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Abstract: Evapotranspiration (ET) is usually difficult to estimate at the regional scale due to scarce
direct measurements. This study uses the water balance equation to calculate the regional ET with
observations of precipitation, runoff, and terrestrial water storage changes (TWSC) in nine exorheic
catchments of China. We compared the regional ET estimates from a water balance perspective with
and without considering TWSC (ETWB: ET estimates with considering TWSC, and ETPQ: ET estimates
from precipitation minus runoff without considering TWSC). Results show that the regional annual
ET ranges from 417.7 mm/yr to 831.5 mm/yr in the nine exorheic catchments based on the water
balance equation. The impact of ignoring TWSC on calculating ET is notable, as the root mean square
errors (RMSEs) of annual ET between ETWB and ETPQ range from 12.0–105.8 mm/yr (2.6–12.7% in
corresponding annual ET) among the exorheic catchments. We also compared the estimated regional
ET with other ET products. Different precipitation products are assessed to explain the inconsistency
between different ET products and regional ET from a water balance perspective. The RMSEs between
ET estimates from Gravity Recovery and Climate Experiment (GRACE) and ET from land surface
models can be reduced if the deviation of precipitation forcing data is considered. ET estimates from
Global Land Evaporation Amsterdam Model (GLEAM) can be improved by reducing the uncertainty
of precipitation forcing data in three semiarid catchments. This study emphasizes the importance of
considering TWSC when calculating the regional ET using a water balance equation and provides
more accurate ET estimates to help improve modeled ET results.

Keywords: evapotranspiration; China; exorheic catchments; water balance; GRACE; terrestrial water
storage changes

1. Introduction

Evapotranspiration (ET) is one of the most important components of the climate system connecting
the water, energy, and carbon cycle [1,2]. ET changes can be used as an indicator of climate change,
especially in areas where the water cycle is accelerated [3,4]. However, regional ET is often difficult
to estimate. The flux tower observing station network can provide accurate ET observations at each
site [5], but it often has too sparse sites for basin scale study. Remote sensing provides an opportunity to
monitor spatial-temporal changes in ET [6,7], but regional calibration and uncertainty from vegetation
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cover data will also lead to large uncertainty in ET [8]. Land surface models (LSMs) can also provide
grid-to-regional scale ET estimates, such as the multiple LSMs simulations using the global land data
assimilation system (GLDAS) issued by NASA [9]. Regional ET can be derived from the terrestrial
water budget, namely the residual between precipitation (P) and the sum of runoff (Q) and terrestrial
water storage change (ds/dt), which have been regarded as benchmark estimates for validating ET
products or estimates on a regional scale [10,11].

The Gravity Recovery and Climate Experiment (GRACE) satellites mission launched in March
2002 has provided a unique way to monitor terrestrial water storage (TWS) changes on the monthly
scale with a ~300 km footprint [12]. As for a given basin, the time series of TWS changes (TWSC) in the
basin can be obtained from the differential of TWS anomalies (TWSA) observed by GRACE [1,13,14].
The regional ET can be estimated from TWSC, regional precipitation, and runoff data based on the
water balance equation. Rodell et al. [4] discussed the method of calculating ET from GRACE TWSA
and suggested that the ET based on the GRACE water balance method can be used to evaluate the
ET of the model simulations. Ramillien et al. [15] estimated the ET of 16 globally distributed basins
based on the GRACE water balance method, and they are compared to outputs of four global LSMs,
which shows good overall agreement. A few studies have applied this method to estimate the regional
ET in several global basins, e.g., the Lake Chad basin, Africa [16], continental USA [17], and Amazon
Basin [18]. However, the differences among different ET estimates are usually ignored or ascribed
to the uncertainty of estimates during data processing [13,15]. Castle et al. [19] and Pan et al. [13]
estimated the human-induced ET in the Colorado River Basin (USA) and Haihe River Basin (China)
and attributed the differences between GRACE water balance ET and GLDAS ET to the influence of
human activities. However, the quality of input precipitation also has a great influence on the ET
outputs [10,20]. Badgley et al. [21] emphasized the significant uncertainty of the regional ET estimate
from the choice of input forcing dataset. Liu et al. [11] used a bias-corrected water balance method to
calculate annual reference ET from 1983–2006 and evaluated nine ET products in 35 global river basins
on the interannual and long-term scale. They determined that different performances among the ET
products may result from different forcing datasets. Given the uncertainty of ET products caused
by the precipitation forcing data, in this study, we seek to explain the difference among different ET
estimates by considering uncertainty from the different precipitation forcing data and modeled runoff

from a water balance perspective.
The water balance equation is the classic method to calculate the ET on a regional scale. In China,

Mao et al. [22] emphasized the significant impact of water storage due to reservoir construction on
calculating ET trends. However, they did not consider other factors that cause the water storage
changes, e.g., water withdrawal, lakes change, and glaciers melting [22,23]. Jiang et al. [24] took
basin water balance as a benchmark to evaluate the MODIS MOD16 ET products in several exorheic
basins. However, the assessment on the uncertainty of GRACE-derived TWSC was limited and was
restricted to the Yangtze River Basin (YRB), Yellow River Basin (YeRB), and Songhuajiang River Basin
(SRB) on monthly scale. Li et al. [25] used the revised Remote Sensing–Penman Monteith (RS-PM)
model [26,27] to produce an ET map in China and derived an estimate of mean annual land–surface ET
to 500 mm/yr. The revised RS-PM model predictions did not show a significant systematic error, but
they only explained 61% of the ET variations at all the validation sites, which showed the uncertainty
of the ET model in the regional estimation. Bai and Liu [10] used water balance-based ET estimates to
evaluate the Global Land Evaporation Amsterdam Model (GLEAM), GLDAS and MODIS MOD16
ET products for 22 river basins in China, but the selected basins are restricted in wet basins, most of
which are located in the YRB. ET calculated from the water balance equation for some exorheic basins
of China are estimated by the above studies. However, little attention is paid to uncertainties from
TWSC and precipitation forcing data. Therefore, we conduct a systematic assessment for the ET of
exorheic basins from a water balance perspective.

Several studies assume TWSC to be zero on the annual scale due to the lack of data [22], and ET is
obtained by precipitation minus runoff directly, as in the studies by Zhang et al. [28], Senay et al. [29]
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and Xue et al. [30]. However, TWSA can have large variability on seasonal and interannual scales
due to human water consumption [31,32] and the building of reservoirs [22,23]. Zeng et al. [33] also
acknowledged that ignoring TWSC would bring much bias into ET estimation, especially in regions
with low ET. Wang [34] points out the importance of considering interannual TWSC in the estimation
of ET. Hence, we compare the difference of ET estimates by considering and not considering TWSC
in the water balance equation to explore the impact of TWSC on the ET estimate on interannual and
monthly scales.

This study aims to (1) estimate the regional ET of nine exorheic catchments in China using the
water balance equation considering TWSC; (2) analyze the impact of not considering TWSC and
different TWSC products on the ET estimates; (3) explain the inconsistency between different ET
products and regional ET from a water balance perspective. The flowchart of this study is shown in
Figure 1.

Figure 1. Flowchart of this study. It includes the used data and process of calculation and analysis in
this study.

2. Materials and Methods

2.1. Study Area

Nine exorheic catchments were divided from eleven hydrological gauge stations from River
Sediment Bulletin of China (RSBC) [35]. The catchment boundaries are derived from the location
of gauge stations, Shuttle Radar Topography Mission (SRTM) elevation data (https://www2.jpl.
nasa.gov/srtm/), and processed in ArcGIS with Soil and Water Assessment Tool (ArcSWAT) plugin
(https://swat.tamu.edu/software/arcswat/). The ArcSWAT is an ArcGIS-ArcView extension and a
graphical user input interface for the SWAT (Soil and Water Assessment Tool) model. The Gaoyao,
Shijiao, and Boluo hydrological gauge stations are all in the Pearl River Basin (PRB), we merge them
into one catchment (Figure 2). The YRB is divided into two sub-basins, based on its two hydrological
gauge stations: Yichang and Datong. The information of the nine catchments is listed in Table 1, and
the catchments are also presented in Figure 2.

https://www2.jpl.nasa.gov/srtm/
https://www2.jpl.nasa.gov/srtm/
https://swat.tamu.edu/software/arcswat/
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Figure 2. Map of exorheic catchments of China. The black curves show the boundaries of the nine
exorheic catchments, the black texts with a white background are the abbreviation of catchments names.
The magenta stars show the locations of eleven hydrological gauge stations, and the magenta texts
present the name of hydrological gauge stations. Their descriptions can be further found in Table 1.
The blue curves represent the main rivers and tributaries in China. The country boundary is shown
with the dash line.

Table 1. Descriptions for the nine exorheic catchments of China (sorted by areas and location).
The climate categories are based on annual precipitation and dryness [36].

Catchments ID Name Hydrological Gauge
Stations

Area
(× 104 km2)

Climate
Categories

1 Upper Yangtze River Basin (UYRB) Yichang 100.55 Humid
2 Middle Yangtze River Basin (MYRB) Datong-Yichang 69.99 Humid
3 Yellow River Basin (YeRB) Huayuankou 73.00 Semiarid
4 Songhuajiang River Basin (SRB) Jiamusi 52.83 Semihumid
5 Pearl River Basin (PRB) Gaoyao + Shijiao + Boluo 41.52 Humid
6 Liaohe River Basin (LRB) Liujianfang 18.58 Semiarid
7 Haihe River Basin (HRB) Haihezha 14.28 Semiarid
8 Huaihe River Basin (HuRB) Bengbu 12.13 Humid
9 Minjiang River Basin (MRB) Zhuqi 5.45 Humid

2.2. Water Balance Equation

The ET can be estimated from surface water balance on the basin or continental scales, which
usually serves as a benchmark for other products. The equation is as follows:

ETWB = P − Q − ds/dt (1)

where ETWB is calculated ET, P is precipitation, Q is river discharge, and ds/dt is the change in terrestrial
water storage for a specific time period [4,11,15]. TWSC is estimated as the temporal derivative of
TWSA from the GRACE products [37,38]. ET, P, and Q are the cumulated amount in a full month [4,39].
Then ds/dt (TWSC) is the differential of two consecutive months of TWSA at the beginning of a month.
To obtain the time point of every beginning of a month of TWSA time series, we interpolate TWSA
by an interpolation method. A similar process of calculation can be found in Li et al. [40]. Firstly,
seasonal and trend signals are estimated using unweighted least squares and then interpolated for every
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beginning of a month. Secondly, the residuals removed by TWSA time series subtracting seasonal and
trend signals are then interpolated by linear interpolation. Finally, the sum of interpolated residuals,
seasonal, and trend signals are the interpolated TWSA time series.

Root mean square error (RMSE) is used to evaluate the deviation between ETWB and other types
of ETs. The equation is as follows:

RMSE =

√√√
1
N

N∑
i=1

(Xi −Yi)
2. (2)

where N is the data length (time series), Xi is the ith estimated ET results from other methods, Yi is the
ith ETWB result.

2.3. Data

An overview of the datasets can be found in Table 2. This table lists relevant information
about the datasets used in this study, such as the TWSC, precipitation, runoff, ET, spatial resolution,
and corresponding links of data access. A detailed description of these data is provided below.

Table 2. Summary of the datasets used in this study.

Type Data Name Data Version/Source Spatial Resolution Data Access

Satellite TWSC

CSR-M 0.5◦ × 0.5◦ http://www2.csr.utexas.edu/grace
JPL-M 0.5◦ × 0.5◦ https://grace.jpl.nasa.gov/data/get-data/

CSRT-GSH 1◦ × 1◦ https://grace.jpl.nasa.gov/data/get-data/
CSR-DDK4 1◦ × 1◦ http://icgem.gfz-potsdam.de/home

In situ
Precipitation CMDC v2.0 0.5◦ × 0.5◦ http://data.cma.cn/

Runoff RSBC Station http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/

Model
ET

GLDAS-1 Noah 1◦ × 1◦ https://ldas.gsfc.nasa.gov/gldas/
GLDAS-2.1 Noah 1◦ × 1◦

GLEAM v3.2a 0.25◦ × 0.25◦ https://www.gleam.eu/

Runoff
GLDAS-1 Noah 1◦ × 1◦

https://ldas.gsfc.nasa.gov/gldas/GLDAS-2.1 Noah 1◦ × 1◦

Forcing data Precipitation
GLDAS-1 Noah 1◦ × 1◦

GLDAS-2.1 Noah 1◦ × 1◦

MSWEP 0.5◦ × 0.5◦ http://www.gloh2o.org/

2.3.1. GRACE–Derived TWSC Data

We used the Center for Space Research (CSR) GRACE RL05 Mascons data to estimate the TWSC.
The mascon solutions are global and can be better applied to hydrology, oceanography, and the
cryosphere without any post–processing and without applying any empirical scaling factors [41].
The data can be downloaded from http://www2.csr.utexas.edu/grace. The Mascons data is represented
at a 0.5-degree lon-lat grid and is estimated with the same standards as the CSR RL05 spherical
harmonics solutions using GRACE Level-1 observations. C20 coefficients were replaced, degree-1
coefficients (Geocenter) and glacial isostatic adjustment (GIA) corrections were applied. More details
about the CSR GRACE RL05 Mascons (CSR-M) can be found in Save et al. [41]. With the development of
post-processing GRACE satellite data, several GRACE solutions can be used for hydrology applications.
However, different solutions would lead to different TWSC estimates.

To evaluate the impact of TWSC from different GRACE solutions on the estimate of ET, we also
take JPL Mascons [42], CSR GRCTellus Land data [43], and CSR RL05 spherical harmonics solutions
with the DDK4 filter applied (CSR-DDK4) [44] as a comparison. All of these above solutions are
processed with the same C20 coefficients replaced, the same degree-1 coefficients, and GIA corrections.

The processing of JPL Mascons is based on external information provided by near-global
geophysical models to constrain the solution. JPL Mascons use the coarse 3-degree spherical cap
Mascons, and they are downscaled to 0.5◦ × 0.5◦ using downscaling factors (dsf) calculated from
Community Land Model (CLM ver. 4.0) [42], the grid values of JPL Mascons are multiplied by
downscaling factors (JPL-M.dsf). The CSR and JPL mascon solutions can be used directly without

http://www2.csr.utexas.edu/grace
https://grace.jpl.nasa.gov/data/get-data/
https://grace.jpl.nasa.gov/data/get-data/
http://icgem.gfz-potsdam.de/home
http://data.cma.cn/
http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/
https://ldas.gsfc.nasa.gov/gldas/
https://www.gleam.eu/
https://ldas.gsfc.nasa.gov/gldas/
http://www.gloh2o.org/
http://www2.csr.utexas.edu/grace
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leakage corrections. CSR GRCTellus Land data is developed by Landerer and Swenson [43] from
CSR data, and scaling factors are provided to account for the signal loss during processing related to
truncation to degree and order 60 and application of a 300 km Gaussian smoothing filter. The grid
values of CSR GRCTellus Land are multiplied by scaling factors (CSRT-GSH.sf). The DDK filter is
proposed by Kusche et al. [44], and the DDK4 filter shows a good performance in the application of
the upper Yellow River [45]. The process of CSR-DDK4 is similar to CSR GRCTellus Land data while
replacing 300 km Gaussian smoothing filter and destriping filter with the DDK4 filter. There is no
leakage correction applied in CSR-DDK4 in this study, as with in Yi et al. [45], and in fact, the results
for CSR-DDK4 are at the same level with the other solutions.

2.3.2. In Situ Precipitation and Runoff Data

Gridded precipitation data was obtained from the China Meteorological Data Service Center
(CMDC, hereafter, PCMDC). The gridded precipitation data was generated by a thin plate spline
spatial interpolation of precipitation observations from 2472 weather stations. It has a monthly
temporal resolution and 0.5◦ × 0.5◦ spatial resolution over all of China [46]. This data is validated
by cross-validation and error analysis with gauge-based precipitation, indicating good quality. This
precipitation data has been used in several studies [13,22,47]. The monthly runoff datasets are
from eleven gauge stations recorded in RSBC (hereafter, QRSBC) (http://www.mwr.gov.cn/sj/tjgb/

zghlnsgb/) [35], which integrates all runoff considering the upstream of the corresponding catchment.
The runoff measurements are all from well-gauged rivers in China.

2.3.3. Land Evapotranspiration Products

We use two kinds of land evapotranspiration products for comparison, which included GLDAS
ET and GLEAM ET (Table 2). Two versions of GLDAS LSM data are used for inter-comparison in this
paper, i.e., GLDAS version 1 (GLDAS-1) and GLDAS version 2.1 (GLDAS-2.1) [9]. ET outputs from both
GLDAS versions are driven by Noah LSM [48]. GLDAS-1 datasets cover the time period from 1979 to
the present. GLDAS-2.1 datasets cover the period from 2000 to the present. Their temporal resolutions
used here are monthly. More information and details about the GLDAS-1 and some improvements
and changes about the GLDAS-2.1 are available at https://ldas.gsfc.nasa.gov/gldas/. The ET outputs
from GLDAS-1 and GLDAS-2.1 are expressed as ETGLDAS–1 and ETGLDAS–2.1.

We use GLEAM v3.2a ET products (hereafter, ETGLEAM), which were published jointly by Vrije
Universiteit Amsterdam, Netherlands and Ghent University, Belgium [6]. The data has a spatial
resolution of 0.25◦ × 0.25◦ and daily temporal resolution. We sum them to the monthly results
in this study. GLEAM uses a set of algorithms to separately estimate the different components
(transpiration, bare-soil evaporation, interception loss, open-water evaporation, and sublimation) of
land ET. The Priestley and Taylor equation was used in GLEAM to calculate potential evaporation
based on observations of surface net radiation and near-surface air temperature. The rationale of
GLEAM is to maximize the recovery of information on evaporation contained in current satellite
observations of climatic and environmental variables [6].

2.3.4. Precipitation Forcing Data and Modeled Runoff Data

The precipitation forcing data from the GLDAS-1, GLDAS-2.1 (hereafter, PGLDAS–1 and PGLDAS–2.1),
and the Multi-Source Weighted-Ensemble Precipitation (MSWEP, precipitation forcing data of GLEAM,
hereafter, PMSWEP) datasets [49] are used to explain the difference of ET results. They are also computed
as regional averages. As runoff is another critical variable in the water balance equation, we also
calculate the mean runoff outputs of the nine exorheic catchments from GLDAS-1 and GLDAS-2.1
Noah LSM (hereafter, QGLDAS–1 and QGLDAS–2.1) and compare the results with those for in situ runoff.

http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/
http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/
https://ldas.gsfc.nasa.gov/gldas/
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2.4. Methods

In the above-mentioned data sets, which are provided with different spatial resolutions, are used
with regional averages results, the different spatial resolutions have little impact on ET estimates.
The grids in the catchments are used to extract regional averages estimates. Their results are computed
on a monthly scale. The ET results are shown at monthly mean and annual scales, as the amount
of annual ET, interannual changes, and mean annual cycles of ET are the main characteristics of ET.
Besides, the difference between the ET estimates can be clearer at monthly mean and annual scales.

We use the TWSC from GRACE (CSR-M), PCMDC, and QRSBC to derive ETWB. To explore the
impact of TWSC on ET estimate, we also estimate the ET from precipitation minus runoff directly
(expressed as ETPQ) without considering TWSC. The results are shown in Section 3.1.1.

Here we compute TWSC results from different GRACE solutions to evaluate their impact on ET
while keeping all other inputs (P and Q) unchanged (Section 3.1.2). The GRACE products include
CSR-M, JPL-M.dsf, CSRT-GSH.sf, and CSR-DDK4. The TWSC used for ET estimates from JPL-M.dsf,
CSRT-GSH.sf, and CSR-DDK4 are expressed as ETJPL–M.dsf, ETCSRT–GSH.sf, and ETCSR–DDK4, respectively.
They are further discussed in Section 4.1.

We then compare the ET estimates from GLDAS and GLEAM with ETWB (Section 3.2).
The discussion of RMSEs between ETWB and other ET estimates are shown in Section 4.2. We attempt
to analyze the deviation of precipitation and runoff to the regional ET estimate from a water balance
perspective (see Sections 3.3 and 4.3), quantifying the deviations between PCMDC and precipitation
forcing data, QRSBC, and QGLDAS estimates. Previous studies demonstrate that the TWSA (or TWSC)
from GRACE and GLDAS are comparable [50–52]. Hence, we do not compare the TWSC component
in the water balance equation.

We compute the deviations between water balance ET and other ET results, precipitation results,
runoff results, and results of precipitation minus runoff (Section 3.3). We assess the impact of deviation
of precipitation and runoff on the estimate of ET based on RMSE and the change of RMSE (Section 4.3).
The RMSEs are calculated between annual ETWB minus annual PCMDC and other ET estimates minus
their precipitation forcing data (expressed as RMSE (ET-P)) from a water balance perspective. Similarly,
the RMSE (ET-Q) represents the calculated RMSEs between annual ETWB minus QRSBC and ETGLDAS

minus QGLDAS, and the RMSE (ET-(P-Q)) represents the calculated RMSEs between annual ETWB

subtracting the result of PCMDC minus QRSBC and annual ETGLDAS subtracting the result of PGLDAS

minus QGLDAS from 2003–2015. The proportions of RMSEs changed of RMSE (ET-P), RMSE (ET-Q)
and RMSE (ET-(P-Q)) relative to RMSE (ET) are further computed.

2.5. Uncertainty Estimation

The TWSC estimates used in the estimate of ETWB are from CSR-M. Hence, we only estimate
the uncertainty of TWSC based on CSR-M. The uncertainty estimate followed the method used in
Landerer and Swenson [43] and Scanlon et al. [53]. Details about the method can be found in the
supporting information of Scanlon et al. [53]. As the TWSC is the differential of two consecutive
months, the uncertainty of TWSC is

√
2 of the uncertainty of TWSA. The uncertainties of monthly

precipitation and runoff data collected by gauge are estimated to 10% and 5%, respectively [2,4,13].
The uncertainty of monthly ETWB is estimated by uncertainties of TWSC, precipitation, runoff based
on error propagation law.

The monthly mean ET is the mean values of 13 months for the study period of 2003–2015, from
the error propagation law, the uncertainty of monthly mean ET can be calculated as the uncertainty in
monthly ETWB divided by

√
13. The uncertainty of annual ETWB is estimated from the uncertainty of

annual P, Q, and TWSC based on error propagation law. Since the annual TWSC is estimated from
the difference of the TWSA at the beginning month in one year and the next year, we estimate the
uncertainty of annual TWSC equal to monthly TWSC.
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3. Results

3.1. Impact of TWSC on ET Estimate

3.1.1. ET Estimated by Ignoring TWSC

Figure 3 shows the monthly mean of ETWB following Equation 1, ETPQ, P, Q, and TWSC for
2003–2015 in the nine catchments. The negative ETWB values in January and February in the SRB and
December in the Haihe River Basin (HRB) may result from the uncertainties of in situ precipitation and
TWSC [13,40]. The TWSC has a significant impact on ET estimates in most catchments. The deviation
of the monthly mean of ETWB and ETPQ reaches 34.2 mm/month in June (accounting for 52.9% of ETWB)
in the Upper Yangtze River Basin (UYRB). The deviations between ETWB and ETPQ range from 6.7 to
37.2 mm/month for twelve months in the Middle Yangtze River Basin (MYRB), and its RMSE accounts
for 37.1% of variations of ETWB. The RMSEs are computed following Equation 2. In the YeRB and SRB,
the deviations between ETWB and ETPQ are small, with their RMSEs between ETWB and ETPQ reaching
only 6.4 and 8.7 mm/month, respectively. In the MRB, the RMSE between ETWB and ETPQ shows the
maximum value, i.e., 27.2 mm/month, accounts for 33.5% of variations of monthly mean ETWB.

Figure 3. Monthly mean of ETWB (blue curves), ETPQ (red lines), P, Q (purple lines), and TWSC
(green lines) for 2003–2015 in the nine exorheic catchments. The histograms represent the monthly
precipitation (P). The error bars show the uncertainties of monthly mean ETWB. (a)–(i) corresponding
to the nine exorheic catchments in China. (a): UYRB; (b): MYRB; (c) YeRB; (d): SRB; (e): PRB; (f): LRB;
(g) HRB; (h): HuRB; (i): MRB.

The annual ETWB and ETPQ estimates are shown in Figure 4; the mean annual PCMDC, ETWB, and
ETPQ results are shown in Table 3. In the UYRB, the largest deviation of annual ET between ETWB and
ETPQ is only 27.5 mm/yr in 2014, and the RMSE between ETWB and ETPQ only makes up 2.6% of the
mean annual ET. In the SRB, the TWSC has a large impact on annual ET, large deviations between
ETWB and ETPQ occur almost all the years, and the proportion of the RMSE accounting for the mean
annual ETWB reaches 11.5%. In the Minjiang River Basin (MRB), the RMSE represents 12.7% of the
mean annual ET, with the largest deviation (291.8 mm/yr, 39.1% of total ETWB in this year) occurring
in 2003.
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Figure 4. Annual ETWB and ETPQ from 2003–2015. (a)–(i) corresponding to the nine exorheic catchments
in China.

Table 3. The mean annual precipitation from CMDC, mean annual ETWB and ETPQ estimation from
GRACE in the exorheic catchments of China from 2003–2015, with one standard deviation (unit:
mm/yr).

Catchments ID Name PCMDC ETWB ETPQ

1 UYRB 864.7 ± 56.2 461.9 ± 20.3 466.4 ± 21.4
2 MYRB 1331.4 ± 149.7 689.7 ± 50.3 698.0 ± 83.2
3 YeRB 473.0 ± 45.2 437.5 ± 28.1 435.6 ± 43.4
4 SRB 545.3 ± 80.0 439.6 ± 34.3 445.0 ± 53.4
5 PRB 1411.6 ± 183.1 778.3 ± 50.4 784.9 ± 77.6
6 LRB 426.5 ± 72.4 417.7 ± 46.5 413.1 ± 66.1
7 HRB 486.9 ± 49.3 494.2 ± 37.2 484.2 ± 48.9
8 HuRB 944.1 ± 168.5 726.4 ± 37.8 727.6 ± 50.8
9 MRB 1786.3 ± 391.7 831.5 ± 53.3 833.9 ± 146.6

3.1.2. Impact of Different GRACE Solutions on ET Estimate

The monthly mean TWSC from different GRACE solutions is shown in Figure A1, where their
mean TWSC is the arithmetical mean from all TWSC estimates for the corresponding calendar month.
Note that the TWSC derived from CSR-M compare favorably with the mean TWSC (Figure A1), thus
the CSR-M TWSC is used for the estimate of ETWB in this study. The TWSC from CSRT-GSH.sf show
significant differences among the four TWSC results, as they exaggerate the monthly mean TWSC
in the UYRB, MYRB, YeRB, SRB, and PRB, and the differences may result from the scaling factor
derived from CLM4.5 [43]. The spatial distribution of scaling factors is checked in our study (not
shown), and the spatial variability of scaling factors varies greatly in the basins, indicating exaggerated
TWSC. The maximum deviations are calculated between each two monthly mean TWSC estimates,
which range from 10.7 to 35.6 mm/month, the deviations occur in the YeRB (10.7 mm/month) and
MRB (35.6 mm/month) (Figure A1c,i), respectively. As the area of MRB is the smallest, and with the
most abundant precipitation, it is understandable that the MRB shows the largest deviation of TWSC.
The large deviation of TWSC between JPL-M.dsf and other GRACE solutions in the HRB and MRB
(Figure A1g,i) may result from the processing strategy and coarse resolution in the spatial of JPL-M
since the areas of the two basins are small [54].

The annual ET estimates based on different GRACE solutions are shown in Figure A2. The RMSEs
among ETCSR–M (=ETWB), ETJPL–M.dsf, ETCSRT–GSH.sf, and ETCSR–DDK4 are understandably less than
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those RMSEs between ETWB and ETPQ, and their interannual fluctuations are more consistent than that
of ETPQ. We compute the standard deviations (STDs) between the four ET estimates from different
GRACE solutions for every single year, and the results show that the max STD is only 51.2 mm/yr,
occurring in the MRB. The mean STD for the years from 2003–2015 in the corresponding catchment is
also computed, ranging from 9.7 to 27.1 mm/yr (accounting for 1.8–3.9% of annual ETWB), with the
least occurring in the YeRB and the largest occurring in the MRB. In three catchments, the max STDs
occur in 2003 in the PRB, the Huaihe River Basin (HuRB), and the MRB, which are located in Southeast
China. In the other three catchments, the max STDs appear in 2011, which are the YeRB, SRB, and
Liaohe River Basin (LRB), in North China.

3.2. Comparison of Different ET Products

Figure 5 shows the monthly mean of ET estimates from different ET products. Their mean annual
cycles are similar among all the catchments. In the humid catchments: in the UYRB, the other three ET
products overestimate the ET compared with ETWB for all months except December, the maximum
deviation exists in July, which has the most precipitation (Figure 5a). In the MYRB, other ET estimates
are bigger than ETWB estimates for all months except November when the ETWB increases to respond
to increased precipitation. In the PRB, the mean of ETWB in July is less than that in June and August,
and the mean of ETWB in October is also less than September and November (Figure 5e). In the HuRB,
ETWB shows a rapid increase response for sharply increased precipitation in July (Figure 5h), while
the three other ET results do not catch it. The ETWB also can capture the irregular monthly mean
precipitation changes from June to December in the MRB (Figure 5i). In the semihumid and semiarid
catchments: the two versions of GLDAS both show the maximum deviation in September with ETWB

in the YeRB. Most months of ETGLDAS–2.1 are more than other ET estimates in the LRB. During the
intense irrigation period of April and May, the ETWB is significantly greater than other ET estimates in
the HRB. From the above, these ET results all show similar annual cycles, while ETWB can capture
some irregular variations in monthly precipitation.

Figure 5. Monthly mean of ET estimates in the exorheic catchments of China. The error bars show the
uncertainties of monthly mean ETWB. (a)–(i) corresponding to the nine exorheic catchments in China.

The maximum RMSEs between the monthly mean of ETWB and other ET results are in the MRB,
which are 27.5 (vs ETGLDAS–1), 26.3 (vs ETGLDAS–2.1), and 24.7 (vs ETGLEAM) mm/month (Table A1).
In the YeRB, the RMSEs are the least, which are 7.2, 7.5, and 13.0 mm/month. We also compute the
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proportion of the RMSEs accounting for an average of the monthly mean of ETWB. The proportions
in the UYRB show the maximum values, which are 50.5% (vs ETGLDAS–1), 43.3% (vs ETGLDAS–2.1),
and 43.1% (vs ETGLEAM). The HuRB experienced the minimum proportions, which are 20.4%, 22.3%,
and 25.9%, respectively.

The annual ET from different sources is illustrated in Figure 6, which shows huge gaps among
different ET estimates. In terms of the humid catchments: In the UYRB and MYRB, it is obvious that
other annual ET estimates are all larger than ETWB. Their mean deviations between ETWB and ETGLEAM

reaching 144.7 mm/yr (31.3% in mean annual ETWB) and 88.0 mm/yr (12.8% in mean annual ETWB) in
the two catchments (Figure 6a,b). In the PRB, ETGLDAS–1 and ETGLEAM both overestimate the annual
ET, and ETGLDAS–2.1 shows different interannual variations with respect to ETWB (Figure 6e). In the
HuRB, all the ET estimates capture the drop of ET in 2011 due to reduced precipitation (Figure A3h),
but there is some discrepancy among mean annual ET. In the MRB, the ET results show large differences
in the interannual variations. The ETGLDAS–1 even verges on 1100 mm/yr after 2012. Concerning the
semihumid and semiarid catchments: In the YeRB, the ETWB is consistent with ETGLDAS–2.1 except
for the years 2006 and 2009, while ETGLEAM underestimates the annual ET for all the years. In the
SRB, the ETGLDAS–2.1 is significantly greater than the other annual ET. Nevertheless, the ETGLEAM is
close to ETWB. In the LRB, the ETGLDAS–1 is close to ETWB in mean annual ET, and their interannual
variations are similar. In the HRB, ETGLDAS–2.1 is closest to ETWB. ETGLEAM somewhat underestimates
the annual ET for the other three results. For the two catchments in Northeast China (i.e., SRB and LRB,
Figure 6d,f), both ETGLDAS–2.1 results overestimate the annual ET. Additionally, the four ET results
show consistent interannual changes in most catchments.

Figure 6. Annual ET from different products in the exorheic catchments of China. The dotted lines
with different colors corresponding to their mean annual ET. (a)–(i) corresponding to the nine exorheic
catchments in China.

3.3. Comparison of Different Precipitation and Runoff Inputs for ET Estimation

In all the catchments, the interannual fluctuations of precipitation from different sources show
similar patterns (Figure A3), while the mean annual precipitation shows some differences (Figure 7).
In the MYRB and YeRB, the PCMDC is higher than PGLDAS–1, which is similar to the comparison
from Lv et al. [55] in corresponding regions. In the SRB and LRB (Northeast China), PGLDAS–2.1 is
prominently larger than the other three precipitation sources (Figure A3d,f, and Figure 7b). Caution
should be taken when using the PGLDAS–2.1 in the two catchments. It should be noted that the annual
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PMSWEP is the least for all the catchments (Figure A3), and mean PGLDAS–1 are all less than those of
PCMDC (Figure 7a).

Figure 7. Deviations of annual ET, precipitation, and runoff between (a): WB and GLDAS–1; (b): WB
and GLDAS–2.1; (c): WB and GLEAM. The blue curves with triangles represent the deviations between
annual ET and other ET estimates. The red curves with dots represent the deviations between PCMDC

minus QRSBC and PGLDAS minus the QGLDAS. The purple lines with rhombus points represent the
deviations between PCMDC and other precipitation forcing data. The green lines with square points
represent the deviations of runoff between QRSBC and two versions of QGLDAS.

QRSBC, QGLDAS–1, and QGLDAS–2.1 show larger discrepancies than that for precipitation.
The comparison of annual runoff from 2003–2015 can be found in Figure A4. Since the runoff

is modeled results, it faces more uncertainties than precipitation. As the similar results showed in
YRB (UYRB and MYRB) and YeRB in Lv et al. [55], the in situ runoff was significantly larger than that
from QGLDAS–1. The interannual variations of runoff from different sources show similar patterns in
most catchments except in the YeRB and HRB, which experienced small amounts of runoff. In all
the catchments, QGLDAS–2.1 is larger than that from QGLDAS–1, and they are closer to QRSBC in most
catchments, presumably due to some modification for GLDAS-2.1 [56].

To explore the impact of precipitation and modeled runoff (GLDAS Noah LSM outputs) on ET
estimates, we analyze the difference in both sides of the water balance equation. We first compute the
deviation between mean annual ET, precipitation, runoff, and precipitation minus runoff for 2003–2015
(Figure 7). In the UYRB, the mean annual deviation between ETWB and ETGLDAS–1 reaches 200.9
mm/yr, the mean annual deviation between PCMDC minus QRSBC (expressed as P-Q) and PGLDAS–1

minus QGLDAS–1 are close to the deviation of ET (Figure 7a). This deviation is mostly contributed
by the deviation of runoff (−241.6 mm/yr). As Figure 7a shows, the deviations of P-Q are close to
the deviations of ET in all the catchments. For the water balance (WB) with GLDAS-2.1 (Figure 7b),
the deviations of P-Q are close to the deviations of ET in all the catchments except PRB. In the PRB,
the deviation of mean annual ET is only 5.3 mm/yr, while the deviation of mean annual precipitation
reaches −27.9 mm/yr, and the deviation of mean annual runoff is −4.34 mm/yr (Figure 7b). Based on
the water balance method, we only assess the precipitation forcing data variable for GLEAM ET. As
Figure 7c shows, in the YeRB, LRB, and HRB, the deviation of precipitation may explain the most
differences between annual ETWB and ETGLEAM. In other catchments, it is somewhat opposite between
the deviation of annual precipitation and ET.
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3.4. Uncertainty Estimation Results

Uncertainties of TWSC, PCMDC, QRSBC, and ETWB are shown in Table 4. Large uncertainties of
TWSC appear in the PRB, HuRB, and MRB, which are more than 30 mm/month. The large uncertainties
of TWSC may result from the small study area (HuRB and MRB) and large variations of TWSC caused
by abundant precipitation (PRB and MRB). In three catchments (MYRB, PRB, and MRB), their annual
precipitation is more than 1300 mm/yr, and their uncertainties of precipitation are also more than
11 mm/month. The uncertainties of runoff are similar to those of precipitation except the YeRB, LRB,
and HRB, where the water use is intense and the runoff is little.

Table 4. The uncertainties of monthly TWSC, precipitation, runoff, ET, monthly mean ET and annual
ET from 2003–2015 (unit: mm/month and mm/yr).

Name TWSC PCMDC QRSBC ETWB Monthly Mean ETWB Annual ETWB

UYRB ± 14.1 ± 7.2 ± 1.7 ± 15.9 ± 4.4 ± 89.9
MYRB ± 26.0 ± 11.1 ± 5.0 ± 28.8 ± 8.0 ± 149.8
YeRB ± 14.1 ± 3.9 ± 0.2 ± 14.7 ± 4.1 ± 49.4
SRB ± 18.8 ± 4.5 ± 0.4 ± 19.3 ± 5.4 ± 57.9
PRB ± 33.8 ± 11.8 ± 2.6 ± 35.9 ± 10.0 ± 148.5
LRB ± 17.4 ± 3.6 ± 0.1 ± 17.8 ± 4.9 ± 46.1
HRB ± 22.0 ± 4.1 ± 0.0 ± 22.4 ± 6.2 ± 53.4

HuRB ± 33.8 ± 7.9 ± 0.9 ± 34.7 ± 9.6 ± 100.8
MRB ± 35.3 ± 14.9 ± 4.0 ± 38.5 ± 10.7 ± 188.2

From Table 4, we can conclude that the uncertainties of monthly ET are mainly from TWSC,
which is similar to the conclusions in Long et al. [1] and Pan et al. [13]. Almost in all the catchments,
the uncertainties of TWSC are two times or even three times larger than the uncertainties of PCMDC,
and they are also much larger than the uncertainties of QRSBC. The uncertainties of annual ET are all
larger than 45 mm/yr, while the uncertainties are mainly from the uncertainties of annual precipitation.

4. Discussions

4.1. Impact of TWSC on ET Estimates in Local Catchments

As we can see, in the UYRB, MYRB, PRB, LRB, and HuRB, the ETWB is typically smaller than ETPQ

in the wet season from May to July (Figure 3). Meanwhile, from September to December, the ETWB

is larger than ETPQ. From the water balance equation, it is because, during the wet season, TWSA
usually increases, and TWSC (ds/dt) is greater than 0 (Figure 3). In contrast, in the dry season with less
precipitation, TWSA generally decreases, and TWSC (ds/dt) is smaller than 0, then ETWB is larger than
ETPQ (Figure 3).

It should be noted that the impacts of TWSC on ET estimates are region–specific. On the monthly
scale, ETWB is obviously larger than ETPQ from March to May in the HRB (Figure 3g), which is caused
by the spring irrigation of wheat [13]. The ETWB is larger than ETPQ from March to May, which is 14.4,
22.1, and 21.5 (sum: 57.9) mm/month, respectively. This result is similar to the human-induced ET
(60.0 ± 24.2 mm) estimated by Pan et al. [13] for the same months. While for the SRB and LRB, ETWB is
obviously larger than ETPQ from August to October. Since the main crop is corn in this region, the
water consumption of the growth period is ongoing in the corresponding period. Meanwhile, there is
a significant reduction in PCMDC (−40.3 mm/month) in September relative to August (Figure 3f), which
is different from the HRB. As the different water consumption in agriculture, the monthly TWSC are
region-specific, then the deviations between ETWB and ETPQ are region-specific.

On the other hand, in the MYRB, PRB, and MRB, the RMSEs between the monthly mean of ETWB

and ETPQ is significantly larger than those for other catchments. As Figure A2 shows, the amplitudes
of monthly mean TWSC are stronger than other catchments. These catchments are all located in South
China, with abundant precipitation [57]. During the rainy season, as the water is stored and TWSC is
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positive, the monthly ETWB is smaller than ETPQ in all the catchments. As the corresponding months of
the rainy season are different with respect to different catchments, these catchments also show regional
heterogeneities. However, the region-specific impacts of TWSC on ET deserves more research.

On the annual scale, the sizeable variations between annual ETWB and ETPQ can mostly be
explained by large precipitation anomalies (Figure A3), such as the first year in the Figure 4c (YeRB)
and 4i (MRB) and year 2012 in the Figure 4f (LRB). Their variations correspond to the lowest or highest
precipitation during the whole study period in the corresponding catchment.

It is interesting that all the STDs of mean annual ETWB are less than those for ETPQ (see Table 3),
indicating smaller interannual ETWB fluctuations. In the year with more precipitation, such as the
years 2008 and 2014 in the UYRB, 2012 and 2013 in the SRB, based on the water balance equation,
as the TWSA increases, TWSC is greater than 0, then ETWB should be less than ETPQ in the given
year. On the contrary, in the years with precipitation deficit, as the TWSA usually decreases, the ETWB

would be higher than ETPQ. We would deem that the TWSA plays a role as a reservoir in the terrestrial
water cycle, impounding water and reducing the amount of water that returns to the atmosphere
through evapotranspiration or other forms in the wet years, but discharging water in the dry years.
We can conclude that estimating annual ET simply by subtracting runoff from precipitation would
overestimate the interannual fluctuations of ET.

The difference between mean annual ETWB and ETPQ reflects the long-term rate of TWSA in a
catchment. The ETWB is significantly higher than ETPQ in the HRB, where the water depletion (mainly
from groundwater) is fast [58]. In the LRB and YeRB, the mean annual ETWB is also larger than ETPQ,
which also indicates the water depletion there [58]. Conversely, TWSA increases in the UYRB, MYRB,
SRB, and PRB, and therefore the mean annual ETWB is typically less than that for ETPQ.

4.2. The Differences between ETWB and other ET Estimates

On the monthly scale, the RMSEs between ETWB and ET from different GRACE solutions are
smaller, and the ETCSR–DDK4 is closest to ETWB among the three GRACE solutions (Table A1). In the
YeRB, SRB, and LRB, the maximum RMSEs are between ETWB and ETGLEAM, and all of these catchments
are located in North China and are semiarid catchments. In the UYRB and MRB, the RMSEs between
ETWB and ETGLDAS–1 show the maximum values. In the MYRB, PRB, HRB, and HuRB, the RMSEs
between ETWB and ETPQ show the maximum values, which indicates that impacts of ignoring TWSC
on the ET estimate is the most, and it should be noted that all of these catchments are humid catchments
except HRB with intense water consumption.

On the annual scale, the RMSEs between ETWB and ET from the three GRACE solutions show
small values, while ETCSRT–GSH.sf is closest to ETWB among the three solutions (Table A2). It indicates
some differences in the TWSC estimate on the monthly and annual scales. The RMSEs between ETWB

and ET from other products markedly exceed those between ETWB and ET from other GRACE solutions.
In the UYRB, MYRB, PRB, and MRB, the RMSEs between ETWB and ETGLDAS–1 show the maximum
values, which are all in humid regions. It should be noted that in the UYRB, the RMSE between ETWB

and ETPQ is even less than the RMSEs between ETWB and ET from other GRACE solutions, which
indicates that the interannual variations of TWSC are very small in this catchment. ET estimates from
different GRACE solutions generally show relatively small deviations in all the catchments, and ET
estimates from different products are generally relatively large deviations in the humid catchments.

4.3. Impact of Precipitation and Modeled Runoff from a Water Balance Perspective

The RMSEs between annual ETWB and other ET results are further analyzed. Their results are
shown in Table A3 (WB – GLDAS-1), Table A4 (WB – GLDAS-2.1), and Table A5 (WB – GLEAM). For
Table A3, in the UYRB, MYRB, SRB, PRB, and MRB, the RMSEs between ETWB and ETGLDAS–1 can be
markedly reduced if the deviation of PGLDAS–1 and QGLDAS–1 can both be taken into consideration.
Generally speaking, though GLDAS ET outputs are not computed based on the water balance
method [9,59]. If the accuracy of PGLDAS–1 and QGLDAS–1 can be improved in China, e.g., modeled
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QGLDAS–1 verified by in situ runoff. Then the ET estimate would also benefit from improved runoff

outputs based on the water balance equation during the simulation process. In the YeRB, LRB, HRB,
and HuRB, the RMSEs are also reduced, with smaller proportions reduced than above catchments.
In the YeRB and LRB, if we only consider the difference of runoff, the RMSEs would even increase,
and in the HRB, the RMSE is also slightly reduced. Since the outflows are much smaller in these three
catchments than other catchments, the deviation of runoff is small itself (Figure 7a). Unlike the other
humid catchments, in the three semiarid catchments (YeRB, LRB, and HRB), the proportions of the
RMSEs of ET–P as opposed to ET are reduced, which indicates that deviations of precipitation forcing
data indeed contribute to deviations of ET.

In Table A4, the RMSEs between ETWB and ETGLDAS–2.1 reduced in all the catchments except HRB
when the deviations of precipitation and runoff can be considered. In the YRB (UYRB and MYRB),
the RMSEs between QRSBC and QGLDAS–2.1 account for most of the deviations. In the HRB and MRB,
the deviations between ETWB and ETGLDAS–2.1 do not result from the precipitation difference. It should
be noted that in the LRB, if the precipitation inconsistency is considered (Figure A3f), the RMSE
between ETWB and ETGLDAS–2.1 is dramatically reduced, which can explain the cause of overestimation
of the annual ET for ETGLDAS–2.1. In the HRB, with the deviation of precipitation and modeled runoff

considered, the proportion of the RMSE increased (Table A4). Since the HRB is heavily influenced by
human activities [13,31], the RMSE between mean annual ETWB and GLDAS ET outputs is mainly
contributed by anthropogenic activities [13].

As for the RMSEs between ETWB and ETGLEAM, we only compute their precipitation difference
(Table A5). In the YeRB, LRB, HRB, and HuRB, if the precipitation difference can be taken into
consideration, the RMSEs between ETWB and ETGLEAM would be reduced, the YeRB, LRB, and HRB
are semiarid catchments. Figure A3 also shows a large deviation between PCMDC and PMSWEP. The
proportion of the RMSE reduced in the YeRB reaches 72.8%. In the UYRB, MYRB, SRB, PRB, and MRB,
the RMSEs would even increase, which indicates that the deviations of precipitation do not contribute
or contribute little to the deviation between ETGLEAM and ETWB. The RMSE between ET and ET–P
rapidly increases from 86.9 to 228.7 mm/yr in the MRB, there is a small difference between their annual
precipitation actually (Figure A3i).

Here we try to explore the deviation between ETWB and GLDAS or GLEAM ET based on the
water balance equation. The RMSE (ET) would decrease if the deviation of PGLDAS and modeled
QGLDAS in the GLDAS LSM can be taken into consideration. In four catchments (YeRB, LRB, HRB, and
HuRB), precipitation differences contribute to the deviation between ETWB and ETGLEAM. However,
the increased RMSE (ET-P), RMSE (ET-Q) and RMSE (ET-(P-Q)) relative to RMSE (ET) should be
further explored. We do not investigate other forcing variables except precipitation to derive ET, e.g.,
radiation, air temperature, and snow water equivalent [6,9,60]. Therefore, a future intercomparison
can be performed to identify the impact of these variables on ET estimates.

4.4. Impact of Groundwater Baseflow and Water Diversion on ET Estimates

Based on the water balance equation, the groundwater inflow and outflow across the basin
boundary would also affect the estimate of ET. As an example, in the LRB, according to the estimate
of groundwater outflow from Zhang and Li [61], the outflow is 0.61 × 108 m3/yr, and its impact on
the annual ET is only ~0.3 mm/yr. Therefore, it can be negligible relative to the annual ET (417.7 ±
46.5 mm/yr).

Water diversion in the basin inside and outside is also a part of basin water balance. In China,
there is South-to-North water diversion, which includes the east route, the middle route, and the west
route projects (http://nsbd.mwr.gov.cn/). The west route project has not been built yet. The starting
point of the east route is in the mainstream of Lower Yangtze River, transporting water to Shandong
Province, which is not in our study area. The middle route transports water from the MYRB to the
HRB, is going through the HuRB and the YeRB. It transported water to the North in October 2014 for
the first time, with a water volume of 21.67 × 108 m3 in the first year. The impact on the ET estimate is

http://nsbd.mwr.gov.cn/
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3.1 mm/yr for the MYRB, which is relatively small compared to annual ET (689.7 ± 50.3 mm/yr). If the
water is totally supplied to the HRB, the impact on the ET estimate will reach 15.18 mm/yr, exerting a
certain influence on the ET estimate in the HRB (494.2 ± 37.2 mm/yr). If we estimate the ET after 2015
in this region, it is necessary to account for the water diversion.

4.5. Impact of Spatial Scale on ET Estimate

The area of the MRB is only 5.45 × 104 km2, which is less than the typical GRACE footprint
(20 × 104 km2). However, some studies have demonstrated that GRACE is capable of detecting
TWSA in local regions with an area smaller than GRACE resolution if the signal amplitude is large
enough [44,62,63]. As the MYRB receives the most abundant precipitation among these catchments
(Table 3), TWSA should have higher SNR (Signal to Noise Ratio), and TWSC tends to have higher
reliability. On the other hand, the maximum uncertainty of monthly ET estimate is indeed in the MRB,
where the uncertainties of monthly TWSC, precipitation, and runoff are also large (Table 3). Thus, we
recommend that caution should be exercised when using TWSA estimates in regions with a small area.

5. Conclusions

In this study, the ET was calculated based on the water balance equation in nine exorheic
catchments of China. The impacts of ignoring terrestrial water storage changes and different terrestrial
water storage changes from GRACE solutions on ET estimates were analyzed. The intercomparison
between ETWB and ET estimates from GLEAM, and GLDAS land surface models was also conducted.
The comparison was carried out on the monthly and annual scales.

We found that the impact of ignoring terrestrial water storage changes on the estimate of ET
is noteworthy. The RMSEs of between monthly mean ETWB and ETPQ range from 6.4–27.2 mm/yr
(17.5–45.2% in corresponding mean monthly ET). The annual RMSEs between ETWB and ETPQ in the
estimate of ET range from 12.0–105.8 mm/yr (2.6–12.7% in corresponding annual ET) among these
catchments. The STDs of annual ETWB for study periods are all less than those from ETPQ, which simply
estimate the annual ET by subtracting runoff from precipitation would overestimate the interannual
variations of ET. Thus, TWSC should not be ignored in the estimate of ET.

The ET estimates from different GRACE solutions show relatively small deviations. The RMSEs
among different GRACE solutions in most catchments are less than 10 mm/month on the monthly
scale and 30 mm/yr on the annual scale. In all the catchments except the HRB and MRB, CSR-GSH.sf
solutions exaggerate the monthly mean TWSC, and caution should be taken when applying this
solution to derive TWSC.

Different precipitation products are assessed to explain the inconsistency between different ET
products and regional ET from a water balance perspective. The difference between ETWB and ET
from GLDAS land surface model results can be partly explained from deviation from precipitation
forcing data in several catchments, especially in the LRB. Furthermore, the ET estimates would
also benefit from improved runoff outputs during the simulation process. In the three semiarid
catchments and the HuRB, the RMSEs between ETWB and ETGLEAM can be reduced, provided that
the difference of precipitation can be taken into consideration. However, the increased RMSEs with
deviations of precipitation forcing data and modeled runoff considering in the estimate of ET deserves
further exploration.

The ET estimates show some arresting interannual fluctuations, which warrants further study.
In the SRB and MRB, there may exist some positive trends, which are likely resulting from increased
precipitation or other effects. The trends are also worthy of further research. In summary, our study
emphasizes the capability of GRACE in estimating the ET on the basin scale. The ET estimate based on
water balance can be a benchmark to other ET products, which would benefit the GLDAS LSMs and
remote sensing ET estimates.

Author Contributions: Conceptualization, M.Z. and Y.Z.; Data curation, Y.Z.; Funding acquisition, Y.Z., M.Z. and
B.J.; Investigation, Y.Z.; Methodology, Y.Z. and Y.M.; Supervision, M.Z. and B.J.; Writing—original draft, Y.Z.;



Remote Sens. 2020, 12, 511 17 of 23

Writing—review and editing, M.Z., Y.M. and B.J. All authors have read and agreed to the published version of
the manuscript.

Funding: The research is funded by the National Natural Science Foundation of China (41874091, 41774094,
and 41474061); Fundamental Research Funds for the Central Universities, China University of Geosciences
(Wuhan) (G1323519314); and Open Research Fund Program of State Key Laboratory of Geodesy and Earth’s
Dynamics (SKLGED2019-2-5-E, SKLGED2019-3-2-E).

Acknowledgments: The authors thank Fei Li, Wei Feng, and Haoming Yan for their insightful suggestion and
discussions and thank Fan Xie for her help. We thank four anonymous reviewers for their comments, which help
to improve this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Monthly mean TWSC from different GRACE solutions and products in the exorheic
catchments of China from 2003–2015. (a)–(i) corresponding to the nine exorheic catchments in China.

Figure A2. Annual ET based on different GRACE solutions and products in the exorheic catchments of
China from 2003 to 2015. (a)–(i) corresponding to the nine exorheic catchments in China.
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Figure A3. Annual precipitation from CMDC, and the forcing data of two versions of GLDAS and
GLEAM from 2003–2015. (a)–(i) corresponding to the nine exorheic catchments in China.

Figure A4. Annual runoff from RSBC, GLDAS–1 Noah LSM and GLDAS–2.1 Noah LSM for 2003–2015.
(a)–(i) corresponding to the nine exorheic catchments in China.

Table A1. The root mean square errors (RMSEs) between monthly mean ETWB and other ET estimations
from 2003–2015 (unit: mm/month).

Name
RMSEs between ETWB and other ET Results

ETPQ ETJPL–M.dsf ETCSRT–GSH.sf ETCSR–DDK4 ETGLDAS–1 ETGLDAS–2.1 ETGLEAM

UYRB 17.4 3.1 8.3 2.3 19.5 16.7 16.6
MYRB 24.9 6.9 14.8 4.8 21.4 13.2 13.8
YeRB 6.4 3.0 5.2 2.3 7.2 7.5 13.0
SRB 8.7 3.5 7.5 4.1 9.0 14 16.5
PRB 26.4 4.7 16.3 3.3 15.3 11.5 17.5
LRB 10.6 6.4 8.2 3.9 7.2 11.1 14.1
HRB 13.0 7.6 3.2 4.6 8.0 7.7 12.1

HuRB 17.8 7.2 9.9 5.4 12.3 13.5 15.7
MRB 27.2 17.5 8.8 8.1 27.5 26.3 24.7
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Table A2. The RMSEs between annual ETWB and other ET estimations from 2003–2015 (unit: mm/yr).

Name
RMSEs between ETWB and other ET Results

ETPQ ETJPL–M.dsf ETCSRT–GSH.sf ETCSR–DDK4 ETGLDAS–1 ETGLDAS–2.1 ETGLEAM

UYRB 12.0 21.2 15.0 18.5 203.5 169.3 145.9
MYRB 46.5 19.5 18.5 18.2 222.8 113.3 100.0
YeRB 29.6 15 12.5 19.7 23.9 17.2 69.8
SRB 50.5 19.1 17.7 18.9 73.4 146 19.6
PRB 71.2 23.9 29.4 31.9 131.2 49.1 95.2
LRB 35.4 18.9 20.1 25.6 31.7 99.8 76.1
HRB 37.7 22.5 15.0 24.0 35.4 20.5 106.9

HuRB 54.7 26.9 20.1 43.2 60.3 86.3 82.7
MRB 105.8 37.2 35.5 33.7 168.4 52.9 86.9

Table A3. The RMSEs between mean annual ETWB and ETGLDAS–1 (expressed as RMSE(ET)). The RMSEs
between annual ETWB minus PCMDC and annual ETGLDAS–1 minus PGLDAS–1 (expressed as RMSE(ET–P)).
The RMSEs between annual ETWB minus QRSBC and annual ETGLDAS–1 minus QGLDAS–1 (expressed
as RMSE(ET–Q)). The RMSEs between annual ETWB subtracting the result of PCMDC minus QRSBC

and annual ETGLDAS–1 subtracting the result of PGLDAS–1 minus QGLDAS–1 from 2003–2015 (expressed
as RMSE(ET–(P–Q))). The proportion of RMSE changed of RMSE(ET–P) as opposed to RMSE (ET),
RMSE(ET–Q) as opposed to RMSE (ET) and RMSE(ET–(P–Q)) as opposed to RMSE (ET).

Name
RMSE (mm/yr) Proportion of RMSE Changed (%)

ET ET-P ET-Q ET-(P-Q) ET-P ET-Q ET-(P-Q)

UYRB 203.5 247.3 55.6 22.0 21.5 −72.7 −89.2
MYRB 222.8 258.4 51.6 31.7 16 −76.8 −85.8
YeRB 23.9 17.0 34.2 13.1 −29 43 −45
SRB 73.4 98.1 28.5 13.1 33.6 −61.2 −82.2
PRB 131.2 188.7 79.0 33.8 43.9 −39.8 −74.3
LRB 31.7 18.2 36.3 22.2 −42.6 14.6 −30.1
HRB 35.4 30.8 32.0 27.9 −12.9 −9.5 −21.2

HuRB 60.3 91.3 37.9 32.8 51.4 −37.2 −45.6
MRB 168.4 244.3 100.2 35.1 45.1 −40.5 −79.1

Table A4. The RMSEs between mean annual ETWB and ETGLDAS–2.1 (expressed as RMSE(ET)).
The RMSEs between annual ETWB minus PCMDC and annual ETGLDAS–2.1 minus PGLDAS–2.1 (expressed
as RMSE(ET–P)). The RMSEs between annual ETWB minus QRSBC and annual ETGLDAS–2.1 minus
QGLDAS–2.1 (expressed as RMSE(ET–Q)). The RMSEs between annual ETWB subtracting the result of
PCMDC minus QRSBC and annual ETGLDAS–2.1 subtracting the result of PGLDAS–2.1 minus QGLDAS–2.1

from 2003–2015 (expressed as RMSE(ET–(P–Q))). The proportion of RMSE changed of RMSE(ET–P) as
opposed to RMSE (ET), RMSE(ET–Q) as opposed to RMSE (ET) and RMSE(ET–(P–Q)) as opposed to
RMSE (ET).

Name
RMSE (mm/yr) Proportion of RMSE Changed (%)

ET ET-P ET-Q ET-(P-Q) ET-P ET-Q ET-(P-Q)

UYRB 169.3 139.8 45.9 15.1 −17.5 −72.9 −91.1
MYRB 113.3 165.8 59.4 32.7 46.4 −47.6 −71.1
YeRB 17.2 14.9 16.4 14.4 −13.6 −4.4 −16.3
SRB 146.0 76.3 86.3 22.9 −47.7 −40.9 −84.3
PRB 49.1 37.7 61.9 35.2 −23.4 25.9 −28.3
LRB 99.8 28.0 105.6 28.9 −71.9 5.8 −71
HRB 20.5 38.0 30.8 30.1 84.9 50.2 46.4

HuRB 86.3 75.3 64.3 33.3 −12.7 −25.5 −61.4
MRB 52.9 120.7 117.5 36.9 128.1 122.1 −30.2
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Table A5. The RMSEs between mean annual ETWB and ETGLEAM (expressed as RMSE(ET)), RMSEs
between annual ETWB minus PCMDC and annual ETGLEAM minus PMSWEP from 2003–2015 (expressed
as RMSE(ET–P)).

Name
RMSE (mm/yr) Proportion of RMSE Changed (%)

ET ET-P ET-P

UYRB 145.9 192.8 32.1
MYRB 100.0 212.6 112.6
YeRB 69.8 19.0 −72.8
SRB 19.6 45.2 130.5
PRB 95.2 152.5 60.3
LRB 76.1 35.2 −53.8
HRB 106.9 34.3 −67.9

HuRB 82.7 51.3 −37.9
MRB 86.9 228.7 163.0
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