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Abstract: Inland lake variations are considered sensitive indicators of global climate change. However,
human activity is playing as a more and more important role in inland lake area variations. Therefore,
it is critical to identify whether anthropogenic activity or natural events is the dominant factor in inland
lake surface area change. In this study, we proposed a method that combines the Douglas-Peucker
simplification algorithm and the bend simplification algorithm to locate major lake surface area
disturbances. These disturbances were used to extract the features that been used to classify
disturbances into anthropogenic or natural. We took the nine lakes in Yunnan Province as test sites,
a 31-year long (from 1987 to 2017) time series Landsat TM/OLI images and HJ-1A/1B used as data
sources, the official records were used as references to aid the feature extraction and disturbance
identification accuracy assessment. Results of our method for disturbance location and disturbance
identification could be concluded as follows: (1) The method can accurately locate the main lake
changing events based on the time series lake surface area curve. The accuracy of this model for
segmenting the time series of lake surface area in our study area was 94.73%. (2) Our proposed method
achieved an overall accuracy of 87.75%, with an F-score of 85.71 for anthropogenic disturbances and
an F-score of 88.89 for natural disturbances. (3) According to our results, lakes in Yunnan Province of
China have undergone intensive disturbances. Human-induced disturbances occurred almost twice
as much as natural disturbances, indicating intensified disturbances caused by human activities. This
inland lake area disturbance identification method is expected to uncover whether a disturbance to
inland lake area is human activity-induced or a natural event, and to monitor whether disturbances
of lake surface area are intensified for a region.

Keywords: time series; lake changes; remote sensing; inland lake; lake disturbance

1. Introduction

Inland lakes are important aspects of land surface cover that participate in the natural water
cycle and are considered highly sensitive to the impacts of climate change and human activities [1,2].
Shrinkage or extension of inland lakes can reflect global climate and environment changes [3]. Thus,
inland lake variations are considered sensitive indicators of global climate change [4,5]. Lake variations

Remote Sens. 2020, 12, 612; doi:10.3390/rs12040612 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5136-9364
http://dx.doi.org/10.3390/rs12040612
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/4/612?type=check_update&version=3


Remote Sens. 2020, 12, 612 2 of 20

are caused by either natural events or anthropogenic activities. However, these variations are
mostly documented by the local authorities or institutions and are rarely obtained from remote
sensing technology.

This study focuses on remote sensing methods to identify the dominant factors affecting changes
to inland lake surface area. With advantages of wide coverage, high frequency data collection, labor
and economic cost-effectiveness, remote sensing technology has been used in previous lake change
studies [6–8], especially for lakes located in remote and less developed areas where lake surface changes
have been only rarely documented [2].

With ongoing earth observation projects (such as NASA’s Earth Observing System (EOS) and
the European Union’s Copernicus program) and the development of sensors (from visible to infrared
and SAR), time series of remote sensing data is providing a new means to study lake change. Remote
sensing data used for lake monitoring could be divided into three categories according to their spatial
resolution: coarse-, medium- and high-spatial resolution data. Although coarse spatial resolution
remote sensing data (such as NOAA/AVHRR, MODIS, Suomi NPP-VIIRS and Sentinel-3) have lower
spatial resolution and larger FOV (Field of View) that cause BRDF (bidirectional reflectance distribution
function) effects [9], they often have a higher revisit frequency and a wider coverage; therefore, they
have been widely used in water monitoring [10]. For example, Feng et al. [11] quantified the effect of
seven potential driving factors (from both human activities and natural processes) in 50 large lakes
on the Yangtze Plain using time series of MODIS observations between 2003 and 2016; they found
human activities significantly influenced more lakes than natural processes in this area. Che et al. [12]
applied the synthesized monthly MODIS09A1 data to extract the lake area of the Qinghai-Tibet
Plateau from 2000 to 2013 using the synthesized normalized difference water index (NDWI) of a water
body index proposed by Mcfeeters [13]. Their results showed that the lake area of the Qinghai-Tibet
Plateau significantly expanded during 2000 and 2013. Using time series MODIS data to identify
Poyang lake water area changes, Feng et al. [14] found that Poyang Lake had significant seasonal
and interannual changes during 2000 and 2010, mainly due to the influence of climate fluctuations.
With the development of better sensors, high spatial resolution land monitoring satellites, such as
QuickBird, IKONOS, Worldview, RapidEye, ZY-3 and GF-1/2, can provide more accurate and higher
spatially resolved land cover observations. However, the small image coverage and the long revisit
periods of high spatial resolution data remain obstacles for the detection of change in larger inland
water bodies [6].

Among these three kinds of data, the medium-resolution data, such as Landsat, HJ-1A/B, ASTER
and Sentinel-2 data, are the most widely used in water monitoring applications. The main reason for
their frequency of use is the free data access policy and the long-term monitoring of Earth’s surface
changes that these datasets represent, e.g., Landsat data includes continuous observations of up to
48 years [15–17]. A wide range of studies have been employed to study changes to the lake surfaces
using medium-resolution remote sensing data. For example, in order to obtain the water area of the
Yunnan-Guizhou Plateau from 1985 to 2015, Xiao et al. [18] extracted lake surface areas using Landsat
image data from five periods at an interval of 5 years and found that the water area of lakes in the
Yunnan-Guizhou Plateau first increased and then decreased during this period. Tulbure et al. [8]
studied the relationship between water body areas and changes in the weather in the Murray-Darling
Basin and the Barmah-Millewa forests from 1986 to 2011; the results show that extreme weather events,
such as drought and rainfall, have a significant impact on surface water bodies and submergence
dynamics. Using Landsat time series data, Arvor et al. [19] developed a method for automatically
identifying small water bodies and used it to extract the area and quantity of small reservoirs in
the Amazon region of southern Brazil from 1985 to 2015. The results show that the total area and
quantity of small reservoirs in the area increased by 10 times and more than five times during the study
period, respectively.

In summary, existing remote sensing technology used in inland water body identification with
median spatial resolution has provided reliable results for monitoring inland lake change. Moreover,
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current studies are focusing on quantifying the lake water quality that contributed by human activities
or natural processes [10], or how surface water is altered by human activities [2]. For inland lake area
change, we need to further know where and when a major inland surface water area disturbance
occurred, and whether this lake surface area change dominated by human activities or natural events.
This identification is critical for uncovering the relationship between human activities and the natural
environment on both local and global scales. Thus, in this study, we take nine large inland lakes on
the Yunnan Plateau of southwest China as our study area and apply the proposed lake surface area
change analysis method to uncover changes in inland lakes and to identify whether human activities
or natural events dominate these changes.

2. Study Area and Data

2.1. Overview of Study Area

The Yunnan Plateau is part of the Yunnan-Guizhou Plateau, which is one of the four major
plateaus in China. This area is located in southwest China and is characterized by rough terrain and a
subtropical monsoon climate. There are many inland lakes on the Yunnan-Guizhou Plateau; lakes here
play important roles in the ecological environment and regional water security and have even been
considered important strategic resources for the state economy and social development.

There are more than 40 lakes that vary in size on the Yunnan Plateau and lake basins are where
industry and agriculture activities are mostly concentrated. The nine lakes selected for this study are
located in different areas with varied geographical environments in Yunnan Province (Figure 1) and
include five faulted tectonic lakes (Dianchi Lake, Qilu Lake, Erhai Lake, Haixi Lake and Bita Lake), one
faulted karst lake (Lashi Lake), one structural faulted glacial lake (Shudu Lake) located in northwest
Yunnan and two karst lakes (Yilong Lake and Yuxian Lake) located in south and southeast Yunnan. The
nine lakes span the tropical monsoon climate zone and the subtropical monsoon climate zone with dry
winters. There are typically two seasons under these climate zones, the dry season (from November
to the next April) and the rainy season (from May to October of a year). This climate condition is
critical for the optical remote sensing of lakes in this area. The elevation of Yunnan Province varies
from 1420 m a.s.l. (metres above sea level) to 3620 m a.s.l. Among the nine lakes, Dianchi Lake, known
as the “Plateau Pearl,” is the largest freshwater lake in Yunnan Province; Yuxian Lake completely
dried out in several years according to surveys by Li et al. [20]. The surface area of this lake rapidly
decreased to approximately only 150 m2 in August 2013 and the lake had completely dried up when a
survey was conducted again in March 2014 by Hu Kui. Qilu Lake and Yilong Lake are undergoing
severe anthropogenic disturbance, and Bita Lake is currently being subjected to minimal anthropogenic
disturbance. These lakes are distributed in different regions and at different elevations and are therefore
highly representative.
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the China Centre for Resources Satellite Data and Application (CRESDA) (http://www.cresda.com/). 
Because of the distinct dry and wet seasons in Yunnan Province, approximately 90% of the year’s 
precipitation is concentrated in the rainy season, while only 10% occurs during the dry season [21]. 
As a consequence, available remote sensing images for the rainy season in this study area are very 
limited. Remote sensing images we used in this study were all selected during the dry season to 
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FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) model, which is based 
on the ModTRAN model on ENVITM 5.3 software, was used to create the Landsat-based surface 
reflectance data [22]. Because clouds and cloud shadows are obstacles to classification tasks using 
visible spectral remote sensing techniques, the Fmask algorithm provided by Zhu was used to 
identify the clouded and shadowed pixels [23], and these identified pixels were removed and filled 
with the nearest available data. The radiation calibration and atmospheric correction of the HJ-1A/B 
data were also performed using ENVITM 5.3 software. The calibration parameters and spectral 
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2.2. Data Source and Preprocessing

In this study, Landsat TM/OLI remote sensing image data with a time span of 31 years (1987–2017)
were used as the main data source for extracting lake surface area. There were no high-quality
Landsat data available between November 3, 2011 and April 12, 2013 for this study area except SLC-off

(Scanning Line Corrector off) ETM+ images. Therefore, we used HJ-1A/B CCD data, which has the
same spatial resolution as the Landsat data (30 m spatial resolution), to supplement the missing
Landsat data during this period. The level-1 Landsat data were downloaded from the United States
Geological Survey website (https://glovis.usgs.gov/) and the HJ-1A/B data were downloaded from
the China Centre for Resources Satellite Data and Application (CRESDA) (http://www.cresda.com/).
Because of the distinct dry and wet seasons in Yunnan Province, approximately 90% of the year’s
precipitation is concentrated in the rainy season, while only 10% occurs during the dry season [21]. As
a consequence, available remote sensing images for the rainy season in this study area are very limited.
Remote sensing images we used in this study were all selected during the dry season to ensure that
there would be at least one available Landsat observation for each year. We finally downloaded 795
Landsat level-1 images (see Table 1 for details). In addition, we selected 27 cloud-free HJ-1A/B images
covering the nine lakes in the study area between November 3, 2011 and April 12, 2013.

Table 1. Remote sensing images used in this study.

Date Satellite Sensors Images Selected Spatial Resolution Data Source

11/01/1986-11/02/2011 Landsat TM 686 30 m https://glovis.usgs.gov/
11/03/2011-04/12/2013 HJ-1A/B 27 30 m http://www.cresda.com/
04/13/2013-04/30/2017 Landsat OLI 109 30 m https://glovis.usgs.gov/

https://glovis.usgs.gov/
http://www.cresda.com/
https://glovis.usgs.gov/
http://www.cresda.com/
https://glovis.usgs.gov/
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Remote sensing data used in this study were preprocessed, which included radiation calibration,
atmospheric correction and geometric correction. For the atmosphere correction of Landsat data, the
FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) model, which is based
on the ModTRAN model on ENVITM 5.3 software, was used to create the Landsat-based surface
reflectance data [22]. Because clouds and cloud shadows are obstacles to classification tasks using
visible spectral remote sensing techniques, the Fmask algorithm provided by Zhu was used to identify
the clouded and shadowed pixels [23], and these identified pixels were removed and filled with the
nearest available data. The radiation calibration and atmospheric correction of the HJ-1A/B data
were also performed using ENVITM 5.3 software. The calibration parameters and spectral response
functions required for the radiation calibration and the atmospheric correction of the HJ1A/B data
were obtained from the China Centre for Resources Satellite Data and Application CRESDA website
(http://www.cresda.cn/CN/Downloads/dbcs/index.shtml). To keep the consistency between Landsat
and HJ-1A/B data derived lake surface areas, Landsat orthophoto images were used as reference images
to register the HJ-1A/B data, and approximately 16 ground control points (GCPs) were uniformly
selected for each image. These GCPs were used in coregistration between Landsat and HJ-1A/B CCD
data applying polynomial model and the nearest neighbor resampling method.

The water storage of inland lakes changes significantly between different seasons, and it is not
possible to accurately obtain in situ measurements of the lake surface area for each remotely sensed
image. Moreover, visual interpretation would result in the confusion between lake boundary and water
body. However, the satellite borne synthetic aperture radar (SAR) system with longer working bands
makes the radar image have all-weather imaging capability, and several sensors (such as Sentinel-1,
RADARSAT, TanDEM-X, TerraSAR-X) have high spatial resolution, which can greatly improve land
cover detection efficiency and accuracy [24]. The Sentinel-1A data are the first radar data in the history
of SAR that are publicly available for free download (https://vertex.daac.asf.alaska.edu/). With a 12-day
revisit capability and 10 m spatial resolution, the Sentinel-1 SAR data was chosen as the validation data
to assess accuracy of the lake surface area extracted using Landsat and HJ-1A/B data. To minimize the
influence of seasonal precipitation, the Sentinel-1 data with the closest imaging time to Landsat images
were selected to validate the lake surface area extraction accuracy.

3. Methods

Climate variability and human interventions are commonly considered two major contributors
to variations in inland lakes [25]. To identify lake disturbances that are dominated by different
factors using time series remote sensing data, this paper proposes a lake disturbance identification
algorithm that consists of two parts: the first is the Douglas-Peucker algorithm [26] and the bend
simplification algorithm [27] to segment the time series of Landsat data derived lake surface areas.
Second, according to the documented lake surface area change records, the features of the major lake
surface area disturbances are summarized and extracted based the time series of lake surface area and
to identify the major lake surface area disturbances. The specific steps are as follows: (1) building time
series with lake surface areas; (2) curve simplification following the Douglas-Peucker algorithm; (3)
bend simplification to further simplify the segmented time series curve; (4) feature extraction and
event identification.

3.1. Lake Surface Extraction and Building Time Series with Lake Surface Areas

Many methods have been proposed to identify inland water surfaces since the emergence of
remote sensing technology. Widely used water indices include the NDWI, modified normalized
difference water index (MNDWI), enhanced water index (EWI), automated water extraction index
(AWEI), multiband water index (MBWI) and WI2015 [28]. However, among these methods, the water
index-based method has proven to be simple and effective for extracting the water body [29–31].
Therefore, in this study, we adopted the MNDWI index combined with the Otsu algorithm to adaptively
determine the optimum segmentation threshold for extracting lake areas from the Landsat images.

http://www.cresda.cn/CN/Downloads/dbcs/index.shtml
https://vertex.daac.asf.alaska.edu/
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The Otsu method, proposed by Otsu [32], is a self-adaptive thresholding method that is also referred to
as the maximum interclass variance method derived by least square estimation. The Otsu method was
used in this study to exclude the influence of mis-segmentation between water and non-water areas
caused by artificially set thresholds to the MNDWI.

The MNDWI that was obtained by Xu [33] by revising the waveband combination of the NDWI is
one of the most typical and most widely used methods for water extraction. The basic principle of
this index is that the reflectivity of water in the mid-infrared band continues to decrease, while the
reflectivity of ground features, such as soil and buildings, abruptly increases from the near-infrared
band to the mid-infrared band. This pattern greatly reduces confusing water and buildings, reduces
the background noise and benefits the extraction of water surface. Therefore, in this study, we use the
MNDWI (see Equation (1)) to extract water bodies, as follows:

MNDWI =
Green−MIR
Green + MIR

(1)

where Green represents the green light band and MIR is the mid-infrared band.
The single-band threshold method was used to extract water from the HJ-1A/1B images. After PC

(principal component) transformation of the HJ-1A/1B data, a significant difference between water and
non-water was maximized on the second component (or band) [34]. Thus, by selecting an appropriate
threshold, water information can be satisfactorily extracted using the single-band method.

Analysis of a time series curve plotted with sufficiently continuous lake area data not only
effectively reflects the lake area variation trend but also captures any major lake disturbance events. In
this study, the input data used to construct the time series curve were the annual average lake area
measurements extracted from the remote sensing images during each dry season (November to April
of the next year) from 1987 to 2017.

3.2. Time Series Lake Surface Area Curve Segmentation and Identification of Disturbance Events

(1) Simplification of the time series curve using the Douglas-Peucker algorithm
The occurrence of large natural or human activities in (or around) a lake will cause lake area

disturbances. For example, dam construction or water storage in a lake will cause a sudden increase in
lake area, whereas land reclamation around a lake will cause a rapid decrease in lake area. Furthermore,
strong natural events such as rainfall or drought can also cause increases or decreases in lake area.
Such event-induced lake changes manifest as sudden changes in the time series lake surface area curve.
However, minor events or precipitation differences will also cause variations in the time series curve.
These changes are not key factors affecting the lake area but may be obstacles to the identification of
key disturbances; thus, they are considered noise that should be removed for the time-series analysis.

Several methods, such as LandTrendr [35], CCDC [36] and BFAST [37], have been proposed to
identify disturbances using remotely sensed time series indices (such as NDVI (Normalized Difference
Vegetation Index), NBR (Normalized Burn Ratio), TCA (Tasselled Cap Angle). However, most of the
lake surface area time series appear to be purely random and nonstationary time series (see Table 2);
unlike indices such as NDVI, NBR and TCA, lake surface areas are limitless (there is theoretically
no upper boundaries for lake areas), which means existing models, such as LandTrendr, CCDC, and
BFAST, are theoretically unsuitable (or could not be directly used) for the analysis of lake surface area
time series. Fortunately, the Douglas-Peucker (D-P) line simplification algorithm, which is used to
eliminate low-intensity noises and smooth minor changes on the curve to better capture larger changes
on the curve, is an appropriate alternative.
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Table 2. The ADF (Augmented Dickey-Fuller) test to lake surface area time series of the nine lakes.

Lake ADF Test (at 0.05 Level) Stationary (yes/no)

Shudu lake P = 0.5355 > 0.05 no
Qilu Lake P = 0.341 > 0.05 no

Yilong Lake P = 0.1825 > 0.05 no
Bitahai Lake P = 0.03192 < 0.05 yes

Lashihai Lake P = 0.04617 < 0.05 yes
Yuxian Lake P = 0.3644 > 0.05 no

Haixihai Lake P = 0.5563 > 0.05 no
Dianchi Lake P = 0.01 < 0.05 yes

Erhai Lake P = 0.1577 > 0.05 no

The D-P algorithm was proposed by Douglas and Peucker in 1973 [26]. Currently, this algorithm
is recognized as a classical algorithm for vector line simplification in GIS (geographic informational
system). The basic idea of the algorithm is as follows: (1) line AB (see Figure 2) connects the two end
points A and B of a time series curve, forming the chord of the curve; (2) for each of the points (for
example, point C) between A and B on the curve, there will be a distance to this chord (to line AB),
forming a set of distances D, and the maximum distance of D is d(max); (3) d(max) is then compared
with the given tolerance ε, and if d(max) is smaller than ε, then line AB is taken to be the approximation
of the curve, and the processing of this curve section ends, but if d(max) is larger than ε, then the
corresponding point (point C) is used to divide the curve into two subsegments (AC and BC), and each
of the two subsegments is further processed following steps 1 through 3 until each of their d(max)
values is less than the given ε; (4) after all the curves are processed, the segmentation points are
connected sequentially to form a polyline that represents a simplification of the curve.

(2) Bend simplification and time series curve segmentation
After D-P simplification of the time series curve, several minor-change points may not have been

removed. As these points are not indicative of major lake disturbances, they should be removed. To
retain only the feature points with the main fluctuations on time series curves, we used the bend
simplification algorithm, which can eliminate smaller fluctuations [38], to simplify the D-P algorithm
simplified curve.

The bend simplification algorithm was used to determine whether the variation in the curvature
at each point is smooth. Given a predefined threshold, if the curvature was smaller than the threshold,
the point was eliminated and a new segment was created between the two points adjacent to the
eliminated point. However, if the curvature exceeded the predefined threshold, the corresponding
point was considered a potential feature point and was retained. After each point was processed,
the retained potential points were then connected sequentially to form the finally simplified time
series curve. The specific steps of the bend simplification algorithm are illustrated in Figure 2 and are
explained as follows: (1) first, we calculated the curvatures on each point of the curve except for the
first and last points; (2) second, for the curvature on the second point (for example point B), the two
adjacent points A and C were used to construct vectors AB and BC, and the angle formed by these two
vectors was calculated as α1; if α1 was larger than the preset threshold α, the curvature on point B
was considered to be large and was retained as a key point; however, if the angle α1 between vector
AB and BC was less than the preset threshold α, point B was removed. Following the steps above,
curvatures on point C, D, etc. were judged one by one; (3) after step (2), all points, except the beginning
and the end points, that meet the given curvature threshold α were retained as feature points that are
representative of the main lake surface area change events.
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(3) Feature extraction and disturbance identification
By setting appropriate segmentation parameters, disturbances that were considered “major” by

users were obtained. For the segmented time series, each segment represents different lake disturbance
events. When the lake was greatly disturbed by major influences, the variation in the time series
curve was distinguishable. According to the segmented curves, lake surface disturbance features such
as the trajectory, duration and recovery rate were extracted to classify each disturbance following
an unsupervised clustering method. For these extracted features, the trajectory here was defined as
the curve that formed by lake surface areas changing with time. To quantify disturbances within
each trajectory, we defined two indicators: disturbance duration and disturbance recovery rate. For
each disturbance, there were beginning and ending points, the time-span between these two points
was defined as disturbance duration (if not, disturbance duration was defined as infinity). For each
disturbance, there will be a rate; the disturbance event rate was defined as the area difference between
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the beginning and the end of a segment divided by the disturbance duration (see Equations (2) and (3)).
For each disturbance, there were two adjacent segments. The recovery rate was the area change ratio
between prior segment and the next (see Equations (4) and (5)). Features we used for disturbance
classification are as follows:

Feature event rate:
Event rate 1 = | Areaa −Areab| / (Tb − Ta) (2)

Event rate 2 = | Areac −Areab| / (Tb − Tc) (3)

Feature recovery rate:

Area_Diffab = Max(Areaa, Areab) −Min(Areaa, Areab) (4)

Rerate = (AreaDiffab −AreaDiffbc)/Max(AreaDiffab, Area_Diffbc) (5)

where Areaa represents the lake area at point a and Ta is the time (year) of disturbance at point a;
Area_Diffab denotes lake surface area difference between point a and point b; Re_rate is disturbance
recovery rate for disturbance at point b, details are as illustrated in Figure 3.
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Unlike trajectory classifications of disturbances in forests, lake disturbance classifications are small
sample-based classification tasks, because major lake surface area disturbances are small probability
events that cause training sample insufficiency of classifiers, such as statistical classifiers, machine
learning classifiers or artificial intelligence classifiers. Therefore, we used the k-means clustering [39]
method to classify disturbances into anthropogenic or natural events.

(4) Lake surface area disturbance identification accuracy assessment
Disturbance identification accuracy was determined using the confusion matrix, which uses overall

accuracy (OA) to represent the percentage of correctly classified disturbances, the user’s accuracy (UA)
to denote how well training-set samples are classified, and the producer’s accuracy (PA) to show the
probability that a classified sample represents a given class in reality [40]. In this study, we used UAad
and UAnd to represent the user’s accuracies of anthropogenic disturbances and natural disturbances
and the PAad and PAnd to represent the producer’s accuracies of anthropogenic disturbances and
natural disturbances (see Table 3). We employed the method given by Adeline et al. [41] to evaluate the
disturbances identification accuracy levels, and validation samples were randomly selected from the
documented disturbance event records. Reference data and predicted results of the confusion matrix
were defined as TP (true positive), TN (true negative), FP (false positive) and FN (false negative). TP
denotes the number of correctly classified as anthropogenic disturbances, TN is the number of correctly
detected as natural disturbances, FP represents the number of natural disturbances misclassified as



Remote Sens. 2020, 12, 612 10 of 20

anthropogenic disturbances and FN is the number of anthropogenic disturbances misclassified as
natural disturbances. As the F-score strikes a good balance between under- and over-detection accuracy
levels, it was used in this study to evaluate the accuracy of the methods used (see Table 3).

Table 3. Classification accuracy assessment indices and formulas.

Producer’s Accuracy User’s Accuracy
Overall

Accuracy F-ScoreAnthropogenic
Disturbances

Natural
Disturbances

Anthropogenic
Disturbances

Natural
Disturbances

PAad = TP
TP+FN PAnd = TN

TN+FP UAad = TP
TP+FP

UAnd =
TN

FN+TN

OA =
TP+TN

TP+TN+FP+FN

F =
2 PAadUAad

PAad+UAad

4. Results and Discussion

4.1. Accuracy Evaluation of Extracted Lake Surface Area

The SAR and the MNDWI-based lake surface area extraction results of the nine chosen lakes are
shown in Table 4. Compared with the Sentinel-1 data extracted lake areas, the maximum bias was
0.0918% for Lashihai Lake and the minimum bias was 0.0016% for Shudu Lake, and each of the nine
lakes had a bias of less than 0.1% between the Sentinel-1 and the OLI extracted results. The extracted
annual lake area data with a small bias and the Sentinel-1 extracted lake areas were used to establish a
reliable time series curve. Landsat-derived lake surface areas are presented in Figure 4.

Table 4. Accuracies of different lake water extraction results.

Lakes Landsat-OLI Area (km2) Sentinel-1A Area (km2)
Area Differences

(km2)

Shudu Lake 02/15/2017 1.69 02/10/2017 1.69 0.00
Qilu Lake 03/14/2017 32.12 03/13/2017 30.99 1.13

Yilong Lake 03/14/2017 18.21 03/13/2017 17.33 0.88
Bitahai Lake 02/15/2017 1.61 02/10/2017 1.59 0.02

Lashihai Lake 02/03/2015 12.28 01/30/2015 11.25 1.03
Yuxian Lake 03/23/2017 0.96 03/22/2017 0.91 0.04

Haixihai Lake 02/08/2017 3.77 02/10/2017 3.55 0.22
Dianchi Lake 03/14/2017 298.32 03/13/2017 295.42 2.90

Erhai Lake 02/08/2017 242.34 02/10/2017 241.35 0.98

4.2. Time Series Curve Segmentation Accuracy Assessment

4.2.1. Parameter Tuning for Time Series Surface Area Curve Segmentation Method

To identify major lake surface area disturbances, the time series curve segmentation method
removes small fluctuations but keeps major inflection points by setting thresholds for our curve
segmentation method. There are two primary thresholding steps in our method, one for the D-P
algorithm and the other for the bend simplification algorithm. Using a preset tolerance ε for D-P
algorithm and the angle threshold α, the time series curve were segmented. The input data for the bend
simplification algorithm were the data simplified by the D-P algorithm; therefore, it was especially
important to select the threshold for the D-P algorithm. A high threshold for the D-P algorithm will
result in important lake disturbance information losses, but a low threshold value will cause overfitting.
Figure 5 shows the schematic diagram of the threshold selection for the time series curve segmentation,
and panels 5(a), 5(b), 5(c), and 5(d) show the segmentation results from the D-P algorithm used with
different thresholds. As shown in Figure 5, the threshold of 5(a) is too small and failed to reject most of
the small variations that are not considered major disturbances. However, a high threshold value will
result in the loss of major disturbances. Only the threshold of 0.06 set in panel 5(b) is reasonable in that
it not only rejects several small variations but also maintains the major fluctuations.
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Figure 5. Thresholding results for: (a) to (d): Douglas-Peucker simplification algorithm; (e) to (h): bend
simplification algorithm.

As there are still several small fluctuations not removed by the D-P simplification, the bend
simplification algorithm is used to further simplify the segments obtained by the D-P algorithm.
As shown in Figure 5e, when the threshold α for the bend simplification algorithm was too low,
several small fluctuations were not eliminated. However, a greater threshold will cause several major
disturbances to be eliminated, as shown in Figure 5g,h. A threshold of 12.5 set in Figure 5f is reasonable
in that it not only maintains the large fluctuations but also rejects the small fluctuations. Thresholds
used in this study are as listed in Table 5 for the D-P and bend simplification algorithms for segmenting
the curves of the nine lakes. For the D-P algorithm, the threshold was set to a value between 0.1 to 0.35
times the difference between the maximum and the minimum value on the curve. The threshold α
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for the bend simplification algorithm was set between 10◦ and 30◦ to obtain the optimum threshold.
Tuning of segmentation parameters is critical to disturbance identification, although manual tuning is
reliable in segmentation precision, its time and labor consuming remains a major obstacle.

Table 5. Tuning of time series curve segmentation parameters and their accuracies.

Lake Maximum
Area (km2)

Minimum
Area (km2)

Area
Difference

(km2)

Threshold ε
for D-P

Threshold α
for Bend

Simplification

Shudu lake 1.72 1.19 0.54 0.06 12.50
Qilu lake 46.44 23.96 22.48 3.00 17.50

Yilong lake 43.21 12.49 30.71 3.50 19.50
Bitahai lake 1.64 1.56 0.09 0.03 23.00

Lashihai lake 13.15 6.47 6.68 1.50 25.00
Yuxian lake 2.01 0.00 2.01 0.45 11.50

Haixihai lake 4.05 2.50 1.55 0.35 18.00
Dianchi lake 300.42 293.92 6.50 1.60 28.50

Erhai lake 244.90 237.96 6.94 1.15 13.50

4.2.2. Time Series Curve Segmentation Results

The time series curve segmentation algorithm is key for identifying disturbances based on time
series remote sensing observations [42]. However, noise caused by the lake surface extraction method,
seasonal variation in the lake areas, random precipitation, etc., in the time series curve is the main
obstacle to time series curve-based analysis. Smoothing or simplification of a time series curve is
needed to extract the features of disturbances from the curve [43].

After the D-P and bend simplification processing, segments that represent major lake surface
disturbances are obtained; these segments indicate the duration, amplitude, beginning and ending
time, etc., of each disturbance and are further used in the disturbance type classification. This is a
key step for accurately identifying the disturbances. This study used the simple and easy operational
threshold determination method to simplify and segment the time series curves. As shown in Figure 6,
the time series of lake surface area of the nine chosen lakes were segmented into 51 segments using
our curve segmentation method and 19 records are marked in the results, indicating that our method
could accurately locate these disturbances, including those from anthropogenic activities, such as
reservoir constructions, irrigations, dam constructions, water storage projects and natural factors, such
as droughts and heavy rainfalls.

This study used yearly Landsat-extracted lake surface area data to construct the time series curve
from 1987 to 2017. According to the 19 lake disturbance records, the 18 recorded disturbance dates are
consistent with the segmentation results, for a total accuracy of 94.73%.
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Figure 6. Time series curve segmentation and event identification results for lake areas in the study
region during the period 1987–2017. (a) Shudu Lake; (b) Qilu Lake; (c) Yilong Lake; (d) Bitahai Lake;
(e) Lashihai Lake; (f) Yuxian Lake; (g) Haixihai Lake; (h) Dianchi Lake; (i) Erhai Lake.
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4.3. Lake Surface Area Disturbance Feature Extraction and Identification

4.3.1. Lake Surface Area Disturbance Feature Extraction

Inland lakes vary in area and morphology; this is often the result of human activities or natural
factors [44]. The spatial and temporal characteristics can provide sufficient information to distinguish
these two kinds of lake surface area variations. To classify these major lake surface area changes into
anthropogenic or natural events, we extracted the lake surface area features based on the segmented
time series and the documented lake change records. We found 19 officially documented lake
change records (including three repeated records during the same disturbances) for the nine lakes
(see Figure 6); according to these references, anthropogenic lake surface area disturbances included
reservoir constructions [45–47], irrigation [48,49], transforming lakes into fields [50], etc., and natural
events included droughts and heavy rainfalls [51], such as the severe drought from 2009 to 2013 in
Yunnan Province [50,52].

Documented events and their characteristics of change on the time series curves are shown in
Figure 6, and these distinguishable features can be summarized as follows: (1) human-induced lake
surface area changes will cause an abrupt increase (or decrease) in the time series curve and the
area increments are commonly larger for anthropogenic events compared to those for the natural
disturbances, for example, due to anthropogenic activities, the lake surface area for Shudu Lake
increased to 1.4 times that of 1993 between 1993 and 1995, the lake area of Lashihai Lake in 1993
increased to 2.03 times that of 1992, Yuxian Lake became 2.1 times larger in 2011 than it was 2006,
and Haixihai Lake was in 1.4 times larger in area in 1996 than it was in 1994. In contrast, natural
disturbances-induced lake area changes for Shudu Lake between 1998 and 1999, Bitahai Lake between
1990 and 1992, Lashihai Lake between 2010 and 2013 and Haixihai Lake between 2010 and 2013 were
1.2, 1.1, 1.1 and 1.2 times the areas, respectively. The increased areas rarely revert to their original level
in a short period of time (years) for these anthropogenic disturbances. (2) For natural disturbances,
there are abrupt increases (or decreases) on the time series curves as well, but these increments (or
decreases) tend to decrease (or increase) to their original level at the end of a disturbance; therefore,
these disturbances show a ‘V’ (or ‘Λ’) shape on the time series curves, and these natural event-caused
changes typically consist of two parts, a change and a recovery, and the recovery is commonly missing
from anthropogenic disturbances.

In this study, a total of 51 segments were generated for the nine lake surface area time series;
there was at least one major event for each of these lakes, either anthropogenic or natural. These
disturbances caused remarkable fluctuations on the time series curves, and according to the shape
of each fluctuation on the time series curves, fluctuations with remarkable durations indicate that
there are close correlations between the current events and their adjacent procedures. Based on this
characteristic of each disturbance and using these records as references, we defined and extracted the
semantic features for each disturbance. Considering the adjacent procedure deficiency for disturbances
segmented at the beginning or end of the curves, disturbances on the beginning or end of the curves
were ignored. As a result, 51 disturbances in total were classified.

4.3.2. Classification Results of Lake Surface Area Disturbances

For major disturbances, the documented records indicated that anthropogenic disturbances tend
to not recover to their original level within a short duration of several years after a disturbance, such as
the dam construction of Shudu Lake in 1995; after the water storage of the lake, water surface area
never falls back to its original level again. However, natural disturbances had evident recover and
mostly returned to their original levels, such as after the collapse of the Mabaolong embankment of
Yilong Lake in October 1995, when the lake area soon decreased to its original level after less than
2 years. Although the defined features worked well for identifying most of the disturbances, errors
remained as there were still exceptive natural (anthropogenic) disturbances had the similar trajectory
as anthropogenic (natural) disturbances. As shown in Table 6, disturbance of Erhai Lake in 2003 was
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caused by governmental water storage charge with both quick water storage and release process.
Another limitation for the current method is to classify disturbances that were caused by both natural
and anthropogenic events, such as the drought in 2009–2013 in Yunnan Province, where water shortage
compel irrigation by the locals from lakes, It is challenging to figure out which is the dominant factor
the lake surface area shrinkage: natural or anthropogenic?

Table 6. Disturbance classification features and the classification results of the 16 records (An.:
Anthropogenic event, Na.: Natural event).

Lake Time Event
Rate 1

Event
Rate 2 Area_Diff Re_Rate Documented

Disturbance
Classified

Disturbance

Shudu Lake 1994–1998 0.6002 0.0188 0.0314 0.9059 An. An.
Qilu Lake 1989–1995 0.0221 0.1066 0.2072 0.0346 Na. Na.
Qilu Lake 2010–2017 0.1304 0.1017 0.7792 0.4156 Na. Na.

Yilong Lake 2010–2017 0.1640 0.0332 0.2022 0.7978 An. An.
Yilong Lake 1993–1996 0.0849 0.1502 0.5653 −0.1521 Na. Na.
Bitahai Lake 2009–2015 0.1982 0.2053 0.9658 −0.0342 Na. Na.

Lashihai Lake 1992–1994 0.3116 0.1467 0.4707 0.5293 An. An.
Lashihai Lake 2008–2011 0.1629 0.2216 0.7351 0.0931 An. Na.
Lashihai Lake 1994–2001 0.2216 0.2235 0.9917 0.0083 Na. Na.
Yuxian Lake 2011–2012 0.3986 0.2243 0.5628 −0.1255 Na. Na.

Haixihai Lake 1994–1996 0.3882 0.0121 0.0313 0.9062 An. An.
Haixihai Lake 2011–2014 0.2516 0.4329 0.5812 0.1398 Na. Na.
Dianchi Lake 2012–2015 0.2439 0.0636 0.2607 0.8262 An. An.
Dianchi Lake 2012–2017 0.1658 0.2439 0.6797 −0.5469 Na. Na.

Erhai Lake 1991–1995 0.1336 0.3483 0.3835 0.3482 An. Na.
Erhai Lake 2004–2005 0.4536 0.1254 0.2764 0.4472 An. An.

The classified disturbance types agreed well with the records according to the accuracy assessment
results in Table 7; among the 16 recorded disturbances, two anthropogenic disturbances were
misclassified as natural disturbances, and the overall identification accuracy was 87.75%, with
an F-score of 85.71 for anthropogenic disturbances and 88.89 for natural disturbances. This result
suggests the reliability of our proposed method.

Table 7. Anthropogenic (An.) and Natural (Na.) disturbance identification accuracy assessment.

Producer’s Accuracy (%) User’s Accuracy (%) Overall
Accuracy

(%)
F(ad)-Score F(nd)-Score

An. Na. An. Na.

100 80 75 100 87.5 85.71 88.89

During the past 31 years, there were 51 major disturbances for the nine lakes in Yunnan Plateau,
and only nine segments were with no major disturbances (see Figure 6 and Table 8). Among these
disturbances, up to 25 were human-induced, and these disturbances had a major impact on lake
surface area change. Human-induced disturbances are commonly ‘irreversible’, because lake surface
area will not revert to its original levels within a short period of time; for example, lake surfaces for
Shudu Lake between 1993 and 1995, Qilu Lake between 2010 and 2015, Yilong Lake between 2010
and 2016, Lashihai Lake between 1992 and 1993, Yuxian Lake between 2006 and 2011 and Haixihai
Lake between 1994 and 1996 increased (or decreased) to 1.4, 1.5, 2.2, 2.03, 2.1 and 1.4 times their
original areas, respectively. Yuxian Lake completely dried between 2011 and 2014 because of human
activities, including reclaiming land from this lake and irrigation [20,50]. These results indicated that
the human-induced disturbances tend to be durable.
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Table 8. Statistics on the number of disturbances caused by different factors.

Lake Name Anthropogenic
Disturbances (times)

Natural Disturbances
(times) No Disturbances Total

Shudu lake 1 1 1 3
Qilu lake 4 0 2 6

Yilong lake 1 2 1 4
Bitahai lake 1 1 1 3

Lashihai lake 7 1 1 9
Yuxian lake 1 1 1 3

Haixihai lake 2 4 1 7
Dianchi lake 4 2 1 7

Erhai lake 4 5 0 9
Total 25 17 9 51

In our study period, natural event-induced major lake surface area disturbances occurred 17 times,
almost half of the human induced disturbances. These disturbances were less impactful, because lake
surface areas reverted to their original levels after these disturbances and, therefore, these disturbances
were not long lasting. For example, natural disturbances for Shudu Lake between 1998 and 1999,
Bitahai Lake between 1990 and 1992, Lashihai Lake between 2010 and 2013 and Haixihai Lake between
2010 and 2013, caused lake surface area increases (or decreases) to 1.2, 1.1, 1.1 and 1.2 times their
original levels, respectively. The lakes with natural disturbances had less of an increment (or decrement)
compared to those with the human activity-induced disturbances, and they reverted to their original
levels after a short period of time (within 2 years in this study). In our study area, each of the lakes,
except Bitahai Lake, had large human activity-induced disturbances, and there were much more
anthropogenic disturbances for Lashihai Lake, Erhai Lake, Dianchi Lake and Qilu Lake. According
to the documented records, most of these human activities were dam construction, irrigation and
land reclamation.

5. Conclusions

In this study, annual Landsat remote sensing images taken during the dry seasons from 1986
to 2017 were used to extract lake surface area information for nine typical lakes in Yunnan Province,
China. To identify whether human activity or natural events dominate inland lake surface change, we
proposed a method based on the D-P simplification algorithm combined with the bend simplification
method to locate large lake change events and then characterize the features of change for each event
to classify them into anthropogenic or natural lake surface area disturbances. Based on validation data
from a documented governmental report and year book, we assessed the accuracy of our method for
both the disturbance location and the disturbance identification, and the results are as follows:

(1) The method can accurately locate the main lake changing events based on the time series lake
surface area curve. When a large disturbance event occurs for a lake, its area will also increase
(or decrease). The method proposed in this paper effectively eliminates noise in the time series
of lake surface area using the combined D-P simplification algorithm and bend simplification
algorithm. This method retains the large mutation points in the time series lake surface area
curve and accurately locates the lake changing events within the time series lake surface curve;
the temporal accuracy of this model for segmenting the lake area time series curves was 94.73%
in our study.

(2) To characterize the disturbances on each time series curve, we extracted the disturbance
classification features, including the amplitude (event rate), duration and trajectory (recovery
rate). Using the k-means clustering method, we achieved an overall accuracy of disturbance
identification of 87.75%, with an F-score of 85.71 for anthropogenic disturbances and 88.89 for
natural disturbances.
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(3) According to our results, lakes in Yunnan Province, China, have undergone extensive disturbances,
and the human-induced disturbances occurred almost twice as often as natural disturbances,
indicating intensified disturbances caused by human activities, such as reservoir constructions,
irrigation, turning lakes into fields, etc. Worse still, the anthropogenic disturbances appear to be
lasting compared with the natural disturbances. Lakes subjected to natural disturbances tend to
recover within a short period of time, while lakes subjected to anthropogenic disturbances had
longer recovery times or never recovered.

Because the available remote sensing image data of satisfactory cloud-free quality from the study
period are predominantly concentrated during Yunnan’s dry season, the data selected were all from
November to April. In future studies, multisensor spatial-temporal fusion techniques and radar remote
sensing image data should be combined to obtain year-round lake water areas to comprehensively
analyze the annual variation characteristics to more accurately capture lake disturbance events.
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