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Abstract: The use of unmanned aerial systems (UAS) over the past years has exploded due to their
agility and ability to image an area with high-end products. UAS are a low-cost method for close
remote sensing, giving scientists high-resolution data with limited deployment time, accessing even
the most inaccessible areas. This study aims to produce marine habitat mapping by comparing
the results produced from true-color RGB (tc-RGB) and multispectral high-resolution orthomosaics
derived from UAS geodata using object-based image analysis (OBIA). The aerial data was acquired
using two different types of sensors—one true-color RGB and one multispectral—both attached to a
UAS, capturing images simultaneously. Additionally, divers’ underwater images and echo sounder
measurements were collected as in situ data. The produced orthomosaics were processed using three
scenarios by applying different classifiers for the marine habitat classification. In the first and second
scenario, the k-nearest neighbor (k-NN) and fuzzy rules were applied as classifiers, respectively.
In the third scenario, fuzzy rules were applied in the echo sounder data to create samples for the
classification process, and then the k-NN algorithm was used as the classifier. The in situ data collected
were used as reference and training data. Additionally, these data were used for the calculation of the
overall accuracy of the OBIA process in all scenarios. The classification results of the three scenarios
were compared. Using tc-RGB instead of multispectral data provides better accuracy in detecting
and classifying marine habitats when applying the k-NN as the classifier. In this case, the overall
accuracy was 79%, and the Kappa index of agreement (KIA) was equal to 0.71, which illustrates
the effectiveness of the proposed approach. The results showed that sub-decimeter resolution UAS
data revealed the sub-bottom complexity to a large extent in relatively shallow areas as they provide
accurate information that permits the habitat mapping in extreme detail. The produced habitat
datasets are ideal as reference data for studying complex coastal environments using satellite imagery.

Keywords: coastal remote sensing; habitat mapping; unmanned aerial vehicle (UAV); unmanned
aircraft system (UAS); drone; object-based image analysis (OBIA); UAS data acquisition

1. Introduction

Coastal zones are among the most populated and most productive areas in the world, offering
a variety of habitats and ecosystem services. The European Commission highlights the importance
of coastal zone management with the application of different policies and related activities, which
were adopted through the joint initiatives of Maritime Spatial Planning and Integrated Coastal
Management [1]. The aim is to promote sustainable growth of maritime and coastal activities and
to use coastal and marine resources sustainably. Several other environmental policies are included
in this initiative, like the Marine Strategy Framework Directive, the Climate Change Adaptation,
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and the Common Fisheries Policy [1]. Marine habitats have important ecological and regulatory
functions and should be monitored in order to detect ecosystem changes [2,3]. Thus, habitat mapping
is a prime necessity for environmental planning and management [4,5]. The continued provision of
updated habitat maps has a decisive contribution to the design and coordination of relevant actions,
the conservation of natural resources, and the monitoring of changes caused by natural disasters or
anthropogenic effects [6]. Habitat maps are in critical demand, raising increasing interest among
scientists monitoring sensitive coastal areas. The significance of coastal habitat mapping lies in the
need to prevent anthropogenic interventions and other factors that affect the coastal environment [7].
Habitat maps are spatial representations of natural discrete seabed areas associated with particular
species, communities, or co-occurrences. These maps can reflect the nature, distribution, and extent of
disparate natural environments and can predict the species distribution [8].

Remote sensing has long-been identified as a technology capable of supporting the development
of coastal zone monitoring and habitat mapping over large areas [1,9]. These processes require
multitemporal data, either from satellites or from unmanned aerial systems (UAS). The availability
of very high-resolution orthomosaics presents increasing interest, as it provides to scientists and
relevant stakeholders detailed information for understanding coastal dynamics and implementing
environmental policies [6,10–13]. However, the use of high-resolution orthomosaics created from UAS
data is expected to improve mapping accuracy. This improvement is due to the high-spatial resolution
of the orthomosaics less than 30 cm.

The increasing demand of detailed maps for monitoring the coastal areas requires automatic
algorithms and techniques. Object-based image analysis (OBIA) is an object-based analysis of remote
sensing imagery that uses automated methods to partition imagery into meaningful image-objects
and generate geographic information in a GIS-ready format, from which new knowledge can be
obtained [6,14,15].

In literature, there are several studies presenting the combination of OBIA with UAS imagery
in habitat mapping. Husson et al. 2016 demonstrated an automated classification of nonsubmerged
aquatic vegetation using OBIA and tested two classification methods (threshold classification and
random forest) using eCognition®to true-color UAS images [2]. Furthermore, the produced automated
classification results were compared to those of the manual mapping. In another study, Husson et al.
2017 combined height data from a digital surface model (DSM) created from overlapping UAS images
with the spectral and textural features from the UAS orthomosaic to test if classification accuracy can
be further improved [3]. They proved that the use of DSM-derived height data increased significantly
the overall accuracy by 4%–21% for growth forms and 3%–30% for the dominant class. They concluded
that height data have a significant potential to efficiently increase the accuracy of the automated
classification of nonsubmerged aquatic vegetation.

Ventura et al. 2016 [16] carried out habitat mapping using a low-cost UAS. They tried to locate
coastal areas suitable for fish nursery in the study area using UAS data and applying three different
classification approaches. UAS data were collected using a video camera, and the acquired video was
converted into a photo sequence, resulting in the orthomosaic of the study area. In this study, three
classifications were performed using three different methods: (i) maximum likelihood in ArcGIS 10.4,
(ii) extraction and classification of homogeneous objects (ECHO) in MultiSpec 3.4, and (iii) OBIA in
eCognition Developer 8.7, with an overall accuracy of 78.8%, 80.9%, and 89.01%, respectively [16]. In
a subsequent study, Ventura et al. 2018 [12] referred to the island of Giglio in Central Italy, where
they carried out habitat mapping in three different coastal environments. Using OBIA and the nearest
neighbor algorithm as classifiers, four different classifications were applied to identify Posidonia
Oceanica meadows, nurseries for juvenile fish, and biogenic reefs with overall accuracies of 85%,
84%, and 80%, respectively. In another study, Makri D. et al. 2018 [17], a multiscale image analysis
methodology was performed at Livadi Beach located on Folegandros Island, Greece. Landsat-8 and
Sentinel-2 imagery were georeferenced, and atmospheric and water columns were corrected and
analyzed using OBIA. As in situ data, high-resolution UAS data were collected. These data were used,
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as well in the classification and accuracy assessment. The nearest neighbor algorithm and fuzzy logic
rules were used as classifiers. In this study, the overall accuracy was calculated to be 53% for Landsat-8
and 66% for Sentinel- 2 imagery. Duffy J. et al. 2018 [18] studied the creation of seagrass maps in Wales
using a light drone for data acquisition. Three different classification methods were examined using
the R 3.3.1 software [19]. The first classification performed unsupervised classification to true-color
RGB (tc-RGB) data implemented in the ‘RStoolbox’ package [20,21]. The second classification was
realized using tc-RGB data in combination with the texture of the image. Finally, the third classification
was based on the object-based image analysis in the Geographic Resources Analysis Support System
(GRASS) 7.0 software [22,23]. The accuracy of the classifications was based on the root mean square
deflection (RMSD), and the results showed that unsupervised classifications had better accuracy in
the seagrass coverage in comparison with the object-based image analysis method. These studies
demonstrate that UAS data can provide critical information regarding the OBIA classification process
and have the potential to increase classification accuracy in habitat mapping.

This study aimed to investigate the use of an automated classification approach by applying
OBIA to high-resolution UAS multispectral and true-color RGB imagery for marine habitat mapping.
Based on orthorectified image mosaics (here called UAS orthomosaics), we perform OBIA to map
marine habitats in areas with varying levels of habitat complexity on the coastal zone. For the first
time, UAS tc-RGB and multispectral orthomosaics were processed following OBIA methodology, and
the classification results were compared by applying different classifiers for marine habitat mapping.
Furthermore, the performance of the same classifier when applied to different orthomosaics (tc-RGB
and multispectral) was examined in terms of accuracy and efficiency in classifications for marine
habitat mapping. The object-based image analysis was performed using as classifiers the k-nearest
neighbor algorithm and fuzzy logic rules. The validity of the produced maps was estimated using
the overall accuracy and the Kappa index coefficient. Furthermore, divers’ photos and roughness
information derived from echo sounders were used as in situ data to assess the final results. Finally, we
compared the results between multispectral and true-color UAS data for the automatic classification
habitat mapping and analyzed them concerning the classification accuracy.

2. Materials and Methods

2.1. Study Area

The area used in this study is located in the coastal zone of Pamfila Beach on Lesvos Island,
Greece (Figure 1). Lesvos is the third-largest Greek island, having 320 km of coastline, located in the
Northeastern Aegean Sea. Pamfila Beach lies in the eastern part of Lesvos Island (39◦ 9′30.17” N, 26◦

31′53.35” E), and the islet called Pamfilo is in front of the beach. Furthermore, an olive press and a
petroleum storage facility are located close to the beach. This combination creates a unique marine
environment; thus, sea meadows mapping is in critical demand for this area. There are four main
marine habitats: hard bottom, sand, seagrass, and mix hard substrate. The hard substrate appears in
the intertidal and the very shallow zone (0 to 1.5 m). The sand class covers mainly the southern part of
the study area, and the mixed hard substrate is mainly located in the center of the study area, at depths
of about 2.5 to 6.5 m. The seagrass class (Posidonia Oceanica) is dominant in the area and is presented at
a depth of about 1.5 to 3.5 m. and 6.5 to 7.9 m.
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Figure 1. Location map of the Pamfila study area depicted with the red rectangle. Location maps of
Greece (top right) and Lesvos Island (bottom right).

2.2. Classification Scheme

Four categories of the European Nature Information System (EUNIS, 2007) habitat classification
list were selected for the classification process: (i) hard substrate, (ii) seagrass, (iii) sand, and (iv) mixed
hard substrate. Due to the high resolution of orthomosaics (2 to 5 cm), we assume that each pixel is
covered 100% by its class; i.e., a pixel is categorized as seagrass when it is covered 100%. The four
classes selected as the predominant classes were previously known from local observations and studies.
The seagrass class (code A5.535)—namely, Posidonia Oceanica beds—is characterized by the presence
of the marine seagrass (phanerogam) Posidonia Oceanica. This habitat is an endemic Mediterranean
species creating natural formations called Posidonia meadows. These meadows are found at depths of
1 to 50 m. The sand class (code A5.235) is encountered in very shallow water where the sea bottom is
characterized by fine sand, usually with homogeneous granulometry and of terrigenous origin. The
class of hard substrate (code A3.23) is characterized by the presence of many photophilic algae covering
hard bottoms in moderately exposed areas. Finally, the mixed hard substrate class is considered as an
assemblage of sand, seagrass, and dead seagrass leaves covering a hard substrate.

The depth in the study area was measured using a single-beam echo sounder and had a variation
of 0 to 8 m. The depth zones accurately defined and proved very useful in the explanation of the results
(Figure 2).

2.3. In Situ Data

In the present study, a combination of photographs taken while snorkeling and measurements
derived from a single-beam echo sounder attached to a small inflatable boat were used as in situ data.

2.3.1. Divers’ Data Acquisition

The study area was initially investigated using an orthomosaic map from a previous demo flight
to create sections and transects that divers would follow to capture underwater images. The selected
transect orientation was designed to target all four selected classes equally. Furthermore, reference
spots were selected using the abovementioned orthomosaic map to help the divers’ orientation during
snorkeling. The divers’ equipment used for taking photos as in situ data was a GoPro 4 camera. The
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divers team followed the predetermined transects in the area and captured with an underwater image
all the preselected spots having one of the four classes selected for classification. The in situ sampling
took place on 06/07/2018, having a shape of a trapezium, and lasted one hour. In total, 125 underwater
images were collected from the divers using a GoPro 4 Hero underwater camera. Each one of the
underwater images was captured in a way to represent one training class. After quality control, 33
images were properly classified. The number of the images used for the classification was reduced
by 92 due to the following reasons: (i) 18 images (14.4%) were not clearly focused on the sea bottom
due to the depth; (ii) 21 images (16,8%) were not geolocated due to the repetitive sea bottom pattern
(for example, sandy sea bottom); (iii) 25 images (20%) were duplicated, as they were captured in the
same position by the divers to assure that the dominant class will be captured; and, finally, (iv) 28
images (23%) were blurry due to the sea state and the water quality. All images were interpreted to
define the classes. Additionally, the position where these images were captured was identified by
photointerpretation from the divers’ team using the tc-RGB orthomosaic.
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2.3.2. Echo Sounder Data Acquisition

Echo sounder data were collected by SEMANTIC TS personnel using a single-beam sound device
attached to a small inflatable vessel on 06/07/2018. The measurements were based on the reflection
of the acoustic pulse of the echo sounder device. SEMANTIC TS has developed a signal-processing
algorithm based on discriminant analysis to scrutinize the response energy level of the sea bottom
pulses [24]. The derived information includes the depth and the substrate roughness, while the precise
geographical positions of the acquired data are also recorded. Roughness and bathymetry products
of the study area are provided as a raster dataset (Figures 2 and 3). ArcMap 10.3.1 software [25] was
used to process the data, and the canvas was converted into a point vector shapefile. The point vector
shapefile contained a total of 3.364 points with the roughness and bathymetry info.
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2.4. UAS Data Acquisition

The UAS used for data acquisition was a vertical take-off and landing (VTOL) configuration capable
of autonomous flights using preprogrammed flight paths. The configuration was a custom-made
airborne system based on the S900 DJI hexacopter airframe, having a 25-min flight time with an
attached payload of 1.5 Kg. The payload consisted of two sensors: a multispectral and a tc-RGB. The
configuration lies in the Pixhawk autopilot system, which is an open-source UAS [26,27]. For the
positioning of the UAS during the flight, a real-time kinematic (RTK) global positioning system was
connected to the autopilot.

2.4.1. Air-Born Sensors Used

The true-color RGB sensor used in this study was a Sony A5100 24.3-megapixel camera with
interchangeable Sigma ART 19 mm 1:2.8 DN0.2M/0.66Feet lens capable of precise autofocusing in
0.06 sec, capturing high-quality true-color RGB (tc-RGB) images. This sensor was selected because
of the lightweight (0.224 kg), manual parameterization and auto-triggering capabilities, using an
electronic pulse due to its autopilot. The multispectral camera was a Slantrange 3P (S3P) sensor
equipped with an ambient illumination sensor for deriving spectral reflectance-based end-products,
an integrated global positioning system, and an inertial measurement unit system. The S3P has a
quad-core 2.26 GHz processor and an embedded 2GB RAM for onboard preprocessing. The S3P used
is a modified multispectral sensor, having the wavebands adjusted to match the coastal, blue, green,
and near-infrared (NIR) wavebands on the Sentinel-2 mission (Table 1). The scope of the waveband
modification to the S3P imager aimed at simulating Sentinel-2 data in finer geospatial resolution.
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Table 1. Waveband information for the Slantrange 3P imager and Sentinel-2 missions. Coastal (C), blue
(B), green (G), and near-infrared (NIR).

Slantrange 3P Sentinel-2A Sentinel-2B
Centre (nm) Bandwidth (nm) Centre (nm) Bandwidth (nm) Centre (nm) Bandwidth (nm)

C 450 20 442.7 27 442.2 45
B 500 80 492.4 98 492.1 98
G 550 40 559.8 45 559.0 46

NIR 850 100 832.8 145 832.9 133

The open-access Mission Planner v1.25 software was used as a ground station for real-time
monitoring of the UAS telemetry and for programming the survey missions [28].

2.4.2. Flight Parameters

Data acquisition took place on the 8th July 2018 in the Pamfila area. Before the data acquisition,
the UAS toolbox was used to predict the optimal flight time [29]. The toolbox automates a protocol,
which summarizes the parameters that affect the reliability and the quality of the data acquisition
process over the marine environment using UAS. Each preprogrammed acquisition flight had the
following flight parameters: 85% overlap in-track and 80% side-lap. The UAV was flying at a height
of 120 m above sea level (absolute height), having a velocity of 5 m/s. Thus, the tc-RGB sensor was
adjusted for capturing a photograph every 3.28 s in the nadir direction and the multispectral every 1
s. The obtained ground resolution of the tc-RGB images acquired from the UAS was 2.15 cm/pixel,
and for the multispectral imager was 4.84 cm. Ground sampling resolution varied due to the focal
length, pixel pitch, and sensor size of the sensors used. After a quality control inspection, the majority
of the images were selected for further processing. The data acquisition information is depicted in the
following table (Table 2), followed by the final orthomosaics obtained from the UAV (Figure 4).

Table 2. The number of raw images and spatial resolution acquired using a suite of sensors attached to
the unmanned aircraft system (UAS).

Name of Sensor Number of Images Sensor Resolution (Pixel) Flight Height (m) Ground Resolution (cm/Pixel)

SlantRange 3P 568 1216 × 991 120 4.84
Sony A5100 181 6000 × 4000 120 2.15

Prior to the survey missions, georeferenced targets, designed in a black and white pattern, were
used as ground control points (GCP), having dimensions of 40 × 40 cm. In total, 18 targets were placed
on the coastal zone of the study area. The GCP’s coordinates were measured in the Hellenic geodetic
system using a real-time kinematic method yielding a total root mean square error (RMSE) of 0.244 cm.

2.5. Methodological Workflow

An overview of the followed methodological workflow is given below (Figure 5). The methodology
is organized into four steps: (i) data acquisition and creation of tc-RGB and multispectral orthomosaics
using the UAS-SfM (structure-from-motion) framework [10,30], (ii) orthomosaics preprocessing, (iii)
object-based image analysis, and (iv) accuracy assessment. After UAS and in situ data acquisition,
the divers’ photos passed quality control and were interpreted to define the class that is depicted.
Furthermore, in the preprocessing stage, a land mask was applied to both orthomosaics. Then, the OBIA
analysis was performed, starting with the objects’ segmentation and then performing the classification
of benthic substrates of the study area. The classification was implemented following three scenarios.
In the first and second scenarios, the k-nearest neighbor and fuzzy rules were applied as classifiers,
respectively. In the third scenario, both fuzzy rules and k-NN were applied. The in situ data collected
were separated into two nonoverlapping datasets: one for training and one for accuracy assessment.
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2.6. Orthomosaic Creation

Structure-from-motion (SfM) photogrammetry applied to images captured from UAS platforms
is increasingly being used for a wide range of applications. SfM is a photogrammetric technique
that creates two and three-dimensional visualizations from two-dimensional image sequences [31,32].
The methodology is one of the most effective methods in the computer vision field, consisting of a
series of algorithms that detect common features in images and convert them into three-dimensional
information. For the realization of this study, the Agisoft Photoscan 1.4.1 [33] was used, since it
automates the SfM process in a user-friendly interface with a concrete workflow [32,34–37].
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Georeferencing of the tc-RGB orthomosaic was achieved using 18 ground control points (GCPs).
The use of GCPs for the geolocation of the tc-RGB orthomosaic had, as a result, an RMSE of 1.56 (cm).
The achieved accuracy met the requirements of the authors for creating highly detailed maps. The S3P
multispectral orthomosaic was georeferenced using the georeferenced tc-RGB orthomosaic as a base
map [38]. An inter-comparison of the georeferenced orthomosaics was implemented to best match
common characteristic reference points. Final end-products consisted of georeferenced (i) S3P—coastal
(450 nm), blue (500 nm), green (550 nm), and NIR (850 nm) and (ii) Sony A5100 in true-color RGB
orthomosaics. The size in pixels for the produced derivatives created from SfM is presented in the
following table (Table 3).

Table 3. Size in pixels of produced orthomosaics according to the used sensors: true-color RGB (Sony
A5100) and multispectral (Slantrange).

Name of Sensor Orthomosaic Size (Pixels)

SlantRange 3P 12,122 × 4103
Sony A5100 11,446 × 21,001

Orthomosaic Preprocessing

Before the preprocessing step, the divers’ in situ data were interpreted, and the two orthomosaics
were initially checked for their geolocation accuracy. Then, the produced orthomosaics were
land-masked for extracting information based solely on the pixels of the sea. The land mask was
created by editing the coastline as a vector in a shapefile format using ArcMap 10.3.1 software [25].
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2.7. Object-Based Image Analysis (OBIA)

For the OBIA, three necessary steps were required: (i) the segmentation procedure; (ii) the
definition of the classes that will be later classified; and (iii) the delineation of the classifier, i.e., the
classification algorithm defining the class where the segments will be classified.

The first step of the OBIA analysis is to create objects from orthomosaics through the segmentation
procedure. The orthomosaics are segmented by a multiresolution segmentation algorithm in eCognition
software [39] (Figure 6). The initial outcome of the segmentation is meaningful objects defined from
the scale parameters, image layer weights, and composition of the homogeneity criterion [40]. The
thresholds used for these parameters were determined empirically, based on the expertise of the image
interpreter. For the tc-RGB orthomosaic, the parameters of scale, shape, and compactness were set to
100, 0.1, and 0.9, respectively. For the multispectral orthomosaic, the parameters were set: 15 for the
scale, 0.1 for the shape, and 0.9 for the compactness.Remote Sens. 2020, 11, x FOR PEER REVIEW 11 of 24 
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In the classification step, two algorithms were selected, the k-nearest neighbor (k-NN) and the
fuzzy classification, using eCognition®. The k-nearest neighbor (k-NN) algorithm classifies image
objects into a specific feature range and with given samples pertaining to preselected categories. Once
a representative set of samples is declared, each object is classified on the resemblance of band values
between the training object and the objects to be classified among the k-nearest neighbors. Thus, each
segment in the image is denoted with a value equal to 1 or 0, expressing whether the object belongs to
a class or not. In fuzzy classification, instead of binary decision-making, the probability of whether an
object belongs to a class or not is calculated using membership functions. The limits of each class are
no longer restricted using thresholds, but classification functions are used within the dataset, in which
every single parameter value will have a chance of being assigned to a class [41,42]. Both classifiers
are part of the eCognition®software. The k-NN algorithm was selected as a historical classification
algorithm (fast deployment without the need of many samples), and fuzzy logic was selected to add
specific knowledge into the classification derived from the training areas.

2.8. Classification Scenarios and Accuracy Assesment

The classification step of the present study was performed in sub-decimeter UAS orthomosaics
using three different scenarios for defining the best classifier for marine habitat mapping in complex
coastal areas. In the first and second scenarios, the k-nearest neighbor and fuzzy rules were applied as
classifiers, respectively. The third scenario was realized by applying fuzzy rules in the echo sounder
data for sample creation, and the classification was performed using k-NN.

In the first scenario, in total, 60 segments were selected as training samples (15 samples per class)
based on the divers’ underwater images. Each segment of the orthomosaic was classified into one of
the four predefined classes using the k-NN algorithm as the classifier, and the segments of the same
class were merged into one single object. The resulting classification was used for the creation of the
final habitat map. This procedure was followed in both tc-RGB and multispectral orthomosaics for the
first scenario.

In the second scenario, the same training sample as in the first scenario was used, and the fuzzy
rules were defined and applied. The appropriate fuzzy expression for each class was created after
examining the relationship between the classes for the mean segment value of the three image bands
(tc-RGB). Then, the mean value of the three bands was selected as an input, and the logical rules “AND”
and “OR” were used where necessary. The segments were classified using the fuzzy expressions for all
classes, and the objects in the same class were merged into one single object. Thus, the results were
exported as one polygon vector shapefile. As in the first scenario, the above-presented process was
applied to both the tc-RGB and multispectral orthomosaics.

Finally, for the third scenario, the analysis was designed based on the following objectives: (i)
examination of usefulness of the roughness echo sounder info to the classification procedure and (ii)
comparison of the roughness efficiency against the underwater images photo interpretation for the
creation of training samples. More specifically, a new training dataset was created based on the echo
sounder’s roughness information. In total, 3028 roughness points were derived from the echo sounder
dataset, and fuzzy rules were applied to 90% of the points (2724) for the creation of training samples
for the classification classes. In the produced segmentation results, the k-NN algorithm was applied
as the classifier for the calculation of the final classification for each of the four classes. As the small
research vessel was not able to access for safety reasons to depths less than 1.5 m, we manually added
samples where necessary.

Accuracy assessment calculates the percentage of the produced map that approaches the actual
field reality. In this study, we created a validation dataset that was not overlapped with the calibration
dataset. In total, 120 points were generated using the geolocated underwater images (in situ divers’
data) and an expert’s photointerpretation. Initially, a point vector file was created by locating the 33
underwater images in the tc-RGM orthomosaic. Due to the small number of points produced from in
situ data, the dataset was densified via photointerpretation by an expert using the high-resolution
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tc-RGB orthomosaic. In total, 87 points were added, and, therefore, the final point vector file ended with
120 points (30 per class). In Figure 7, all points are illustrated with colors according to their assigned
taxon. In this figure, divers and photointerpretation points are depicted in round and star shapes,
respectively. The 120 accuracy assessment points were firstly assigned to their relevant segments (i.e.,
forming 120 segments) and the total number of pixels forming the segments was used as the accuracy
assessment dataset for all classifications. Furthermore, in the third scenario, 10% of the roughness
points (304 points) equally distributed to all four classes were used also as accuracy assessment data.
The accuracy matrices created for all scenarios provided information regarding the user and producer
accuracy, overall accuracy, and the Kappa index coefficient (Table 4, Table 5, Table 6, Table 7, Table 8,
and Table 9).Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 24 
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Table 4. Accuracy matrix for the true-color RGB (tc-RGB) orthomosaic, with k-nearest neighbor as the
classifier. KIA: Kappa index of agreement.

Reference Data

Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 37,2384 0 0 4053 37,6437
Mixed Hard Substrate 18,174 52,3604 164,822 32,669 739,269

Sand 25,776 85,351 172,498 4167 287,792
Hard Bottom Substrate 6642 52,941 0 433,426 493,009

Sum 422,976 661,896 337,320 474,315

Producers’ accuracy 0.88 0.79 0.51 0.91
Users’ accuracy 0.98 0.70 0.60 0.88

KIA per class 0.85 0.66 0.42 0.88
Total accuracy 0.79

KIA 0.71
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Table 5. Accuracy matrix for the multispectral orthomosaic with k-nearest neighbor as the classifier.

Reference Data

Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Seagrass 13,677 9800 0 2333 25,810
Mixed Hard Substrate 0 19,428 0 2038 21,466

Sand 0 0 14,585 1294 15,879
Hard Bottom Substrate 0 3752 1311 22,312 27,375

Sum 13,677 32,980 15,896 27,977

Producers accuracy 1 0.59 0.92 0.8
Users accuracy 0.53 0.91 0.92 0.82
KIA per class 1 0.46 0.9 0.71

Total accuracy 0.77
KIA 0.7

Table 6. Accuracy matrix for the tc-RGB orthomosaic applying the fuzzy rules.

Reference Data

Classes Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 320,025 75,491 21,987 10,838 428,341
Mixed Hard Substrate 1807 404,691 43,224 4062 453,784

Sand 101,144 135,194 272,109 73,351 581,798
Hard Bottom Substrate 0 46,520 0 386,064 432,584

Sum 422,976 661,896 337,320 474,315

Producers accuracy 0.76 0.61 0.81 0.81
Users accuracy 0.75 0.89 0.47 0.89
KIA per class 0.69 0.49 0.72 0.76

Total accuracy 0.73
KIA 0.64

Table 7. Accuracy matrix for the multispectral orthomosaic applying the fuzzy rules.

Reference Data

Classes Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 13,677 5761 3333 0 22,771
Mixed Hard Substrate 0 19,998 0 4371 24,369

Sand 0 2786 12,563 16,633 31,982
Hard Bottom Substrate 0 4435 0 6973 11,408

Sum 13,677 32,980 15,896 27,977

Producers accuracy 1 0.6 0.79 0.25
Users accuracy 0.6 0.82 0.39 0.61
KIA per class 1 0.46 0.68 0.14

Total accuracy 0.59
KIA 0.46
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Table 8. The tc-RGB data classification accuracy matrix for the multispectral orthomosaic.

Reference Data

Classes Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 379,034 84,089 14,876 28,568 506,567
Mixed Hard Substrate 40,103 276,346 108,280 8800 433,529

Sand 3442 259,310 214,157 36,108 513,017
Hard Bottom Substrate 394 42,069 7 400,810 443,280

Unclassified 3 82 0 29 114
Sum 422,976 661,896 337,320 474,315

Producers accuracy 0.9 0.42 0.63 0.85
Users accuracy 0.75 0.64 0.42 0.9
KIA per class 0.86 0.24 0.5 0.8

Total accuracy 0.67
KIA 0.56

Table 9. Echo sounder data classification accuracy matrix for the multispectral orthomosaic.

Reference Data

Classes Sea Grass
(Pixels)

Mixed Hard
Substrate
(Pixels)

Sand
(Pixels)

Hard Bottom
Substrate
(Pixels)

Sum
(Pixels)

Tr
ai

ni
ng

D
at

a Sea Grass 11,858 7811 4530 1987 26,186
Mixed Hard Substrate 1681 13,615 2156 2936 20,388

Sand 133 7042 4747 6685 18,607
Hard Bottom Substrate 2 4504 4457 16,357 25,320

Unclassified 3 8 6 12 29
Sum 13,677 32,980 15,896 27,977

Producers accuracy 0.87 0.41 0.3 0.58
Users accuracy 0.45 0.67 0.26 0.65
KIA per class 0.81 0.24 0.12 0.42

Total accuracy 0.51
KIA 0.35

3. Results

In this section, the classification results of the three scenarios are presented for both the tc-RGB
and multispectral data. The classification was performed using four habitat classes: (i) hard substrate,
(ii) seagrass, (iii) sand, and (iv) mixed hard substrate.

3.1. Scenario 1: k-Nearest Neighbor as Classifier

In the first scenario, k-nearest neighbor (k-NN) was used as the classifier and, when it was applied
to the tc-RGB orthomosaic, it resulted in the classification map depicted in Figure 8A. According to
the bathymetry, the hard substrate appears in the intertidal and the very shallow zone at depths of
0 to 1.5 m. The sand class covers mainly the southern part of the study area, and the mixed hard
substrate is located mainly in the middle of the study area, at depths of 2.5 to 6.5 m. The seagrass
(Posidonia Oceanica) class is divided into two parts: one on the west side of the beach (right next to the
hard substrate) at a depth of about 1.5 to 3.5 m and one on the eastern part of the beach where the
depths vary approximately 6.5 to 7.9 m. The percentage of the segments that belong to each of the
classes is 28.9%, 11.5%, 34.9%, and 24.8% for hard substrate, sand, mixed hard substrate, and seagrass,
respectively. Additionally, the percent areal coverages in square meters for each class were calculated
for this scenario. The area covered from the tc-RGB is 178,386 square meters, and the sand class is
presented as occupying 16.29% of the total area mapped. The other classes’ percentage areal coverage
are 33.04% for seagrass, 44.50% for mixed hard substrate, and 6.17% for the hard bottom.
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The overall accuracy of the classification was 79%, and the Kappa index of agreement (KIA) was
0.71 (Table 4). The sand class presented a lower accuracy compared to the other classes. Several objects
in this class have been incorrectly classified as mixed hard substrate.

The classification results of the multispectral orthomosaic are illustrated in Figure 8B. It can be
noted that the hard substrate appears mainly in the intertidal and the shallow zone at depths of 0 to 3.5
m, having been assigned 31.9% of the total objects. The sand class covers small areas of the western
part of the study area, and the mixed hard substrate is located mainly in the middle of the study area,
at depths of about 2.5 to 9.9 m. The seagrass is scattered almost throughout the study area, covering
a wide depth range of about 0 to 9.9 m. The classified object percentages for the sand, mixed hard
substrate, and seagrass classes are 20.8%, 27.8%, and 19.5%, respectively. In an area of 90,857 square
meters covered by multispectral orthomosaic, the percent areal coverages by class are 3.78%, 51.55%,
36.54%, and 8.13% for sand, sea grass, mixed hard substrate, and hard substrate, respectively.

The achieved overall classification accuracy was 77%, and the KIA coefficient was equal to 0.70
(Table 5). In this case, the mixed hard substrate class presented lower accuracy in comparison with
the rest of the classes, since several objects have been incorrectly classified as seagrass and mixed
hard substrate.
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3.2. Scenario 2: Fuzzy Rules as Classifier

In the second scenario, fuzzy rules were used as the classifier, and the four classes created from
the tc-RGB and multispectral orthomosaics are illustrated in Figure 9A,B, respectively. According to
the classification results for the tc-RGB orthomosaic, the percentage of the assigned objects for the
hard substrate, sand, mixed hard substrate, and seagrass classes are 27.9%, 20%, 29.9%, and 23.1%,
respectively. For this scenario, the percentage areal coverage was calculated to be 23.35% sand, 35.35%
seagrass, 37.27% mixed hard substrate, and 4.02% hard substrate.

Remote Sens. 2020, 11, x FOR PEER REVIEW 16 of 24 

 

seagrass, mixed hard substrate, and hard bottom are covering 40.25%, 51.50%, and 3.27% of the total 
classified area, respectively. The overall classification accuracy obtained by the fuzzy rules is 59%, 
and the coefficient K is equal to 0.46 (Table 7). In this classification scenario, the hard substrate and 
mixed hard substrate classes present lower accuracy, since several objects in these classes have been 
incorrectly classified.  

 

Figure 9. Classification maps for the orthomosaic of the study area applying the fuzzy rules: (A) tc-
RGB orthomosaic map and (B) multispectral orthomosaic map. 

  

Figure 9. Classification maps for the orthomosaic of the study area applying the fuzzy rules: (A) tc-RGB
orthomosaic map and (B) multispectral orthomosaic map.

When fuzzy rules were used as the classifier, the overall accuracy was 73%, and the coefficient
KIA was 0.64 (Table 6). In this scenario, the mixed hard substrate class presented lower accuracy
in comparison with the other three classes, since several objects of this class have been incorrectly
classified as hard substrate, sand, and seagrass.

From the classification results of the multispectral orthomosaic (Figure 9B), the seagrass class
comes into sight, divided into two parts. The first part is on the west side of the beach (right next to
the sand class) at depths of about 1.5 to 3.5 m and the second on the eastern part of the beach. In this
part, the depths vary approximately from 6.5 to 7.9 m. The percentage of each class object is 13.1%,
23.6%, 37.6%, and 25.7% for hard substrate, sand, mixed hard substrate, and seagrass, respectively.
Furthermore, the percentage of areal calculations saw that the sand class covers 4.99%, while the
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seagrass, mixed hard substrate, and hard bottom are covering 40.25%, 51.50%, and 3.27% of the total
classified area, respectively. The overall classification accuracy obtained by the fuzzy rules is 59%,
and the coefficient K is equal to 0.46 (Table 7). In this classification scenario, the hard substrate and
mixed hard substrate classes present lower accuracy, since several objects in these classes have been
incorrectly classified.

3.3. Scenario 3: k-NN and Fuzzy Rules as Classifiers

In the scenario where a combination of the fuzzy rules and k-NN are used as the classifiers, the
four classes created from the classification of the tc-RGB orthomosaic are represented in Figure 10A.
The percentage of the assigned objects for the four classes is 31.6%, 16.9%, 21.6%, and 29.8% for hard
substrate, sand, mixed hard substrate, and seagrass, respectively. The classes created from the tc-RGB
orthomosaic present the following results in percent areal coverage. The class sand has 21.66%. The
overall classification accuracy is 67%, and the KIA coefficient is equal to 0.56 (Table 8). The mixed hard
substrate and sand classes presented lower accuracy compared to the rest of the classes, regarding the
tc-RGB orthomosaic in this scenario. Several objects of the mixed hard substrate and sand classes were
incorrectly classified into other classes.
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The multispectral orthomosaic classification results derived from scenario 3 are illustrated in
Figure 10B. For each class, the percentage of the assigned objects was 35.1%, 10.2%, 29.3%, and 25.5% for
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hard substrate, sand, mixed hard substrate, and seagrass, respectively. The areal percentage coverage
calculation results for the multispectral orthomosaic in scenario 3 were 21.72% coverage for sand,
33.62% for seagrass, 42.94% for mixed hard substrate, and, finally, 2.72% for hard substrate. In this
scenario, the overall classification accuracy was relatively low (51%), and the coefficient KIA was
very low (0.35) (Table 9). The hard substrate, mixed hard substrate, and sand classes presented lower
accuracy compared to the seagrass class using the k-NN and fuzzy rules as classifiers. Several objects
in the above-mentioned classes have been incorrectly classified.

The third scenario presents scattered areas of mixed hard substrate, in contrast to scenarios 1
and 2. The main difference is located in the center of the scene where the mixed classes are. On the
contrary, all scenarios depict nicely the seagrass class in both shallow and deep waters. Hard bottom is
well-defined in all scenarios. The multispectral dataset seems not to classify correctly the mix hard
substrate and the sand classes.

Table 10 summarizes the overall accuracy of the three scenarios. In all scenarios, the tc-RGB
orthomosaic responded better than the multispectral orthomosaic. The best performance (79%) was
given in the first scenario for the k-NN classifier applied to the tc-RGB orthomosaic. The use of echo
sounder data as training data did not increase the quality of the final classification maps, as the authors
expected. On the contrary, the accuracy was worse when echo sounder data were used as training
data, compared to those where solely underwater images were applied.

Table 10. Brief table of total accuracies for the tc-RGB and multispectral orthomosaics of the three
scenarios of the study.

Scenario No. Classifier Training Data Orthomosaic Total Accuracy Kappa Index

Scenario 1 k-Nearest Neighbor Underwater images tc-RGB 79% 0.71
Underwater images Multispectral 77% 0.7

Scenario 2 Fuzzy Rules Underwater images tc-RGB 73% 0.64
Underwater images Multispectral 59% 0.46

Scenario 3
k-Nearest Neighbor

& Fuzzy Rules
Echo Sounder

roughness
tc-RGB 67% 0.56

Multispectral 51% 0.35

4. Discussion and Conclusions

In this work, we have shown that the utilization of UAS high in resolution and accuracy aerial
photographs, in conjunction with the OBIA, can create quality habitat mapping. We demonstrated that
habitat mapping information could be automatically extracted from sub-decimeter spatial true-color
RGB images acquired from UAS. High-resolution classification maps produced from UAS orthomosaic
using the OBIA approach enables the identification and measurement of habitat classifications (sand,
hard bottom, seagrass, and mixed hard substrate) in the coastal zone over the total extent of the
mapped area. The detailed geoinformation produced provides scientists with valuable information
regarding the current state of the habitat species, i.e., the environmental state of sensitive coastal areas.
Moreover, the derived data products enable in-depth analysis and, therefore, the identification of
change detections caused by anthropogenic interventions and other factors.

The purpose of this paper was twofold: (a) to compare two types of orthomosaics, the tc-RGB and
the multispectral, captured over a coastal area using OBIA with different classifiers to map the selected
classes and (b) to examine the usefulness of the bathymetry and the roughness information derived
from the echo sounder as training data to the UAS-OBIA methodology for marine habitat mapping.

From the comparison of the classification results, it can be concluded that the tc-RGB orthomosaic
produces more valuable and robust results than the multispectral one. This is caused due to the
multispectral imager specifications. More specifically, the multispectral sensor receives data from four
discrete bands, and a global shutter is used. As a result, the sensor captures photos in a shorter time
compared to the tc-RGB camera. Thus, the exposure time is shorter in the multispectral (SlantRange
modified imager) than in the true-color RGB (Sony A5100) sensor, causing less light energy. In addition,
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during the process of the multispectral orthomosaic creation due to the data quality of the initial images,
the final derivative was not uniform, thus presenting discrete irregularities. These anomalies appeared
due to different illumination conditions and the sun glint; therefore, the multispectral orthomosaic
classification presents lower accuracy values. It is crucial to follow a specific UAS flight protocol before
each data acquisition, as presented by Doukari et al. in [29,43], for eliminating these anomalies. It
should be mentioned that the UAS data acquisition procedure works fine over land, presenting a high
accuracy level. However, it is not performed adequately over moving water bodies, especially when
having a large extent; thus, no land is presented in the data.

Three scenarios were examined for the classification of the marine habitats using different
classifiers. The k-nearest neighbor and fuzzy rules were applied in the first and second scenarios,
respectively, and a combination of the fuzzy rules and k-NN algorithm in the third scenario. From
the evaluation of the three scenarios’ classification results, it can be concluded that the use of the
tc-RGB instead of the multispectral data provides better accuracy in detecting and classifying marine
habitats by applying the k-NN as the classifier. The overall accuracy using the K-NN classifier was 79%,
and the Kappa index (KIA) was equal to 0.71. The results illustrate the effectiveness of the proposed
approach when applied to sub-decimeter resolution UAS data for marine habitat mapping in complex
coastal areas.

Furthermore, this study demonstrated that the roughness information derived from the echo
sounder did not increase the final classification accuracy. Although the echo sounder roughness can be
used to discriminate classes and produce maps of the substrates, it cannot be used directly as training
data for classifying UAS aerial data. Based on the echo sounder signal, a proper roughness analysis
should be initially performed to produce habitat maps, which in later stages could be used as training
and validation data for the UAS data.

The results showed that UAS data revealed the sub-bottom complexity to a large extent in
relatively shallow areas, providing accurate information and high spatial resolution, which permits
habitat mapping with extreme detail. The produced habitat vectors are ideal as reference data for
studies with satellite data of lower spatial resolution. Since UAS sub-decimeter spatial resolution
imagery will be increasingly available in the future, it could play an important role in habitat mapping,
as it serves the needs of various studies in the coastal environment. Finally, the combination of OBIA
classification with UAS sub-decimeter orthomosaics implements a very accurate methodology for
ecological applications. This approach is capable of recording the high spatiotemporal variability
needed for habitat mapping, which has turned into a prime necessity for environmental planning
and management.

UAS are increasingly used in habitat mapping [7,12,16–18,44], since they provide high-resolution
data to inaccessible areas at a low cost and with high temporal repeatability [10,45,46]. The use of a
multispectral camera with similar wavelengths to the Sentinel-2 satellite wavelengths was examined
for the first time in the present study. Results indicated that the tc-RGB and multispectral orthomosaic
perform similarly, and there is no significant advantage of the multispectral camera. This can be
explained twofold: (a) due to the fact that the multispectral camera is designed for land measurements
and due to the inherited optical properties that cannot distinguish small radiometric differences in
water, and (b) the multispectral orthomosaic was problematic due to the large differences in actual
multispectral images as a result of large overlaps between them. The multispectral imager over sea
areas should contain small overlaps and should gain data in short shutter speeds, i.e., with larger
acquisition times. Additionally, results show that echo sounder roughness should not be used for
training classification algorithms. The total accuracy of the third scenario in both orthomosaics clearly
indicates the inadequacy of bottom roughness for training datasets.

Moving forward, the authors believe that the rapidly developing field of lightweight drones
and the miniaturization and the rapid advance of true-color RGB, multispectral, and hyperspectral
sensors for close remote sensing will soon allow a more detailed mapping of marine habitats based on
spectral signatures.
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