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Abstract: Accurate, high-resolution maps of for crop growth monitoring are strongly needed by
precision agriculture. The information source for such maps has been supplied by satellite-borne
radars and optical sensors, and airborne and drone-borne optical sensors. This article presents a
novel methodology for obtaining growth deficit maps with an accuracy down to 5 cm and a spatial
resolution of 1 m, using differential synthetic aperture radar interferometry (DInSAR). Results are
presented with measurements of a drone-borne DInSAR operating in three bands—P, L and C. The
decorrelation time of L-band for coffee, sugar cane and corn, and the feasibility for growth deficit
maps generation are discussed. A model is presented for evaluating the growth deficit of a corn crop
in L-band, starting with 50 cm height. This work shows that the drone-borne DInSAR has potential
as a complementary tool for precision agriculture.

Keywords: differential interferometry; DInSAR; precision agriculture; drone-borne radar; crop
growth deficit map

1. Introduction

Agriculture has a vital role in the economic stability and social development of a country. Effective
agricultural management is essential to reduce costs and increase production. The monitoring of crop
growth shall be done continuously for accurate support of decision-making [1]. Remote sensing has
been an important tool for soil and crop monitoring. Optical remote sensing is widely used; nonetheless,
synthetic aperture radar (SAR) remote sensing does not depend on weather conditions or sunlight.
Moreover, the radar wavelength is approximately one million times greater than the wavelength of
optical systems and provides complementary information about the agriculture parameters.

Several studies have shown the SAR remote sensing capabilities in growth monitoring of various
crops [2,3] and crop classification [4–6]. Crop growth monitoring has been explored by using
techniques based on statistical analysis between radar backscattering and crop height [2,3,7], with the
use of techniques like interferometric SAR (InSAR) [8], polarimetric decomposition [9], polarimetric
interferometric SAR (Pol-InSAR) [10] and differential SAR Interferometry (DInSAR) [10]. The DInSAR
methodology presents high accuracy and spatial resolution, as it takes advantage of the phase difference
between images. The most popular application of the DInSAR is the estimation of subsidence maps
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with millimetric accuracy. Relevant DInSAR works using satellites appeared in 1989, in 2003, using
aircraft, and in 2019, employing drone-borne systems [11].

This article reports a first-stage crop growth estimation based on SAR experimental data from
several circular flight surveys carried out over a test area of the School of Agricultural Engineering of
the University of Campinas (UNICAMP) in Campinas, Brazil. It also proposes a model to estimate
the corn crop growth, considering different stages of crop phenology. The types of flight surveys are
discussed, and a growth map for a corn crop is presented. The drone-borne system presented in [12]
was chosen to carry out the DInSAR procedures here reported, due to the following reasons:

1. Crop growth monitoring requires spatial resolution of 1 m or less, a growth measurement accuracy
of centimeters, short revisit time and an adequate radar wavelength. The drone-borne solution
easily fulfills these requirements.

2. Satellite-based DInSAR cannot satisfy all the requirements mentioned above.
3. Aircraft-based DInSAR can meet those conditions; however, the survey costs are not economically

feasible for both the research work and the operational case.

This paper is divided as follows. Section 2 presents the drone-borne SAR system; the basics of
SAR imaging; a summary of the DInSAR theory; the proposed model for estimating corn crop growth,
considering backscattering contribution; a brief description of the experimental site; an outline of the
field measurement process; the data acquisition plan for the drone-borne SAR; and the procedures
for data processing. Section 3 shows the experimental results, consisting of acquired drone-borne
SAR images, and both qualitative and quantitative validations of the attained growth maps. Section 4
discusses those results, and Section 5 presents the authors’ conclusions.

2. Materials and Methods

2.1. Drone-Borne SAR System

The radar prototype, described in [12] and shown in Figure 1, operates in three bands—P, L and
C—with five channels: two interferometric C-band antennas, two polarimetric L-band antennas and
one P-band antenna. This work only shows results for the DInSAR with the L-band HH-polarization,
which corresponds to the transmission and reception of signals with horizontal polarization. The two
interferometric C-band antennas are used for calculating the digital surface model, DSM, which is then
used in the DInSAR calculation. Nominal height accuracy is better than 1 m RMS with a spatial resolution
of 2 m. Table 1 shows the main parameters of radar acquisition for the L-band HH-polarization.

Remote Sens. 2020, 12, 615 3 of 18 

 

Azimuth resolution 10 cm 
Processed azimuth bandwidth 20 Hz 

Processed aperture at 45 deg. incidence angle 196 m 
Single-look-complex range sampling 61 cm 

Single-look-complex azimuth sampling 5 cm 

 
Figure 1. Image of the drone-borne SAR with the L-band, the P-band and the two C-band antennas. 

The Motion Sensing System (MSS), which includes a single channel GNSS receiver and an 
inertial measurement unit (IMU), is integrated into the radar, as shown in [12]. There is also a ground 
station with a single channel GNSS, to provide differential GNSS processing. 

2.2. SAR Imaging 

A circular flight pattern was chosen for generating the growth maps presented in this work. This 
flight geometry provides images with high resolution, which is given by the following [13]: 𝛿 ≈ 1.2𝑐𝜋 cos(𝜃௘)𝑓௖ , (1)

where 𝑐 is the speed of light, 𝑓௖ is the signal’s central frequency and 𝜃௘ is the depression angle. 
Expression (1) is valid for both directions of the ground plane. Additionally, the circular flight pattern 
helps to reduce shadow effects in the processed image, since it can provide full aspect coverage of 
the targets of interest [14].  

The images were processed by using a time-domain back-projection algorithm, which is a 
method that is easily applied to nonlinear flight patterns. Let 𝑟௟ be a radar position along the flight 
track, and let 𝑝⃗௠௡ be the location of a particular pixel on the image sample grid. The back-projected 
signal is calculated as follows [15]: 𝑠(𝑝⃗௠௡) = ෍ 𝑔(𝑟௟, 𝑅௟௠௡)𝑒𝑥𝑝(𝑗2𝑘௖𝑅௟௠௡)௟  , (2)

where 𝑘௖ is the central wavenumber, and 𝑅௟௠௡ =  |𝑟௟ − 𝑝⃗௠௡|. 
2.3. DInSAR Theory Description 

DInSAR is a type of interferometry that provides information on the terrain height displacement 
between two flights, at different times, following the same flight path. In the DInSAR case, there is 
no interferometric baseline, so a topographic map is not possible. However, a terrain height 
displacement over time is perceptible [16]. In the present case, the analyzed terrain is a crop area. 

Figure 1. Image of the drone-borne SAR with the L-band, the P-band and the two C-band antennas.



Remote Sens. 2020, 12, 615 3 of 18

Table 1. Main parameters of radar acquisition.

Radar Parameters Value

Carrier wavelength 22.84 cm
Bandwidth 150 MHz
Polarization HH
Peak Power 100 mW
Mean Power 1 mW

Pulse Repetition Frequency 10 kHz
Incidence angle 45 deg

Mean drone height 120 m
Mean drone velocity 2 m/s

Maximum acquisition time 20 min
Motion Sensing System, MSS D-GNSS + IMU

DInSAR accuracy 6 mm
Range resolution 1 m

Azimuth resolution 10 cm
Processed azimuth bandwidth 20 Hz

Processed aperture at 45 deg. incidence angle 196 m
Single-look-complex range sampling 61 cm

Single-look-complex azimuth sampling 5 cm

The Motion Sensing System (MSS), which includes a single channel GNSS receiver and an inertial
measurement unit (IMU), is integrated into the radar, as shown in [12]. There is also a ground station
with a single channel GNSS, to provide differential GNSS processing.

2.2. SAR Imaging

A circular flight pattern was chosen for generating the growth maps presented in this work. This
flight geometry provides images with high resolution, which is given by the following [13]:

δ ≈
1.2c

π cos(θe) fc
, (1)

where c is the speed of light, fc is the signal’s central frequency andθe is the depression angle. Expression
(1) is valid for both directions of the ground plane. Additionally, the circular flight pattern helps to
reduce shadow effects in the processed image, since it can provide full aspect coverage of the targets of
interest [14].

The images were processed by using a time-domain back-projection algorithm, which is a method
that is easily applied to nonlinear flight patterns. Let

→
r l be a radar position along the flight track,

and let
→
p mn be the location of a particular pixel on the image sample grid. The back-projected signal is

calculated as follows [15]:
s
(
→
p mn

)
=

∑
l

g
(
→
r l, Rlmn

)
exp( j2kcRlmn), (2)

where kc is the central wavenumber, and Rlmn = |
→
r l −

→
p mn|.

2.3. DInSAR Theory Description

DInSAR is a type of interferometry that provides information on the terrain height displacement
between two flights, at different times, following the same flight path. In the DInSAR case, there is no
interferometric baseline, so a topographic map is not possible. However, a terrain height displacement
over time is perceptible [16]. In the present case, the analyzed terrain is a crop area.

Figure 2 presents a circular flight pattern over a crop field. The first survey is carried out at a time
t1. The second survey follows the same circular flight pattern of the first flight and occurs at a time t2.
Due to drone instability and weather conditions, the flight patterns are not identical but very similar.
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where 𝜃௘  is the depression angle. As the drone navigation system performs flight tracks with a 
position accuracy of about 20 cm at 120 m height, the flight tracks on different dates are assumed to 
be identical and, therefore, 𝜃௘ is virtually the same for any flight. The relationship between the radar 
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Figure 2. DInSAR circular flight pattern and illumination geometry.

In this example, consider that a first flight is performed on time t1, during which the crop height
is H1, corresponding to a range R1 from the radar. Then, on time t2, another flight is executed, when
the crop height is now H2, and is at a range R2 from the radar. Let ∆R = R2 −R1 be the difference in
radar range, and let ∆H = H2 −H1 be the growth of the corn crop between these two surveys. It is
possible to establish a relationship between these quantities, as shown in Figure 3.
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The relationship between height and range is given by the following:

∆H =
∆R

sinθe
, (3)

where θe is the depression angle. As the drone navigation system performs flight tracks with a position
accuracy of about 20 cm at 120 m height, the flight tracks on different dates are assumed to be identical
and, therefore, θe is virtually the same for any flight. The relationship between the radar range, ∆R,
and the phase, ∆∅, can be described as follows [17]:

∆R =
λ

4π
∆∅. (4)
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For every point of interest in the image sample grid, the mean value of θe is calculated from the
contributions of the depression angles at each drone position along the flight track. If the radar antenna
does not illuminate the point of interest at a given drone position, the corresponding contribution
is not taken into account. This assessment is based on the antenna aperture angles in azimuth and
elevation, considering a circular flight path.

In order to calculate the phase difference between both radar images, it is necessary to determine
the phase corresponding to a null vertical displacement or “zero-movement” [16]. That is, it is required
to find the phase corresponding to an object within the image for which there was certainly no
displacement between the acquisition flights. The zero-movement phase is then subtracted from the
phase difference information. Figure 4 shows the scheme used for processing the phase data obtained
from two radar images.
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After performing back-projection processing, two images were acquired that have amplitude
and phase information. The information of interest is the phase difference between them, calculated
as follows:

V(i, j) = C1(i, j) ×C∗2(i, j), (5)

where C1(i, j) and C2(i, j) represent the two images, and V(i, j) is the image containing the phase
difference information. Then, the real and imaginary components of V(i, j) are filtered, and so the
phase information V∅ is obtained. The next step is to get V∅uw from V∅ by using a technique known
as phase unwrapping [18]. After that, the zero-movement phase is subtracted. Finally, the resultant
value is multiplied by a factor based on Equations (3) and (4), to obtain the vertical displacement or
interferometric height difference, ∆H.

2.4. Estimation Model for Corn Crop Growth

Using the DInSAR model described above to retrieve the height difference from the phase
information, and taking into account the reflectivity of the corn crop and the soil with weed plants
around it, a model for estimating the growth of a corn crop between two dates is proposed, considering
the reflectivity contribution at different development stages of the crop. This model is briefly described
in Figure 5.

Remote Sens. 2020, 12, 615 5 of 18 

 

∆𝑅 = 𝜆4𝜋 ∆∅ .  (4)

For every point of interest in the image sample grid, the mean value of 𝜃௘ is calculated from the 
contributions of the depression angles at each drone position along the flight track. If the radar 
antenna does not illuminate the point of interest at a given drone position, the corresponding 
contribution is not taken into account. This assessment is based on the antenna aperture angles in 
azimuth and elevation, considering a circular flight path. 

In order to calculate the phase difference between both radar images, it is necessary to determine 
the phase corresponding to a null vertical displacement or “zero-movement” [16]. That is, it is 
required to find the phase corresponding to an object within the image for which there was certainly 
no displacement between the acquisition flights. The zero-movement phase is then subtracted from 
the phase difference information. Figure 4 shows the scheme used for processing the phase data 
obtained from two radar images. 

 
Figure 4. Block diagram for DInSAR processing. 

After performing back-projection processing, two images were acquired that have amplitude 
and phase information. The information of interest is the phase difference between them, calculated 
as follows: 𝑉(𝑖, 𝑗) = 𝐶ଵ(𝑖, 𝑗) × 𝐶ଶ∗(𝑖, 𝑗) , (5)

where 𝐶ଵ(𝑖, 𝑗) and 𝐶ଶ(𝑖, 𝑗) represent the two images, and 𝑉(𝑖, 𝑗) is the image containing the phase 
difference information. Then, the real and imaginary components of 𝑉(𝑖, 𝑗) are filtered, and so the 
phase information 𝑉∅ is obtained. The next step is to get 𝑉∅௨௪  from 𝑉∅ by using a technique 
known as phase unwrapping [18]. After that, the zero-movement phase is subtracted. Finally, the 
resultant value is multiplied by a factor based on Equations (3) and (4), to obtain the vertical 
displacement or interferometric height difference, ∆𝐻. 

2.4. Estimation Model for Corn Crop Growth 

Using the DInSAR model described above to retrieve the height difference from the phase 
information, and taking into account the reflectivity of the corn crop and the soil with weed plants 
around it, a model for estimating the growth of a corn crop between two dates is proposed, 
considering the reflectivity contribution at different development stages of the crop. This model is 
briefly described in Figure 5. 

 
Figure 5. Block diagram for the estimation model for corn crop growth. 

The reflectivity data obtained from the input images can be decomposed as follows [2]: 𝜎் = 𝜎௖௢௥௡ + 𝜎௪௣ + 𝜎ௗ௕ , (6)

Figure 5. Block diagram for the estimation model for corn crop growth.

The reflectivity data obtained from the input images can be decomposed as follows [2]:

σT = σcorn + σwp + σdb, (6)
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where σT is the total reflectivity measured by the radar, σcorn represents the corn reflectivity, σwp is
the reflectivity of the soil with weed plants that can be measured in an adjacent area to the corn crop
and σdb is the reflectivity of the double-bounce between the crop stem and the soil, as illustrated in
Figure 6. At different stages of the crop growth, the proportions of these reflectivities vary. In early
stage growth, shown in Figure 6a, the portion due to double bounce is the most significant, while in
late-stage growth, pictured in Figure 6b, the contribution of the corn crop is dominant.
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Consider that σwp can be estimated from the reflectivity of areas close to the crop so that it can be
subtracted from Equation (6); thus, the resulting reflectivity, σR, is as follows:

σR = σT − σwp = σcorn + σdb. (7)

Assuming that σcorn is proportional to σR by a contribution factor KR ∈ [0, 1], then:

σcorn = KRσR. (8)

Also, the double-bounce contribution can be estimated from KR and σR as follows:

σdb = (1−KR)σR. (9)
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As the presence of stems and branches is dominant during the early stages of crop growth,
the contribution factor, KR, is negligible and, from Equation (9), σdb ≈ σR. On the other hand, in late
stages of crop growth, the double-bounce contribution decreases drastically due to the presence of
leaves; thus, the contribution factor KR ≈ 1 and, from Equation (8), σcorn ≈ σR.

To calculate the height difference measured between two different days, consider the two different
stages of crop growth shown in Figure 7.

Remote Sens. 2020, 12, 615 7 of 18 

 

To calculate the height difference measured between two different days, consider the two 
different stages of crop growth shown in Figure 7. 

  
(a) (b) 

Figure 7. Crop in two different stages. (a) Day 1. (b) Day 2. 

Assume that, on Day 1, the height of the crop is 𝐻௖௢௥௡(ଵ), the height of the weed plants is 𝐻௪௣(ଵ) 
and the difference between them is 𝐻(ଵ) = 𝐻௖௢௥௡(ଵ)  − 𝐻௪௣(ଵ) . Similarly, for Day 2, consider that 𝐻(ଶ) = 𝐻௖௢௥௡(ଶ)  − 𝐻௪௣(ଶ) . Then, the total estimated height variation, ∆𝐻 = 𝐻(ଶ) − 𝐻(ଵ) , can be 
calculated as: ∆𝐻 = ∆𝐻௖௢௥௡  − ∆𝐻௪௣, (10)

where ∆𝐻௖௢௥௡ = 𝐻௖௢௥௡(ଶ) − 𝐻௖௢௥௡(ଵ)  is the height variation corresponding to the crop and ∆𝐻௪௣ =𝐻௪௣(ଶ) − 𝐻௪௣(ଵ) is the height variation due to the growth of weed plants. Equation (10) is only valid 
when contributions can be measured separately. 

The radar measures a sum of complex contributions. The amplitude of the return signal is 
proportional to √𝜎், and the interferometric phase is proportional to ∆𝐻, as seen in Equations (3) 
and (4). As the ratio 𝜎௖௢௥௡ 𝜎்⁄  approaches unity, ∆𝐻௖௢௥௡ becomes the major contribution in Equation 
(10). The same reasoning can be made for 𝜎௪௣ and ∆𝐻௪௣ . In that way, a simple solution is to correct 
Equation (10) by weighting each contribution by its respective reflectivity. 

First, let Equation (7) can be rewritten as follows:  1 = ఙ೎೚ೝ೙ఙ೅ + ఙ೏್ఙ೅ + ఙೢ೛ఙ೅ = 𝐾௖௢௥௡ଶ + 𝐾ௗ௕ଶ + 𝐾௪௣ଶ , (11)

where  

𝐾௖௢௥௡ = ඨ𝜎௖௢௥௡𝜎் = ඥ𝐾ோඨ𝜎ோ𝜎்  , (12)

𝐾ௗ௕ = ඨ𝜎ௗ௕𝜎் , (13)

𝐾௪௣ = ඨ𝜎௪௣𝜎் , (14)

are the corn, weed and double-bounce contributing factors, respectively. 
Now, assuming that each contribution can be weighted by its respective contributing factor, the 

difference in height measure by the radar between two consecutive days can be expressed by the 
following: ∆𝐻 = ∆𝐻௖௢௥௡ 𝐾௖௢௥௡ − ∆𝐻௪௣ 𝐾௪௣ . (15)

Then, from Expressions (12), (14) and (15) comes the following: 

Figure 7. Crop in two different stages. (a) Day 1. (b) Day 2.

Assume that, on Day 1, the height of the crop is Hcorn(1), the height of the weed plants is
Hwp(1) and the difference between them is H(1) = Hcorn(1) −Hwp(1). Similarly, for Day 2, consider
that H(2) = Hcorn(2) −Hwp(2). Then, the total estimated height variation, ∆H = H(2) −H(1), can be
calculated as:

∆H = ∆Hcorn − ∆Hwp, (10)

where ∆Hcorn = Hcorn(2) −Hcorn(1) is the height variation corresponding to the crop and ∆Hwp =

Hwp(2) −Hwp(1) is the height variation due to the growth of weed plants. Equation (10) is only valid
when contributions can be measured separately.

The radar measures a sum of complex contributions. The amplitude of the return signal is
proportional to

√
σT, and the interferometric phase is proportional to ∆H, as seen in Equations (3)

and (4). As the ratio σcorn/σT approaches unity, ∆Hcorn becomes the major contribution in Equation
(10). The same reasoning can be made for σwp and ∆Hwp. In that way, a simple solution is to correct
Equation (10) by weighting each contribution by its respective reflectivity.

First, let Equation (7) can be rewritten as follows:

1 =
σcorn

σT
+
σdb
σT

+
σwp

σT
= K2

corn + K2
db + K2

wp, (11)

where

Kcorn =

√
σcorn

σT
=

√
KR

√
σR

σT
, (12)

Kdb =

√
σdb
σT

, (13)

Kwp =

√
σwp

σT
, (14)

are the corn, weed and double-bounce contributing factors, respectively.
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Now, assuming that each contribution can be weighted by its respective contributing factor, the
difference in height measure by the radar between two consecutive days can be expressed by the
following:

∆H = ∆HcornKcorn − ∆HwpKwp. (15)

Then, from Expressions (12), (14) and (15) comes the following:

∆Hcorn =
1
√

KR

√
σT

σR

(
∆H + ∆Hwp Kwp

)
. (16)

Next, a new correction factor K = 1/
√

KR is defined based on field measurement data as follows:

K =
∆Hcorn( f m)√

σT
σR

(
∆H + ∆HwpKwp

) , (17)

where ∆Hcorn( f m) represents the height difference data measured on the crop. This new correction
factor (K) is only valid for the corn model.

Finally, the estimated growth between two dates in a corn crop can be described as follows:

∆Hcorn−est = K
√
σT

σR

(
∆HT + HwpKwp

)
. (18)

2.5. Experimental Site

The experimental site covers an area of 300 m × 300 m, located at the School of Agricultural
Engineering of the University of Campinas (UNICAMP), as shown in Figure 8. The survey flights
occurred on the following dates: 11 December 2018; and 17 April, 2 July, 17 July and 22 August 2019.
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bottom and the coffee crop at the top, on 22 August 2019. Field 01 was bare. (b) Ground photo of the
coffee crop. (c) Ground photo of the corn crop on field 02.
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2.6. Field Measurements

Height measurements of coffee and corn crops, depicted in Figure 8b,c, respectively, were carried
out over nine months. In this period, the corn reached the maturity stage in December 2018, and a new
crop was set in July 2019. Coffee reached the maturity stage in March 2019. The corn crop is structured
with 14 rows, where 20 height measurements were made per row. The heights were measured from
the soil to the top of the corn crop. The following measurements were taken on the same days of the
flight surveys: 2 July, 17 July and 22 August 2019. The field measurements of the corn crop height are
subjected to the natural variability of visual measurement errors.

During the survey period, corn was sown in two areas: field 01 and 02, as shown in Figure 8a.
Hereafter, fields 01 and 02 will be labeled as C1 and C2, respectively, where “C” denotes the corn culture.

2.7. Drone-Borne SAR Data Acquisition

Three trihedral corner reflectors with square sides and an edge length of 0.6 m were used as a
ground and radiometric calibration reference. The resulting radar cross-section is 20 dBsm.

On each acquisition date, the experiment with the drone-borne system was executed as follows:

• Mount three corner reflectors on the test site, for planimetric and radiometric calibration purposes;
• Place the GNSS ground station close to the initial position of the drone and start the GNSS recording;
• Perform each flight over the experimental site, following the subsequent procedure: turn on the

drone and the radar, wait 15 min for simultaneous and stationary recording of ground station
and radar GNSS data, take-off, perform the same circular flight track, land, wait 15 min for
simultaneous and stationary recording of ground station and radar GNSS data, and turn-off the
radar and the drone;

• Dismount the GNSS ground station and the drone. Download the acquired data for processing.

2.8. Drone-Borne SAR Data Processing

The collected data were processed as follows:

• Differential GNSS processing of the ground station and the radar GNSS receivers;
• IMU and differential GNSS data fusion for generating position and antenna orientation history;
• Radar data processing at each acquisition date, according to Section 2.2: range compression and

back-projection for the azimuth compression. The output is a geocoded single-look-complex
(SLC) image;

• Verification of the absolute position of the corner reflectors in the geocoded SLC images;
• Differential interferometric processing with data from previous acquisitions, as defined in

Section 2.3;
• Production of the crop growth map, as described in Section 2.4;
• Generation of the corresponding multi-look images with 30 cm × 30 cm sampling.

3. Results

3.1. Drone-Borne SAR Images

The circular flights over the experimental site were carried out by following the path shown in
Figure 9. Figure 10 displays the SAR images acquired with circular flights on different acquisition
dates. Each image depicts an area of 300 m × 300 m, with 30 cm sampling in both directions.

Figure 10b shows the area C2 with the corn crop in a mature stage. The new seeding of area C2
took place in July 2019, shown in Figure 10d, and this area presents increasing reflectivity through
Figure 10e,f, until reaching its maturity.
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Figure 9. Description of the circular flight. In black, the circular flight track, and in yellow, the study
area of 300 m × 300 m.

3.2. Qualitative Validation of Growth Deficit Maps

DInSAR technique was applied to the campaigns of 5 December and 11 December 2018, and 17
April 2019, on coffee, sugar cane and corn crops. According to the field data, the corn crop was present
only on the first two dates mentioned, and the other crops had an insignificant height variation between
the three campaign dates. DInSAR provided a compatible result for these crops, showing a negligible
height variation during those dates.

The first trial for a crop growth map was performed with the coffee crop, presented in Figure 8.
No field measurement of the crop height variation was determined. However, a rough growth estimate
of about 10 cm was expected, as the coffee crop was quite mature in December. Because of a small
morphology alteration in the crop due to its maturity, the interferogram had a low but acceptable
coherence of 0.2.

A growth map corresponding to a coffee crop of approximately 1700 m2 is shown in Figure 11.
The mean height growth between those dates with DInSAR is 11 cm, with a standard deviation of 6 cm.
The south area of the coffee crop presented less growth than the north area. A mask was used to discard
all targets that do not correspond to the coffee crop. Moreover, a 15 × 15 moving average filter was
used over the interferogram, with a pixel spacing of 30 cm × 30 cm. Only data with a coherence greater
than 0.1 were considered valid data. This result has motivated a more in-depth study of DInSAR for
growth maps.
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Figure 10. Temporal comparison between (a) optical image from Google Earth and drone-borne SAR 
images of the circular flight tracks, acquired on (b) 11 December 2018; (c) 17 April 2019; (d) 2 July 
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Figure 10. Temporal comparison between (a) optical image from Google Earth and drone-borne SAR
images of the circular flight tracks, acquired on (b) 11 December 2018; (c) 17 April 2019; (d) 2 July 2019;
(e) 17 July 2019; and (f) 22 August 2019. Field C2 has a yellow border in (a).
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Figure 12. SAR images of coffee crop acquired on (a) 11 December 2018; and (b) 17 April 2019. 

3.3. Quantitative Validation of Growth Deficit Maps 

SLC images of circular flight tracks were used to validate the growth estimation model 
considering the reflectivity contribution. The high resolution allows a much easier analysis, as the 
cornfield C2 is rather small. 

To obtain the phase reference, known as the zero-movement phase, an object that would remain 
static during all flights was searched. Initially, it was thought to use the dihedral corner reflectors. 
However, it would not be possible to leave the dihedral corner reflectors at all times in the study area, 
because other daily activities are carried out there. Besides, a dihedral corner reflector can only be 
observed during a small portion of the circular track. Therefore, a metal fence near the crop area was 
chosen as a reference, as it is a fixed object and can be observed during the entire flight (see Figure 13). 
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Figure 12. SAR images of coffee crop acquired on (a) 11 December 2018; and (b) 17 April 2019.

3.3. Quantitative Validation of Growth Deficit Maps

SLC images of circular flight tracks were used to validate the growth estimation model considering
the reflectivity contribution. The high resolution allows a much easier analysis, as the cornfield C2 is
rather small.

To obtain the phase reference, known as the zero-movement phase, an object that would remain
static during all flights was searched. Initially, it was thought to use the dihedral corner reflectors.
However, it would not be possible to leave the dihedral corner reflectors at all times in the study area,
because other daily activities are carried out there. Besides, a dihedral corner reflector can only be
observed during a small portion of the circular track. Therefore, a metal fence near the crop area was
chosen as a reference, as it is a fixed object and can be observed during the entire flight (see Figure 13).
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Figure 13. (a) Optical image of the metal fence; (b) radar image of the metal fence; and (c) unwrapped 
interferogram corresponding to the metal fence. 

To obtain the zero-movement phase, profiles were drawn for the interferogram over the area 
corresponding to the metal fence, Figure 13c. The profiles are shown in Figure 14a,b. The zero-
movement phase was calculated by using the average of the profiles, which, in this example, resulted 
in 0.76 rad. 
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Figure 14. (a) Right and left side profiles of the fence phase; (b) top and bottom side profiles of the 
fence phase. 

Then, the height growth of the cornfield C2 was monitored, as shown in Table 2. These data, 
together with the reflectivity data for the corn crop and a neighboring area (see Figure 6), were used 
to estimate the correction factor, 𝐾, of Equation (17), which varies along with the phenological life 
of the corn crop. 
  

Figure 13. (a) Optical image of the metal fence; (b) radar image of the metal fence; and (c) unwrapped
interferogram corresponding to the metal fence.

To obtain the zero-movement phase, profiles were drawn for the interferogram over the area
corresponding to the metal fence, Figure 13c. The profiles are shown in Figure 14a,b. The zero-movement
phase was calculated by using the average of the profiles, which, in this example, resulted in 0.76 rad.
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Figure 14. (a) Right and left side profiles of the fence phase; (b) top and bottom side profiles of the
fence phase.

Then, the height growth of the cornfield C2 was monitored, as shown in Table 2. These data,
together with the reflectivity data for the corn crop and a neighboring area (see Figure 6), were used to
estimate the correction factor, K, of Equation (17), which varies along with the phenological life of the
corn crop.
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Table 2. Corn crop field measurements.

Height Measurement Date Days after Planting Corn Height

2 July 2019 48 68 cm
17 July 2019 67 99 cm

22 August 2019 99 125 cm

Figure 15 displays three values for the correction factor, K, estimated by using the available radar
data and field measurement data from the three different periods presented in Table 2. Figure 15 also
shows the fitted curve (blue line) for the correction factor, K, as a function of the corn phenology stage.
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Due to the small amount of data, there is some flexibility when choosing the type of equation that
best fits the experimental data. An exponential fitting curve was chosen, and the resultant expression
is as follows:

K = 20.75 exp(−0.03617d), (19)

where d represents the average number of days after planting, calculated over each data collection
period, as displayed in Table 3. Equation (19) is a first attempt to find an expression for K, using the
few available data, and it is calculated with MATLAB Curve Fitting Toolbox [19].

Table 3 also shows the height-difference data between two dates obtained by field measurements
in the corn crop and estimates from the proposed model, using the radar data together with the
correction factor, K.

Table 3. Comparison between field measurement data and estimated radar data in the corn crop for
height difference information.

Data Collection Period d Height Difference
(Field Measurement Data)

Height Difference
(Estimated Radar Data)

2 July 2019–17 July 2019 57 days 31 cm 36 cm
2 July 2019–22 August 2019 73 days 57 cm 42 cm

17 July 2019–22 August 2019 83 days 26 cm 28 cm

Figure 16 presents the crop growth maps derived from the same acquisition intervals displayed
in Figure 15. Rapid growth can be seen from 2 July to 17 July, though growth is noticeably slower
between 17 July and 22 August.
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also be used to better calibrate the back-projection processor [20]. 

No other publications were found that use the DInSAR technique on a corn crop to estimate 
growth, but some similar works are noteworthy. Erten et al. [10] used the DInSAR technique, with 
the TANDEM-X satellite, over a rice cultivation area, and were able to estimate growth with an RMSE 
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4. Discussion

Determining the zero-movement phase is an essential step for estimating crop growth. The
zero-movement phase is not null due to external factors such as the system’s thermal noise, the difference
between flight paths from distinct dates and internal changes of the radar system between different
flights [16]. The chosen reference object was a metal fence because it is always fixed, thus providing
more robust results than moving objects, for which precise positioning between separate flights is not
guaranteed. Moreover, it can be seen from all directions in a circular flight track, and it is typically
found near crop fields.

Corner reflectors are not practical reference points for DInSAR, as they should be well fixed
and kept clean during the DInSAR observation period. The authors intend to continue using corner
reflectors, only for purposes of planimetric accuracy and height calibration. Luneburg lenses could
also be used to better calibrate the back-projection processor [20].

No other publications were found that use the DInSAR technique on a corn crop to estimate
growth, but some similar works are noteworthy. Erten et al. [10] used the DInSAR technique, with the
TANDEM-X satellite, over a rice cultivation area, and were able to estimate growth with an RMSE of
18 cm. Cao et al. [21] used an airborne L-band radar system to measure landslide with a precision of a
few centimeters.
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In this work, a first attempt to monitor growth was carried out with a coffee crop, as described in
Section 3.2. The coffee had a barely noticeable height variation between 11 December 2018, and 17
April 2019. However, using DInSAR, it was possible to measure an 11 cm growth, with a standard
deviation of 6 cm. No model will estimate the growth of a crop that hardly grows.

As for the corn crop growth using correction factor K, the errors obtained from 2 July to 17 July
2019, and from 17 July to 22 August 2019, were 5 cm and 2 cm, respectively, while from 2 July to 22
August 2019, the error was 15 cm. Therefore, the longest period between data acquisitions produces the
largest error, whereas shorter acquisition periods provide more accurate results. Therefore, to achieve
a more accurate growth model oriented to the corn crop, it is necessary to retrieve a better estimation
of the variable K, and thus more flights are required. Another way to develop this model would be to
use the two interferometric C-band antennas to estimate crop height [22].

The corn crop was chosen due to its rapid growth. Nevertheless, this work could be extended to
other crops, such as sugar cane or coffee. The case of sugar cane, which grows slower than corn, is of
particular interest to the authors; therefore, more campaigns will be needed over time.

5. Conclusions

This work proposes a novel method for estimating the growth of different crops by executing
circular flight paths with a drone-borne DInSAR operating in the L-band with HH polarization. First
tests on late-stage coffee, corn and sugar cane crops have shown that it is possible to reliably estimate
small height variations. In the case of coffee, the growth within approximately four months was
estimated at 11 cm, with a standard deviation of 6 cm. Such a growth rate is difficult to perceive
visually or to measure with conventional tools.

Furthermore, a method is proposed to estimate the growth of a corn crop, taking into account
its phenological development. Although more campaigns on the area of interest are still necessary,
these first-stage results show a strong agreement with the measured field data. The largest error was
15 cm, corresponding to the longest period between data acquisitions, for which the crop growth was
approximately 55 cm. In contrast, errors of up to 5 cm were obtained for shorter acquisition periods.

The images obtained from the circular flights were processed with the back-projection algorithm
using a 30 cm × 30 cm sampling. In future work, a more accurate growth estimation is expected since
back-projection images shall be processed with a 5 cm × 5 cm sampling.

The authors are motivated to continue with this line of research, taking as a starting point the
methods and first-stage results obtained so far. More consistent results are expected in the near future,
when more data will be available.
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