analysis (www.coralnet.ucsd.edu).  

Network Fine-Tuning 

Traditionally, deep learning algorithms for computer vision require large datasets for training 
[3]. The most popular benchmark dataset, ImageNet, contains one million images from one 
thousand categories. But in practice, training dataset are typically smaller and training a neural 
network’s weights from scratch, using smaller datasets and starting from random initialized 
parameters, would largely over-fit the training set [3]. 

One approach to get around the aforementioned problem is to first pre-train a deep net on a 
large-scale dataset, like ImageNet. Then, given a new dataset, the network can be initialised with 
these pre-trained weights when training on our new task [3]. This process is commonly called fine-
tuning [3] and, there are a number of variations of fine-tuning. For example, the initial neural 
network can be used only as a feature extractor. That means that every or some layers, prior to the 

https://espace.library.uq.edu.au/view/UQ:734799
http://www.image-net.org/


output layer, are frozen and the network simply learn a new output layer. Another approach is to 
update all of the network’s weights for the new task, and that’s the approach used in this study.  

In this study, a VGG network [4], using 16 weight layers and pre-trained on ImageNet after 370K 
iterations (74 epochs), was initialised and fine-tuned using the training data. To fine-tune this 
network, the last fully-connected layer, containing one thousand classes from ImageNet, was 
replaced by a new one that outputs the desired number of classes (Table 1, main text). Pre-trained 
weights were initialised using a Gaussian sampling, where weights were drawn from a normal 
distribution, and adjusted by backpropagation, during the training process, as described above. This 
fine-tuning exercise ran for 40 K iterations, where the final classification was contrasted against a 
validation set of images, an independent 20% subset from the original set of images. During each 
iteration, all training images are forward-propagated to the network to calculate the cross-entropy 
loss and the weights are adjusted by back-propagation (eq. 5). Overall, the intention of the training 
exercise is an optimisation problem aimed at finding the best combination of model parameters or 
weights that minimise the cross-entropy loss. In other terms, the loss function can be defined as the 
goodness-of-fit of the model to the validation data and by optimising the minimal loss the network 
best represents the classification data. While less granular in the definition of goodness of fit, the 
overall accuracy of the classification also defines the fit of the model to the validation data and 
proportionally increases as the cross-entropy loss decreases (Figure S4). Finding a sample minima for 
the network loss and the maxima of the accuracy, ensure that the classification outputs from the best 
network configuration is not achieved by chance. 

 

Figure S4. Fine-tuning of deep learning networks. Fine-tuning iterations are aimed at maximising 
accuracy (A) and minimising cross –entropy loss (B) of network classification of validation samples 
(subset of images and annotations). This figures is taken an example from the fine-tuning results 
during the training of the deep learning network for the region Eastern Australia. 

For each network, two more hyper-parameters were also calibrated: the learning rate and the 
representation of the receptive field. Learning rate is a hyper-parameter that control the degree or 
steps at which the network weights are adjusted with respect the loss gradient (E, eq. 4). Receptive 
field is the region in the input space that a particular CNN’s feature is looking at and activated by 
(e.g., filter size). Typically, higher resolution in the receptive fields will lead to increases in the 
accuracy of the classification, at a cost in the computational time. However, the receptive fields in 
VGG are fixed, and while this, admittedly, should be optimised to maximise the classification 
performance, the chosen architecture does not allow altering the receptive field resolution. As 
discussed in the main text, the accuracy of smaller and patchy organisms (e.g., turf algae) in the 
benthic imagery tend to be penalised by the size of the receptive field while larger receptive field may 



increase the accuracy of larger organisms (e.g., hard corals). Ideally, a multi-scale architecture would 
be better suited for this problem, but further development work is required. One initial step towards 
solve this problem, implemented here, is to up-scale the image size prior cropping the patches that 
will serve as training samples for the network (see below classification of random point annotations). 
Increasing the size of the images (total number of pixels) by a factor, reduces the he proportional 
representation of the cropped patches within the image by the same factor. Thus, balancing the per-
class classification accuracy between larger objects (e.g., hard corals) and smaller or patchy organisms 
(e.g., turf algae, Figure S5). Details of the model parametrisation for each region is provided below 
(Table S1). 

To optimise the learning rate and representation of the receptive field in each network, a suite 
of experiments was designed to train the same network multiple times using different values of 
learning rates and image size, simultaneously (i.e., grid search). Learning rate was evaluated using a 
range of values starting from 0.01, as the initial rate described for the pre-trained VGG network [4], 
and decreasing by a factor of 10 (e.g., 0.01, 0.001, 0.0001). The image size was adjusted by two different 
methods: upscaling by a scaling factor (Scale) or by defining the pixel/cm ratio (Ratio). The Scale 
method increased the total number of pixels in an image by a multiplying factor (e.g., 1.0, 2.0, 3.0), 
while Ratio set the image spatial resolution (e.g., 11, 22, 33). Both methods yielded the same results 
only varying the input variable (scaling factor or desired spatial resolution) and the resulting image 
is resized by bilinear interpolation. The experiment produced a number of networks, using the same 
number of interactions as a described above, that were contrasted against the absolute error per label 
to select the best learning rate and image size for each country/region. 

Table S1. Configuration parameters for each network after fin-tuning weights and calibrating the 
learning rate and receptive field. ID = Network identifier, Region and country define the location 
where images were collected, Training images is the total number of images collected, training 
samples is the total number of cropped patches from 100 random points per image used for training 
the network, validation samples is the random subset of samples (20%) used for fine-tuning the 
network weights, K is the total number of classes used to replace the final layer of the pre-trained 
network, method and factor describe the approach to explore the amount of information contained in 
the receptive field (see text), Learn. rate is the final learning rate selected and S.I. is the iteration 
number at which the network achieved the loss minimum. 

ID Region Country 
Training 
images 

Training 
samples 

Validation 
samples K Method Factor 

Learn. 
rate S.I 

1 
Central 
Pacific 
Ocean 

Hawaii 501 40,080 10,020 21 scale 1 0.001 40,000 

2 Central 
Indian 
Ocean 

Chagos 
Archipelago 

359 28,720 7,180 
33 

scale 2 0.001 40,000 

3 Maldives 1,171 93,680 23,420 scale 2 0.0001 30,000 

4 Western 
Atlantic 

All 449 35,920 8,980 38 scale 1 0.001 37,000 

5 Eastern 
Australia 

Australia 1,234 98,720 24,680 22 scale 2 0.001 40,000 

6 

South East 
Asia 

Indonesia 
and 

Philippines 
752 60,160 15,040 

35 

scale 2 0.0001 30,000 

7 Timor Leste 551 44,080 11,020 ratio 30 0.001 30,000 

8 Solomon 
Islands 

439 35,120 8,780 scale 1 0.0001 40,000 

9 Taiwan 350 28,000 7,000 scale 1 0.001 40,000 



 

Figure S5. Absolute Error for the abundance estimation of benthic classes (Labels) by different net 
configurations. Network configurations correspond to the parametrization of learning rate and image 
size (proportional representation of the receptive field, see main text). This figure is an example of the 
experiments designed to find the best learning rate and image size that represents the labels with the 
Maldives dataset. A group of networks were produce with different combinations of parameters, 
labelled as “method_factor_lerning rate” in the legend of this figure. Colour dots represent the mean 
error while the error bars represent the 95% confidence interval for each group of experiments. In this 
figure, EAM_DHC (Turf Algae), Unc (Unclear substrate), LSUB_SAND (Sand) and SINV_SFC_A (Soft 
Corals, family Alcyoniidae) where the labels where the image size and learning rate had the most 
significant impact. 

Classification of Random Point Annotations 

In this study, the relative cover of benthic groups or labels was estimated using 50 points per 
image. Each cropped patch was then classified independently and then the relative abundance for 
each of the benthic classifications was the ratio between the numbers of patches classified for a given 
class by the total number of patches evaluated in an image (Figure S6). 



 

Figure S6. Diagram to visualise the approach to automatically estimate the relative abundance of 
benthic groups using a sample image. From random point locations, an area cropped around each 
point (patch) was automatically classified and the relative abundance was calculated by the 
proportional number of classes. 

Data Augmentation 

As afore mentioned, deep learning algorithms often require large training datasets. While fine-
tunning a pre-trained network is the preferred method to deal with small datasets, data augmentation 
can help. Data augmentation is a technique to synthetically increase the dataset by manipulating the 
images, in our case the patches. Minor alterations to the existing dataset, such as flips or translations 
or rotations will increase the number of images and the network will identify each manipulated 
image as distinct sample.  

Furthermore, in the real-world scenario, a dataset of images may be taken in a limited set of 
conditions. But, the images expected to be classified may exist in a variety of conditions, such as 
different orientation, location, scale, brightness etc. A convolutional neural network that can robustly 
classify objects, even if it’s placed in different orientations, is said to have the property called 
invariance. More specifically, a CNN can be invariant to translation, viewpoint, size or illumination 
(or a combination of the above). Here we trained the neural networks with additional synthetically 
modified data by rotating in 90 degrees each patch image, doubling the size of the training set. 
  



SM3. Label-Set Designed for Automated Classification of Coral Reef Benthos in Each Region 

Table S2. Label set defined for automatically identifying coral reef benthos per region. Group refers 
to major functional group of benthic classes. “Name” represents the final classes for the classification 
process, descried in the column “description”. “Attribute” refers to the taxonomical or morphological 
attribute that defines each name. 

Group Name Attribute Description 
Region: Western Atlantic 

Algae 

Cyanobacteria  

Morphology 

Filamentous cyanobacteria 

Epilithic Algal Matrix 
Multi-specific assemblages of filamentous algae and CCA smothering reef 
surface 1 cm or less in height 

Macroalgae Upright macroalgae > 1 cm in height (all genera and species) 

Hard corals  

A. cervicornis 

Species 

Acropora cervicornis 
A. palmata Acropora palmata 
C. natans Colpophyllia natans 
D. labyrinthiformis Diploria labyrinthiformis 
E. fastigiata Eusmilia fastigiata 
M. cavernosa Montastraea cavernosa  
Madracis spp 

Genera 
Madracis sp 

Meandrina spp Meandrina sp 

Meandroid Faviidae and 
Mussidae 

Family and 
Morphology 

Massive meandroid corals, including: Dendrogyra, Isophyllia, Manicina, 
Mycetophyllia, Musa, Scolymia 

Orbicella spp Genera Orbicella complex: O. Annularis, O. faveolata and O. franksi 
P. astreoides 

Species 
Porites astreoides 

P. porites Porites porites 
Plates/encrusting 
Agariciidae 

Family and 
Morphology 

Agariciidae. Plates and encrusting corals of the genera Agaricia, Undaria and 
Helioseris 

Pseudodiploria spp Genera Pseudodiploria strigosa and P. clivosa 
S. siderea Species Siderastrea siderea 

Sub-massive hard coral Morphology 
Sub-massive corals, including: Dichocoenia, Favia, Solenastrea and 
Stephanocoenia 

Other 

Other 
Broad functional 
groups  

Other organisms, materials and substrate nor reported in other labels. 
Includes: fish, trash, transect hardware 

Sand Sand. Unconsolidated reef sediment 
Seagrass Seagrass 
Sediment other Terrigenous sediments 

Other 
Invertebrates 

A. fistularis 
Species 

Aplysina fistularis 
C. vaginalis Callyspongia vaginalis 
Cliona spp Genera Cliona viridis complex 

Encrusting sponge 
Morphology 

Less than 5 cm height (for whole individual); e.g. S. ruetzleri, Haliclona sp, 
Monanchora sp, Chondrilla sp, Clathria sp, C. varians 

Erect Sponge 
Upright narrow tubes or branches e.g. A. compressa. >1 cm height; height 
>>basal area 

Ircinia spp Genera Ircinia sp 

Massive sponge Morphology 
Large basal area to body size and height > 5 cm, compact shape, irregular 
shapes. Include: chain-tubes spherical castle; e.g. E. ferox and Verongula sp. 

Millepora spp Genera Millepora sp 
Mobile invertebrates Broad functional 

groups 
Mobile invertebrates: e.g., Echinoderms, Lobsters 

Other sponge Other sponges 
Rope sponge Morphology Height >> basal area, spread along the substrate. e.g. S. aura 

Sessile invertebrates 
Broad functional 
groups 

Other sesile invertebrates. Includes: bryozoa, molluscs, ascidians, soft 
hexacorrallia and hydroids 

Tube sponge Morphology 
Tube species: A. archeri, A. tubulata,  C. plicifera,  N. digitalis and unknown 
vase and small barrel group (tube opening ~ height; basal area < opening) 

X. muta Species Xestospongia muta 

Soft Corals 
Other soft corals Broad functional 

groups 
Other soft corals 

Sea fans, plumes and whips Sea fans, whips and plumes 
Region: Australia 

Algae 

Crustose Coralline Algae Morphology Crustose coralline algae 

Epilithic Algal Matrix Morphology 
Multi-specific assemblages of filamentous algae and CCA smothering reef 
surface 1 cm or less in height 

Macroalgae Morphology Upright macroalgae > 1 cm in height (all genera and species) 

Hard Corals  

Branching Acroporidae 

Family and 
Morphology  

Family Acroporidae, branching morphology (excluding hispidose 
morphology) 

Branching Poritidae Family Poritidae, branching morphology e.g. Porites cylindrica 
Encrusting Acroporidae Family Acroporidae, plate and encrusting morphologies 
Encrusting Poritidae Family Poritidae, encrusting morphologies e.g.  Porites lichen 
Hispidose Acroporidae Family Acroporidae, hispidose morphology 



Massive Poritidae 
Family Poritidae, massive and sub-massive morphologies, e.g. Porites lobata; 
P. lutea 

Meandroid Faviidae and 
Mussidae 

Families Faviidae and Mussidae, massive and meandroid morphologies 

Other Acroporidae Other corals from the family Acroporidae (e.g. Isopora spp) 

Other hard corals 
Broad functional 
groups 

Other hard corals 

Pocilloporidae Family  Family Pocilloporidae, all genera and species 

Table Acroporidae 
Family and 
Morphology 

Family Acroporidae, table, corymbose and digitate morphologies 

Other 
Other Broad functional 

groups 

Other organisms, materials and substrate nor reported in other labels. 
Includes: fish, trash, transect hardware 

Sand Sand. Unconsolidated reef sediment 

Other 
Invertebrates 

Mobile invertebrates Morphology Mobile invertebrates: e.g., echinoderms, lobsters 

Sessile invertebrates 
Broad functional 
groups 

Other sesile invertebrates. Includes: bryozoa, molluscs, ascidians, soft 
hexacorrallia and hydroids 

Soft Coral 

Digitate Alcyoniidae 
Family and 
Morphology 

Family Alcyoniidae, digitate morphology. Common genera Lobophytum, 
Sarcophyton and Sinularia 

Other soft corals 
Broad functional 
groups 

Other soft corals 

Sea fans, plumes and whips Sea fans, whips and plumes 

Region: Central Indian Ocean 
Algae Crustose Coralline Algae Morphology Crustose coralline algae 

Cyanobacteria  Filamentous cyanobacteria 
Epilithic Algal Matrix Multi-specific assemblages of filamentous algae and CCA smothering reef 

surface 1 cm or less in height 
Macroalgae Upright macroalgae > 1 cm in height (all genera and species) 

Hard corals Branching Acroporidae Family and 
Morphology  

Family Acroporidae; branching morphology (including hispidose 
morphology) 

Branching hard corals Non-Acropora branching genera including: Seriatopora, Anacropora, 
Echinopora, Montipora, Tubastrea (excluding Pocillopora and Stylophora) 

Branching Poritidae Family Poritidae, branching morphology e.g. P. cylindrica 
Encrusting Poritidae Family Poritidae, encrusting morphologies e.g.  P. lichen 
Foliose corals Morphology Thin Foliose and Plate colonies (excluding genera Acropora and Porites): 

e.g. Echinophyllia, Turbinaria, Montipora, Echinopora 
Lobophyllia spp Genera Lobophyllia sp 

Massive Agariciidae/ 
Coscinaraeidae 

Family and 
Morphology  

Massive, Submassive and Encrusting colonies with small or invisible polyps 
(including columnar forms). E.g., Pavona; Psammocora, Coscinaraea, 
Gardineroseris 

Massive Other  Massive, Submassive and Encrusting colonies with small or invisible polyps 
(including columnar forms). E.g., Pavona; Psammocora, Coscinaraea, 
Gardineroseris 

Massive Poritidae Family Poritidae, massive and sub-massive morphologies, e.g. P. lobata; P. 
lutea 

Meandroid 
Faviidae/Mussidae 

Massive Submassive Encrusting colonies with meandering ridges and 
valleys resembling brain. Includes: Platygyra, Leptoria, Goniastrea 

Other Acroporidae Other corals from the family Acroporidae (e.g. Isopora spp) 
Other hard corals Broad functional 

groups 
Other hard corals 

Pocilloporidae Family  Family Pocilloporidae; all genera (excluding Stylophora) and species 
Stylophora spp Genera Branching Stylophora spp 
Table Acroporidae Family and 

Morphology 
Family Acroporidae, table and corymbose morphologies 

Other  Other Broad functional 
groups 

Other organisms, materials and substrate nor reported in other labels. 
Includes: fish, trash, transect hardware 

Sand Sand. Unconsolidated reef sediment 
Seagrass Seagrass 

Other 
Invertebrates  

A. planci (COTS) Species Crown of Thorns Sea Star. Acanthaster planci 
Cliona spp Genera Cliona viridis complex 
Massive sponge Morphology Massive or encrusting sponges  
Millepora spp Genera Millepora sp 
Mobile invertebrates Morphology Mobile invertebrates: e.g., Echinoderms, Lobsters 
Other sponge Broad functional 

groups 
Broad functional 
groups 

Other sponges 
Sessile invertebrates Other sesile invertebrates. Includes: bryozoa, molluscs, ascidians, soft 

hexacorrallia and hydroids 

Soft Coral  Digitate Alcyoniidae Family and 
Morphology 

Family Alcyoniidae, digitate morphology. Common genera Lobophytum, 
Sarcophyton and Sinularia 

Other soft corals Broad functional 
groups 

Other soft corals 
Sea fans, plumes and whips Sea fans, whips and plumes 

Region: Central Pacific Ocean 



Algae  Crustose Coralline Algae Morphology  Crustose coralline algae 

Cyanobacteria  Filamentous cyanobacteria 

Epilithic Algal Matrix Multi-specific assemblages of filamentous algae and CCA smothering reef 
surface 1 cm or less in height 

Macroalgae Upright macroalgae > 1 cm in height (all genera and species) 

Hard corals  Massive Poritidae Family and 
Morphology 

Family Poritidae, massive and sub-massive morphologies, e.g. P. lobata; P. 
lutea 

Montipora spp Genera Montipora sp 

Other hard corals Broad functional 
groups 

Other hard corals 

P. compressa Species Porites compressa 

Pocilloporidae Family  Family Pocilloporidae, all genera and species 

Porites rus/monticulosa Species Porites rus and P. monticulosa 

Porites spp Genera Porites spp. Includes: nodular and encrusting morphologies 

Other  Other Broad functional 
groups  

Other organisms, materials and substrate nor reported in other labels. 
Includes: fish, trash, transect hardware 

Sand Sand. Unconsolidated reef sediment 

Sediment other Terrigenous sediments 

Other 
Invertebrates 

Mobile invertebrates Morphology Mobile invertebrates: e.g., echinoderms, lobsters 

Sessile invertebrates Broad functional 
groups 

Other sesile invertebrates. Includes: bryozoa, molluscs, ascidians, soft 
hexacorallia and hydroids 

Region: South-East Asia 

Algae  

Crustose Coralline Algae 

Morphology  

Crustose coralline algae 
Cyanobacteria  Filamentous cyanobacteria 

Epilithic Algal Matrix 
Multi-specific assemblages of filamentous algae and CCA smothering reef 
surface 1 cm or less in height 

Macroalgae Upright macroalgae > 1 cm in height (all genera and species) 

Hard corals  

Branching Acroporidae 

Family and 
Morphology  

Family Acroporidae; branching morphology (including hispidose type 
branching) 

Branching hard corals 
Non-Acropora branching genera including: Seriatopora, Anacropora, 
Echinopora, Montipora, Tubastrea (excluding Pocillopora and Stylophora) 

Branching Poritidae Family Poritidae, branching morphology e.g. Porites cylindrica 
Encrusting Poritidae Family Poritidae, encrusting morphologies e.g.  Porites lichen 

Foliose corals Morphology 
Thin Foliose and Plate colonies (excluding genera Acropora and Porites): e.g. 
Echinophyllia, Turbinaria, Montipora, Echinopora 

Lobophyllia spp Genera Lobophyllia sp 

Massive Agariciidae/ 
Coscinaraeidae 

Family and 
Morphology  

Family Agariciidae and Coscinaraeidae. Massive, submassive and 
encrusting morphologies with small or invisible polyps (including columnar 
forms). E.g., Pavona; Psammocora, Coscinaraea, Gardineroseris 

Massive Other  
Massive, Submassive and Encrusting colonies with small or invisible polyps 
(including columnar forms). E.g., Pavona; Psammocora, Coscinaraea, 
Gardineroseris 

Massive Poritidae 
Family Poritidae, massive and sub-massive morphologies, e.g. Porites lobata; 
P. lutea 

Meandroid 
Faviidae/Mussidae 

Massive Submassive Encrusting colonies with meandering ridges and 
valleys resembling brain. Includes: Platygyra, Leptoria, Goniastrea 

Other Acroporidae Other corals from the family Acroporidae (e.g. Isopora spp) 

Other hard corals 
Broad functional 
groups 

Other hard corals 

Pocilloporidae Family  Family Pocilloporidae; all genera (excluding Stylophora) and species 
Stylophora spp Genera Branching Stylophora spp 

Table Acroporidae 
Family and 
Morphology 

Family Acroporidae, table, corymbose and digitate morphologies 

Other  

Other 
Broad functional  

Other organisms, materials and substrate nor reported in other labels. 
Includes: fish, trash, transect hardware 

Sand Sand. Unconsolidated reef sediment 
Sediment other Terrigenous sediments 

Other 
Invertebrates  

A. planci (COTS) Species Crown of Thorns Sea Star. Acanthaster planci 
Massive sponge Morphology Massive or encrusting sponges  
Millepora spp Genera Millepora sp 
Mobile invertebrates Morphology Mobile invertebrates: e.g., echinoderms, lobsters 

Other sponge 
Broad functional 
groups 

Other sponges 

Rope sponge Morphology Height >> basal area, spread along the substrate 



Sessile invertebrates 
Broad functional 
groups 

Other sesile invertebrates. Includes: bryozoa, molluscs, ascidians, soft 
hexacorrallia and hydroids 

Tube sponge Morphology Tube species: tube opening ~ height, basal area < opening 

Soft Coral  

Digitate Alcyoniidae 
Family and 
Morphology 

Family Alcyoniidae, digitate morphology. Common genera Lobophytum, 
Sarcophyton and Sinularia 

Other soft corals 
Broad functional  

Other soft corals 
Sea fans, plumes and whips Sea fans, whips and plumes 

  



SM4. Test Transects  

To locate the 30m units (test transects)  within the 2km-transects, we used images (for all 
surveyed years in each transect) and applied hierarchical clustering with Ward’s method [5], as 
implemented in the “hclust” function of R [6]. The Ward’s method creates clusters that minimize 
within-cluster variance in the distance metric, in our case, we use the physical distance among points 
(images) and cut the cluster at 30m to identify the aggregation groups. From these units, a number 
test transects per region (Table 1, main text) were selected at random and the benthic composition of 
the images comprised within these transects was averaged and contrasted between the two methods 
evaluated in this study: manual vs automated annotation (observer vs machine). 

In order to assess changes in community composition over time, in a replicable and predictable 
fashion, we created a buffer polygon around the 30m units and extracted the images for each year 
that were contained within this polygon. For each polygon, coral cover was estimated by manual and 
automated methods, and the absolute change in cover was compared. Buffer polygons of 30 m length 
and 20m width were designed around the centroid of each cluster unit using the package “rgeos” 
from R [6]. The buffer polygons defined the sub-transect region and the benthic coverage for each 
year was extracted by averaging the cover across all images contained within each polygon for a 
given year.  

As discussed in the manuscript, images were grouped within transects for three main reasons: 
1) consistency in the definition of sample unit for coral reef monitoring; 2) evaluating the ability of 
automated methods in detecting change over time, and; 3) compatibility of observations with existing 
monitoring data to evaluate continuity in coral reef monitoring data. However, we do recognised that 
a reader may be interested on the error of automated estimations within an image and not aggregated 
within transects. When summarising the errors for benthic estimation within images (Figure S7) 
shows a slight increment in the values (~ 1 - 2%), indicating noisier estimations at the image level. 
Such increase in error can be attributed in part to the sampling unit size and to the heterogeneity in 
quality properties across images that may affect the classifier (e.g., luminescence, light reflectance, 
composition, topographic complexity). As discussed in the manuscript, image quality can affect the 
accuracy of the classifier resulting in either over- or under- estimation of benthic groups. Some of this 
variability in the performance of the classifier can then be cancelled or reduced by considering a 
larger sampling unit size.   



 

Figure S7. Absolute error (|E|) for automated estimation of benthic abundance within an image. 
Errors are aggregated by functional groups along the y axis and, regions along the x axis. Solid and 
error bars represent the mean and the 95% Confidence Intervals of the absolute error, respectively. 
Please note, while this figure resembles Figure 4 in the manuscript, the absolute errors represented 
here are averaged among all images within a region, without aggregating by test transects. 

  



SM5. Monitoring Program Data 

Table S3. Summary of locations from monitoring programs in Hawaii, Bermuda and Australia used 
to compare the capacity of automated image analysis to ensure data continuity. These locations were 
chosen because their proximity in time and space to XL-CSS survey sites (within a radius of 2km). 

Region Program Sub-region Reef site survey 
years 

Latitude Longitude Depth 

Central 
Pacific 

NCRMP Main Hawaiian Islands Hawaii HAW-
49 

2016 19.93 -155.89 14 

Central 
Pacific 

NCRMP Main Hawaiian Islands Lanai LAN-
12 

2016 20.74 -156.92 15 

Central 
Pacific 

CRAMP Main Hawaiian Islands Maui MaKa
h07m 

2015 20.94 156.69 7 

Central 
Pacific 

CRAMP Main Hawaiian Islands Maui MaOlo
07m 

2015 20.81 156.61 7 

Australia LTMP Cairns ST CRISPIN 
REEF 

1 2012, 
2014, 
2016 

-16.07 145.85 8 

Australia LTMP Cairns ST CRISPIN 
REEF 

2 2012, 
2014, 
2016 

-16.07 145.85 8 

Australia LTMP Cairns ST CRISPIN 
REEF 

3 2012, 
2014, 
2016 

-16.08 145.85 8 

Australia LTMP Cairns OPAL (2) 1 2012, 
2014, 
2016 

-16.20 145.91 8 

Australia LTMP Cairns OPAL (2) 2 2012, 
2014, 
2016 

-16.21 145.91 8 

Australia LTMP Capricorn Bunkers ONE TREE 
REEF 

3 2012, 
2014, 
2016 

-23.49 152.10 8 

Australia LTMP Lizard Island YONGE REEF 3 2012, 
2014, 
2016 

-14.58 145.62 8 

Australia LTMP Townsville MYRMIDON 
REEF 

1 2012, 
2014, 
2016 

-18.26 147.38 8 

Australia LTMP Townsville MYRMIDON 
REEF 

2 2012, 
2014, 
2016 

-18.25 147.39 8 

Australia LTMP Townsville MYRMIDON 
REEF 

3 2012, 
2014, 
2016 

-18.25 147.39 8 

Australia LTMP Townsville KNIFE REEF 1 2012, 
2014, 
2016 

-18.57 147.58 8 

Australia LTMP Townsville KNIFE REEF 2 2012, 
2014, 
2016 

-18.57 147.58 8 

Australia LTMP Townsville KNIFE REEF 3 2012, 
2014, 
2016 

-18.57 147.58 8 

Australia LTMP Townsville CHICKEN REEF 2 2012, 
2014, 
2016 

-18.66 147.72 8 

Australia LTMP Townsville CHICKEN REEF 3 2012, 
2014, 
2016 

-18.66 147.72 8 

Australia LTMP Townsville DAVIES REEF 1 2012, 
2014, 
2016 

-18.81 147.67 8 



Australia LTMP Townsville DAVIES REEF 2 2012, 
2014, 
2016 

-18.81 147.67 8 

Western 
Atlantic 

BREAM North Bermuda Devils LTEM
02 

2015 32.43 -64.87 10 

Western 
Atlantic 

BREAM Southeast Bermuda Sonesta LTEM
26 

2015 32.24 -64.83 10 

Western 
Atlantic 

BREAM Southwest Bermuda Chaddock LTEM
29 

2015 32.25 -64.95 10 

Western 
Atlantic 

BREAM Southwest Bermuda Chub Head LTEM
33 

2015 32.29 -65.00 10 

Western 
Atlantic 

BREAM West Bermuda WBC LTEM
40 

2015 32.37 -64.92 10 

 

  



SM6. Cost-Benefit Analysis  

Given the validation results from the evaluation of performance (see main text), the cost and 
benefit of implementing deep learning automated image annotation in coral reef monitoring were 
explored using a case-based example.  

From our experience, an expert observer tends to annotate approximately 50 images in an eight-
hour day (~ 6 img.hr-1), using 50 random point annotations per image. Based on the casual hour rates 
at the University of Queensland, we estimated that the cost of annotating as single image by an expert 
observer would be US $5.41. 

Typically, it would take about five working days invested from a machine learning expert to 
train, fine-tune and optimise network architecture and hyper-parameters, validate the outputs and 
produce the final data (e.g., benthic cover estimations for the entire dataset). Considering the average 
cost of US $1 per computation hour (AWS EC2 P2 instance, including storage costs) and that about 
14 days of computing time will be required to produce the data (including the steps aforementioned), 
the computing costs for training and producing the data would be equal to US $336.  

If we consider that an average of 600 images is needed to train and optimise the deep learning 
network, at the rate aforementioned, it would cost about US $3,247 to train the machine using 
manually annotated images. Based on that deep learning networks can estimate the benthic coverage 
of about 12,000 images per hour (200 fold more efficient than manual annotations), the individual 
cost of annotating a single image using machine learning would be equal to US $0.07 (Figure 7a and 
7b, main text).  

Importantly, the above-mentioned costs will carry an on-going cost for the manual labour from 
a machine learning expert required to re-train, optimise and produce new data. Every time a machine 
will need to be reconfigured, for example for classifying a new region, an additional cost of five days 
of expert labour and 14 days of computing time will be added to the total cost (about US $1740). If a 
machine is already trained and optimised for a given dataset, and no further developments in the 
architecture or framework are required, new images from the same region will only require the expert 
labour and computing time to run the classifier on the new images. This would be about two days 
from a machine learning expert and a day of AWS usage per every 25k images required to be 
classified (about US $600 for as much as 25k images to process). 
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