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Abstract: Knowledge of forest structures—and of dead wood in particular—is fundamental to
understanding, managing, and preserving the biodiversity of our forests. Lidar is a valuable
technology for the area-wide mapping of trees in 3D because of its capability to penetrate
vegetation. In essence, this technique enables the detection of single trees and their properties
in all forest layers. This paper highlights a successful mapping of tree species—subdivided into
conifers and broadleaf trees—and standing dead wood in a large forest 924 km2 in size. As a novelty,
we calibrate the critical stopping criterion of the tree segmentation based on a normalized cut with
regard to coniferous and broadleaf trees. The experiments were conducted in Šumava National Park
and Bavarian Forest National Park. For both parks, lidar data were acquired at a point density of
55 points/m2. Aerial multispectral imagery was captured for Šumava National Park at a ground
sample distance (GSD) of 17 cm and for Bavarian Forest National Park at 9.5 cm GSD. Classification
of the two tree groups and standing dead wood—located in areas of pest infestation—is based on
a diverse set of features (geometric, intensity-based, 3D shape contexts, multispectral-based) and
well-known classifiers (Random forest and logistic regression). We show that the effect of under- and
oversegmentation can be reduced by the modified normalized cut segmentation, thereby improving
the precision by 13%. Conifers, broadleaf trees, and standing dead trees are classified with overall
accuracies better than 90%. All in all, this experiment demonstrates the feasibility of large-scale and
high-accuracy mapping of single conifers, broadleaf trees, and standing dead trees using lidar and
aerial imagery.

Keywords: classification; segmentation; single trees; forest structure analysis; dead wood

1. Introduction

Forest inventories based on remote sensing data vary in terms of scale, sensors, and calculated
forest structural attributes. For example, Latifi and Heurich [1] reported that lidar point clouds
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advantageously fused with optical imagery are the most prominent choices for inventory of forest
structural variables at the landscape and regional scales. Spatial distribution of trees and standing
or fallen dead trees are key forest variables for estimation of forest attributes such as aboveground
biomass and growing stock. Aside from area-based methods, tree-level approaches estimate forest
inventory parameters utilizing segmented single trees. The study of Latifi et al. [2] compared both
approaches for a temperate forest area of around 300 km2 in a large-scale experiment and showed that
the cost of data collection could be reduced by 90% compared to a conventional forest inventory.

For single tree detection, a huge set of raster-based approaches are available that use the canopy
height model (CHM) as basic information [3]. Aside from these low-level methods, more sophisticated
approaches operate on the point cloud instead of using the CHM. Strîmbu and Strîmbu [4] present
a three-dimensional approach in which a weighted graph is built from hierarchical topologies of
lidar data, thereby generating three-dimensional tree segments. The authors indicate an average
detection accuracy of 98% for simple, regular tree structures and 85% for complex tree structures.
The approach of Dai et al. [5] merges mean-shift clusters initially generated from different lidar-based
feature spaces to individual trees using both the spatial domain and the multispectral domain. In the
case of multispectral lidar data, this study reports a detection rate of 88%. Reitberger et al. [6] proposes
a novel segmentation method based on normalized cut [7] that detects single trees using a graph cut
approach. The study successfully shows a significant improvement of the single tree detection (up to
20%) in the lower forest layers.

Graph-cut based segmentation methods, such as normalized cut, partition the underlying
weighted graph that is being finished with a dependence on a static stopping criterion. The stopping
criterion controls the iterative segmentation and has no physical or object specific meaning. It must
be either defined based on practical experience or optimized by means of a sensitivity analysis using
reference data [8]. However, the stopping criterion is applied statically, without accounting for the
actual local tree species; therefore over- and under-segmentation occurs when using the stopping
criterion averaged over the reference data. Recently, Amiri et al. [9] improved the normalized cut based
tree segmentation by replacing the static stopping criterion with an adaptive classifier that analyzes the
point cloud of the cluster to be partitioned. However, this extension of the basic method only works
for conifers and fails for broadleaf trees.

Optical imagery has become a standard source to discriminate tree species [10,11]. Recently, dense
matching has emerged as a mature technique used for reconstructing objects from a series of highly
overlapping images at the pixel level [12]. When applied in a forest area, the dense point cloud of a
canopy surface can be used for tree species classification either at the tree level, or using an area-based
approach [13]. Moreover, the combination of multispectral images with lidar advantageously enriches
the limited radiometric range of lidar. Ullah et al. [14] demonstrated an improvement in the estimation
of forest structural parameters at the stand and forest compartment levels using point clouds generated
from aerial imagery.

Over the past decade, lidar has emerged as an excellent data source for classifying tree
species. Several studies have demonstrated the feasibility of tree species classification using structural
features, such as crown shapes, height distribution percentiles, and proportions of first/single returns,
obtained from lidar point clouds [15–18]. The application of the newly introduced full waveform lidar
systems has also improved accuracy by applying waveform features that use detailed backscattered
pulse information, such as the intensity and pulse width [19,20]. Reitberger et al. [6] also demonstrated
the advantages of full waveform lidar for tree species mapping in the Bavarian Forest National Park by
utilizing the intensity and pulse width. For the same forest area, Yao et al. [21] showed that broadleaf
trees and conifers could be classified with an overall accuracy of 78%. However, Shi et al. [22] found
that the classification accuracy decreases by 30% if the detailed tree species mapping (six different tree
species) is attempted for the same study area. The study in Hovi et al. [20] reported an overall accuracy
of 75% for the classification of three main tree species in Finland using lidar waveform features.
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The advent of high resolution lidar point clouds made possible the successful detection of
individual standing dead trees located in areas of pest infestation. Yao et al. [21] was able to detect
standing dead trees with crowns with an accuracy between 71% and 73%. The approach only used the
lidar intensity (single wavelength 1550 nm) and geometric features such as the crown shape and point
height distribution. Recently, Polewski [23] presented a method that combines single 3D tree segments
with multispectral aerial imagery for mapping of standing dead trees with crowns. A two-class
classification (dead tree and non-dead tree) led to an accuracy of around 88% using features generated
from the covariance matrix of three image channels. The detection of standing dead trees without
crowns (i.e., snags) was tackled in Polewski et al. [24]. The approach generates salient features by
free shape contexts suitable to describe the single snags in a lidar point cloud. The study reports a
classification accuracy between 71% to 73%. At present, these techniques for mapping dead trees have
only been applied to small control plots.

The structure of a forest is one of the most important variables for the future development
of forest stands [25] and has considerable impact on the presence of protected species [26].
For adequate management, the description of species composition, spatial structure, natural dynamics,
and various tree characteristics is mandatory. These forest characteristics are also needed as explanatory
variables for many research issues. Šumava National Park and Bavarian Forest National Park
are collecting forest structure data in the field on a permanent research plot, whose total area is
relatively small when compared with the size of the entire forest area [27]. So far, slightly different
measurement methodologies have been applied in both parks, such as update periods and plot size,
hence complicating forest data comparisons and cross-border mapping of forest structures. Lidar offers
the unique opportunity to describe the forest structure of both neighboring parks in a consistent data
set generated at the same time and based on identical methods.

In summary, tree segmentation based on normalized cut using a static stopping criterion generates
over- and undersegmentation effects depending on the distribution of tree species. Therefore, it appears
advantageous to apply a stopping criterion that is based on a tree species’s information obtained
from a preliminary classification of conifers and broadleaf trees. Moreover, the complete mapping of
conifers, broadleaf trees, as well as standing dead trees, has not yet been successfully demonstrated
in a large temperate forest area using lidar and multispectral imagery. Contrary to the experiments
normally conducted in small test areas, the results of a large-scale experiment are statistically more
relevant and more reliable. Finally, the area-wide mapping of individual trees—especially of dead trees
and snags—across the border allows for a seamless representation of the ecosystem that is important
for forest biodiversity conservation.

The main objectives and the novelties of the current study were (i) to optimise tree segmentation
based on normalized cut using two different stopping criteria for conifers and broadleaf trees and (ii)
to map conifers, broadleaf trees, standing dead trees, and snags in a large temperate forest 924 km2 in
size situated in Šumava National Park and Bavarian Forest National Park. Thereby, we verified the
statistical performance of the methods in a large-scale experiment and provided spatial information
about the distribution of trees usable for area-wide information on the abundance and distribution of
key habitat structures [28].

2. Materials and Methods

2.1. Study Area

Established in the Bohemian Forest in 1991 and 1970, respectively, Šumava National Park (49◦12′N,
13◦30′E) and Bavarian Forest National Park (49◦12′N, 12◦58′E) protect 92,464 ha of mountain spruce
forests. The forest cover more than 82% of this area, one of the largest complexes in central Europe.
Both parks are part of the Natura 2000 network, which was established to protect the most endangered
habitats and species in Europe, as defined in both the Habitats Directive (1992) and Birds Directive
(1979). This forest area comprises natural and secondary habitats with numerous rare and protected
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plant and animal species of exceptional natural value of European-wide significance [27]. Although
divided by the state border between Czech Republic and Germany, the forest nature is consistent for
the area of both parks.

Both parks are dominated by Norway spruce (Picea abies) with European beech (Fagus sylvatica),
silver fir (Abies alba) and larch (Larix). The parks also contain some other tree species, such as white
birch (Betula pendula), sycamore maple (Acer pseudoplatanus), and common rowan (Sorbus aucuparia)
[29]. Due to bark beetle infestation, large areas are now characterized by dead wood, comprising fallen
dead trees, standing dead trees, and standing dead trees without crowns (=snags). Note that we did
not focus on the detection of fallen dead trees. Moreover, we excluded dead trees located in windthrow
areas. Figure 1 shows a map of the two parks and the reference plots (see Section 2.4.1).

Figure 1. Map of Šumava National Park (green border) and Bavarian Forest National Park (yellow
border) superimposed with orthophotos. Reference areas measured by field measurements: Bioklim CZ
(orange circle), HTO (violet circle), Bioklim (green circle), LAI (red). Additional reference areas were
manually labelled: A1, A2, and A3 (blue pentagon) for dead trees and snags; B1, B2 (yellow diamond)
and C1 (purple diamond) for broadleaf trees and conifers.

2.2. Lidar Data

The airborne full waveform data were acquired in June 2017 (leaf-on condition) using a RIEGL
LMSQ 680i instrument, which was carried by a helicopter at a flying altitude of 550 m and at a speed
of 60 kts. Parallel flight strips were flown with side lap of 60%. Therefore, the resulting average point
density was 55 points/m2. In total, the area of the lidar campaign was 943 km2. The lidar data were
provided as LAS-files containing an amplitude value for each laser point. Table 1 summarizes the
parameters of the RIEGL LMSQ 680i scanner and the lidar flight campaign.

The raw amplitude values Iraw were corrected with regard to travelling distance s of the laser
beam assuming a mean flight height s0 = 400 m with

Icorr = Iraw × (
s
s0
)n. (1)

The parameter n was calibrated using the lidar data of a calibration flight that was conducted on
a near-by airfield. Following the procedure suggested by [6], we calculated for parameter n = 2.03.

Finally, the entire lidar set was geometrically checked in planimetry and height using enclosing
polygons for flat buildings and the mean height of small horizontal areas. On average, the mean
horizontal and vertical displacements were 5 cm and 6 cm, respectively.
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Table 1. Flight parameters of lidar campaign.

Scanner Type RIEGL LMS-680i

Platform Helicopter
D-HFCE/AS350

Spectral wavelength (nm) 1550
Beam divergence (mrad) 0.5
Flight speed (kts) 60
Flight height (m) 550
Side lap (%) 60
Point density (pts/m2) 55
Footprint size (mm) 275
Area (km2) 943
Number of raw laser points (Mio) 52.400

2.3. Aerial Multispectral Data

For both parks, the multispectral aerial imagery was acquired on October 2017 and June 2017 in
two separate aerial flight campaigns. In Šumava National Park, the fall foliage change had already
started for most of the broadleaf trees (see Figure 2a). Therefore, the spectral appearance was similar
for beeches and dead trees. Moreover, because of low solar altitude, the shadows of the trees were
fairly long. In Bavarian Forest National Park, the color infrared imagery was optimal because the
data were acquired in June 2017. Note that the acquisition time for the lidar campaign is almost the
same. Figure 2a,b show typical areas containing conifers, broadleaf trees, and dead wood. The ground
sample distance (GSD) was not identical for the two park areas and had values of 17 cm and 9.5 cm for
the Šumava and Bavarian Forest National Parks, respectively. In total, 669 images were captured for
Šumava and 2553 for Bavarian Forest. Additionally, Global Navigation Satellite System (GNSS) data
and Inertial Navigation System (INS) data were also acquired to provide initial information about the
exterior orientation. The mean above-ground flight heights were 3900 m and 2880 m for the Šumava
and Bavarian Forest National Parks, respectively. The images had end-laps of 80% and side-laps of
60%. They contained four spectral bands (blue, green, red, and near-infrared). The aerotriangulation
(AT) was calculated using the following input: the aerial images, the camera calibration model,
and the image measurements for the control points. As expected, the sigma naught of the AT was
excellent, with 0.22 GSD for Šumava and 0.3 GSD for Bavarian Forest. For the software packages,
ISAT [30] and MATCH-AT [31] were used for Šumava National Park and Bavarian Forest National
Park, respectively. The software packages OrthoMaster/OrthoVista [32] generated true orthophotos
utilizing the digital surface model of the total forest area. Table 2 shows the details of the aerial flight
campaigns and the subsequent photogrammetric processing of the aerial imagery.

Table 2. Flight parameters of aerial image acquisition, results of subsequent aerial triangulation, and
software packages used.

Park Area Šumava Bavarian Forest
Acquisition time October 2017 June 2017
Aerial camera Xp-w/a DMCIII
End lap/Side lap (%) 80/60 80/60
Focal length (mm) 100 92
Number of images 669 2553
MSL flight height (m) 3900 2880
GSD (cm) 17 9.5
Sigma naught AT (GSD) 0.22 0.3
Software for AT ISAT MATCH-AT
Software for Orthophotos OrthoMaster OrthoMaster
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(a) (b)
Figure 2. Cut-outs of two aerial images. (a) Šumava National Park. Approximate location is
49◦7.26′N, 13◦19.27′E. Approximate size is 514 m × 243 m. Note the spectral appearance of broadleaf
trees due to fall foliage. (b) Bavarian Forest National Park. Approximate location is 49◦6′N,
13◦18.61′E. Approximate size is 624 m × 377 m.

2.4. Reference Data

2.4.1. Field Measurements

Ground truth data for sample plots were acquired by field measurements in four reference
data set Bioklim CZ [33], HTO [34], Bioklim [33], and LAI Bioklim [35]. In both parks, tree height
measurements were carried out using the "Vertex" III system [36] considering trees with a diameter at
breast height (DBH) > 7 cm. In rectangular HTO plots, each stem position was precisely surveyed by
means of tacheometry and double-checked with differential GPS (DGPS) using the Leica GPS System
500 instrument. The coordinate differences indicated an excellent standard deviation of 5 cm [34].
The centers of all remaining circular plots were measured by means of differential GNSS (DGNNS).
In the case of Czech plots Bioklim CZ, the Leica ATX1230 GG instrument provided plot center locations,
reporting a position accuracy between 3 cm and 96 cm. For the Bioklim and LAI plots, a Leica GS 14
Professional GNSS receiver was used [33]. The range of the internal accuracy estimation was between a
few centimeters and several decimeters. In Czech plots Bioklim CZ, tree positions were collected with
a laser range-finder and a magnetic compass IFER-MMS from Field-Map Technology (see Zenáhlíková
et al. [27]). In Bavarian plots Bioklim and LAI, the distance was surveyed using a "Vertex" III system
and a compass for the azimuth (see Bässler et al. [33]). Table 3 gives an overview of the tree species
distribution in the four reference data sets.

The reference trees were further subdivided into three layers with respect to the top tree height
htop in the plot. The parameter htop is defined as the average height of the 100 highest trees per ha
[37]. The lower layer contains all trees below 50% of htop, the intermediate layer corresponds to all
trees between 50% and 80% of htop, and the upper layer contains the remainder of the trees.

2.4.2. Reference Trees by Manual Labelling

Additional reference data were collected by visual inspection using polygons of segmented
trees. In total, six different rectangular plots A1, A2, A3, B1, B2, and C1 (see Figure 1) were
selected. These reference plots are dominated by broadleaf trees, conifers, dead trees and snags,
thereby providing a varied composition of trees for classification. Table 4 gives an overview on the total
number of trees manually labelled. We used an interactive tool that displays polygons of tree segments
in the aerial image, as well as the segmented point cloud of tree segments. The point cloud can be
rotated in 3D, thereby aiding the expert in verifying the class of investigated tree objects. In detail,
we labelled samples for the classes ’conifer’ and ’broadleaf’, ’dead tree (with crown)’, ’non-dead tree’,
’snag’, and ’non-snag’. The identification of living and dead conifers in both parks was fairly easy (see
Figure 3a,e,g). The broadleaf trees in Bavarian Forest National Park could also be classified without
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problems (see Figure 3f). However, broadleaf trees in Šumava National Park were difficult to label
because many were already at the leaf-off stage and were therefore visually similar to dead trees (see
Figure 3b). For the same reason, the labelling of dead trees in Šumava National Park was also a fairly
difficult task (see Figure 3c,d). Instead, single dead trees were in many cases perfectly silhouetted
against the background in Bavarian Forest National Park (see Figure 3g). Some problems occurred
when they were overlapped with nearby spruces (see Figure 3h). In both parks, snags could only be
found using the point cloud of the tree segments because the snags were practically invisible in an
aerial image (see Figure 3i,j).

Table 3. Properties of reference plots from field measurements.

Plot Areas Bioklim CZ HTO Bioklim LAI
Park area Šumava Bavarian Forest Bavarian Forest Bavarian Forest
Number of plots 78 15 120 26
plot size (ha) 0.05 ∅=0.21 0.05 0.05
Accuracy of plot centers DGNSS DGPS DGNSS DGNSS
Year of acquisition 2017 2007 2016 2017
Fir 6 10 157 1
Larch 1 0 5 0
Pine 237 0 0 0
Spruce 1284 677 1397 6
Alder 12 0 16 0
Ash 2 0 2 37
Beech 354 883 1414 570
Birch 195 0 21 0
Elm 1 0 1 0
Norway Maple 0 2 0 0
Rowan 11 5 31 53
Sycamore 23 19 55 14
Number of conifers 1528 687 1559 7
Number of broadleaf trees 598 909 1540 674
Conifers (%) 72 43 50 1
Broadleaf trees (%) 28 57 50 99
Total 2126 1596 3099 681
Forest type coniferous mixed mixed deciduous
Stem density (stems/ha) 542 550 516 524

Table 4. Properties of reference plots manually labelled.

Area A1, A2, A3 B1, B2 C1
Year of acquisition 2017 2017 2017
Conifers - 4772 1796
Broadleaf trees - 813 141
Living trees 1345 - -
Dead tree 706 - -
Snag 131 - -

2.5. Outline of the Method

In our approach, we classifed tree groups ’conifers’ and ’broadleaf trees’ as well as standing
dead trees and snags using lidar and multispectral imagery. A fairly large feature set was generated
comprising geometric features, intensity features, features for snags based on 3D shape contexts, and
features generated from the multispectral images. Overfitting effects were reduced by automatically
selecting prominent features. In our study, the following methodology was applied. We segmented the
lidar point cloud into 3D segments representing single trees using the normalized cut algorithm [6,7]
(see Section 2.6). The procedure recursively partitioned the lidar cloud into single tree segments until
a predefined stopping criterion was achieved. The aim of the segmentation step was to provide tree
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segments that are used in the next steps to classify the segments with respect to the two tree groups,
dead trees and snags. Figure 4 illustrates the entire procedure, which is explained in detail in the
following subsections.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Subfigures (a) to (d): Examples for living spruce, broadleaf tree, dead spruce, and difficult case
in National Park Šumava. (a) Living spruce. (b) Broadleaf tree. (c) Difficult example for a broadleaf tree
in fall. Leaf-off. (d) Difficult example for a broadleaf tree. Partly leaf-off. Subfigures (e) to (h): Examples
for living spruce, broadleaf tree, dead spruce, and difficult case in Bavarian Forest National Park.
(e) Living spruce. (f) Broadleaf tree. (g) Good example for a dead spruce with a crown. (h) Difficult
example for broadleaf tree. Overlapping with dead spruce. Subfigures (i) to (l): (i) Point cloud of snag.
(j) Snag from (i) not visible in aerial image. (k) Point cloud of snag. Fitted cylinder is green. (see also
Section 2.7) (l) Point cloud of non-snag. Fitted cylinder is green (see also Section 2.7).

Features

Geometric features

Intensity features

Channel means and covariance matrix

3D shape contexts

NCut
segmentation

Projected 3D segements 

Aerial 
imagery

Lidar 
point cloud

Random Forest

Feature
extraction

Classification

Logistic 
regression

Logistic 
regression

Conifers
Broadleaf trees

Snags

Dead trees 
with crown

Results

Figure 4. Overview of the approach for classification of conifers, broadleaf trees, standing dead trees,
and snags.

2.6. Single Tree Detection

For single tree detection, we used the normalized cut segmentation which is a top-down method
for segmenting objects over a discrete graph structure G = (V, E), with V as the node set, E as the
edge set, and wij(oi, oj) as the symmetric, non-negative pairwise object similarity function. W =

{wij(oi, oj)}i=1...N,j=1...N is the similarity matrix representing the pairwise weighted interrelationship
between N primitives O = {oi}i=1...N of a super-voxels, which is provided by a pre-segmentation with
k-means. The normalized cut algorithm [7] recursively bisects the graph into disjoint K subgraphs
representing clusters A and B by minimizing the objective function (=normalized nut)
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NCut(A, B) =
cut(A, B)
Assoc(A)

+
cut(A, B)
Assoc(B)

, (2)

where Assoc(A) = ∑u∈A,v∈V wij(A, V) is defined as the volume of subgraph A and is equivalent to
the sum of weights of all edges ending up in cluster A. Equation (2) maximizes the similarity within
clusters and minimizes the similarity between the disjoint clusters A and B.

The weighting matrix W is created from a similarity function

wij (oi, oj) =
M

∏
k=1

e
−

dk(oi ,oj)
2

σ2
k , (3)

where dk(oi, oj)
2 denote the M features used as similarity measures. In this study, we used the feature

weights σi for the values recommended in [6] (see also Section 2.10).
The recursive splitting of graph G into disjoint K subgraphs must normally be terminated by

threshold value NCutmax. This parameter has no physical meaning and can be defined based on
practical experience or using a trial-and-error strategy. In this study, a sensitivity analysis using
training data was performed to find an optimum value for the objects to be segmented. However,
the optimal value for NCutmax turned out to be different for broadleaf and coniferous trees. Thus,
we modified the segmentation and used two different stopping values for NCutmax, thereby making
the segmentation dependent on the tree groups. In detail, we initially segmented the point cloud
using the larger value of both NCutmax parameters. In our case, this value was representative for
conifers. Next, we applied the tree classification (see Section 2.8) to all tree segments. Third, the tree
segments of the broadleaf trees were clustered with k-means clustering. Finally, the new tree segments
potentially formed by broadleaf trees were newly segmented using the other NCutmax parameter,
which was the best for broadleaf trees.

2.7. Feature Extraction

In this study, for each tree segment, we calculated the following feature set from the lidar data
and multispectral images. The feature set can be subdivided into four main groups.

(i) Geometric features:
Feature set Sg set includes (i) height-dependent variables at 10% intervals, (ii) density dependent
variables at 10 intervals, and (iii) the two axis lengths of a paraboloid fitted to a tree crown (see
Reitberger et al. [6]).

(ii) Intensity features:
The lidar point cloud contained, for each laser point, an amplitude value that was calibrated
in advance (see Section 2.1). Based on this laser point attribute, the mean amplitudes per tree
segment and in 10 tree layers were calculated to form feature subset SI .

(iii) 3D shape contexts:
For the snag classification, we followed the idea of Polewski et al. [24] and applied 3D shape
contexts, which are constructed as cylinders with radius rseg and length lseg along the tree
segments’ axis (see Figure 3k,l). Features S3DC are essentially histograms representing the spatial
distribution of the points within the cylindrical volume.

(iv) Covariance matrix:
For this feature subset, we projected the tree segments into the next aerial color infrared image
using the exterior orientation. Within the resulting enclosing polygon, we calculated the 3 ×
3 covariance matrix and the mean of the three channels. The six independent elements of the
covariance matrix and the mean channels form the nine elements of feature set Scov.



Remote Sens. 2020, 12, 661 10 of 22

2.8. Classification of Conifers and Broadleaf Trees

For classification of conifers and broadleaf trees, we used the feature sets Sg (= geometric features),
SI (= intensity feature), and Scov (= features from aerial images). We chose Random Forest (RF) [38] as
a binary classifier because of its robust ability to estimate the class probability. Note that RF provides a
probability for each classified object.

2.9. Classification of Standing Trees and Snags

To classify both types of dead trees based on features Scov and S3DC we applied a multinomial
logistic regression (MLR). We used a regularized-generalized model, which was implemented in the
glmnet function as an R source package. Similar to RF, MLR classifies each dead tree with a probability
pdead for dead trees and psnag for snags. Note that we also tested RF and Support Vector Machines
(SVM) as classifiers. However, MLR turned out to be the best option for this classification task.

2.10. Choice of Parameters

The 3D tree segmentation based on the normalized cut was controlled by parameters listed in
Table 5. According to Yao et al. [39], we introduced the quadratic distances D2

XYij
= (Xi − Xj)

2 +

(Yi − Yj)
2 and Z2

XYij
= (Zi − Zj)

2 between super-voxels i and j as features. These two features were
completed by parameter Fmax

XYij
, which defined the maximum distance of a super-voxel pair i and j to a

tree position provided by the watershed segmentation. The amplitude of the laser points processed
in Section 2.2 was neglected because this feature has practically no impact on the quality of the
segmentation. Therefore, the weighting matrix W can be specified as

wij =

{
e−X(i,j) × e−Z(i,j) × e−F(i,j) if DXYij < RXY

0 otherwise
(4)

with

X(i, j) = (
DXYij

σxy
)2, Z(i, j) = (

DZij

σz
)2 (5)

F(i, j) = (
Fmax

XYij

σF
)2, (6)

where RXY defines the vertical cylinder within which the weights wij are calculated. The control
parameters σxy, σz and σF weight the corresponding features in Equations (3) and (4). The values used,
which are listed in Table 5, follow the recommendations of Yao et al. [39].

To calculate the features S3DSC of the snag detection (see Section 2.7), we used the control
parameters listed in Table 6.

Table 5. Control parameters of single tree segmentation.

Parameter Symbols Values
Min. number of super-voxels NminV 2
Weight for horizontal distance σxy 1.35 m
Weight for vertical distance σz 11.0 m
Weight for stem position σF 3.5 m

Table 6. Control parameters of feature extraction with 3D shape contexts.

Parameter Symbols Values
Cylinder radius rseg 0.5 m
Cylinder length lseg 2.0 m
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2.11. Evaluation and Classifier Training

We conducted four groups of experiments. First, we segmented single trees using the modified
normalized cut segmentation. In this experiment, we showed that two different values NCutmax can
be successfully applied to segment trees in dependence on the tree classes "conifer" and "broadleaf
tree". Second, we classified conifers and broadleaf trees using different feature sets. The third and fourth
experiments focused on the classification of dead trees and snags, respectively. All four experiments
utilized the reference data from the field measurements and the visual inspection (see Section 2.4).

In experiment #1, recall and precision quantities were used to evaluate the quality of the detected
trees. The ratio of the reference tree numbers, which have at least one associated detected tree,
to the total number of reference trees is called ’recall’. The number of detected trees that were
successfully connected to a reference tree as a fraction of the total number of detected trees is
defined as the ’precision’. Both recall and precision are calculated depending on stopping criterion
NCutmax. Following the strategy proposed by Reitberger et al. [6], we considered two trees to be
matched trees, if (i) the distance between the segmented tree to the reference single tree is smaller
than 60% of the mean tree distance within the sample plot and (ii) the height difference between the
segmented tree and the reference tree is less than 20% of the top height of the plot. If a reference tree
was connected with more than one segmented trees, the tree position with the shortest distance to the
reference tree was selected. In cases where a segmented tree could not be combined with a reference
tree, we considered this to be a ‘false positive’ segment.

For classification of conifers and broadleaf trees (=experiment #2), we combined reference trees
from field measurements and visual inspection to train the classifier. As a classifier, we used the RF
classifier from Section 2.8. The reference data were split into two sets for training and testing. The RF
classifier was also validated with reference data provided only by field measurements. For dead
tree classification (=experiment #3 and #4), we only used reference trees determined from visual
inspection. In both cases, the classifier was logistic regression (see Section 2.9). For these two latter
experiments, the reference samples were also subdivided into two data sets for training and testing.
We used a five-fold cross-validation to obtain the overall classification accuracy, precision, and recall
as a compromise between the computational efficiency and reducing the effects of randomness.
All classifiers were evaluated with test data not being used for training. All results are presented with
confusion matrices calculated from reference data and test data.

3. Results

3.1. Single Tree Detection

A sensitivity analysis was conducted in the plots HTO, Bioklim, LAI, and Bioklim CZ to find the
best value for parameter NCutmax. First, we applied the same value for parameter NCutmax to conifers
and broadleaf trees. An analysis of Table 7 with Tables 8 and 9 let us conclude that data set HTO
was the best. In general, the recall of data set combination Bioklim, LAI, and Bioklim CZ was around
20% worse when compared with HTO data set (Table 8). When we compared the data set Bioklim CZ
(Table 9) with HTO data set (Table 7), we also found a significant discrepancy in the recall, especially
in the upper layer and, in general, for the total mean. The precision of this data set was 15% better than
HTO in total mean. In summary, data set HTO was the most reliable, also because of the high absolute
accuracy of the tree positions (see also Section 2.4.1). Thus, parameter NCutmax = 0.16 seemed to be
the best compromise for controlling the segmentation for both conifers and broadleaf trees.

We further analyzed the segmentation with respect to conifers and broadleaf trees. Because we
found that many broadleaf tree areas had a clear oversegmentation, we applied the new segmentation
scheme discussed in Section 2.6. After varying parameter NCutmax in a reasonable range, we found
optimized values for this control parameter. Tables 10 and 11 demonstrate clearly that NCutmax = 0.10
increases the precision by 13% at a small cost of deterioration in recall. Figure 5c–f show nicely the
reduction of oversegmentation with parameter NCutmax = 0.10 for the preclassified broadleaf trees.
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Table 7. Sensitivity analysis for tree detection in reference areas. HTO. Total number of trees is 1596.

Parameter Recall Precision
NCut Lower Middle Upper Total Lower Middle Upper Total
0.13 0.16 0.38 0.84 0.64 0.23 0.53 0.67 0.58
0.16 0.18 0.41 0.90 0.69 0.20 0.51 0.62 0.54
0.18 0.19 0.44 0.92 0.71 0.23 0.52 0.60 0.52
0.20 0.24 0.45 0.91 0.72 0.21 0.50 0.58 0.49

Table 8. Sensitivity analysis for tree detection in reference areas. HTO, Bioklim and LAI. Total number
of trees is 5736.

Parameter Recall Precision
NCut Lower Middle Upper Total Lower Middle Upper Total
0.16 0.16 0.38 0.67 0.48 0.30 0.48 0.57 0.58
0.18 0.17 0.39 0.68 0.49 0.30 0.45 0.56 0.56

Table 9. Sensitivity analysis for tree detection in reference areas. Bioklim CZ. Total number of trees
is 2126.

Parameter Recall Precision
NCut Lower Middle Upper Total Lower Middle Upper Total
0.16 0.13 0.37 0.67 0.51 0.29 0.56 0.70 0.73
0.18 0.13 0.36 0.67 0.52 0.28 0.53 0.69 0.72

Table 10. Sensitivity analysis of tree detection regarding conifers and broadleaf trees. The reference
area is HTO. Control parameter NCutmax = 0.16. Total number of trees is 1596.

Parameter Recall Precision
Layer Lower Middle Upper Total Lower Middle Upper Total
Conifers 0.10 0.53 0.89 0.69 0.27 0.66 0.85 0.82
Broadleaf trees 0.30 0.43 0.91 0.72 0.16 0.52 0.60 0.54

Table 11. Sensitivity analysis of tree detection regarding conifers and broadleaf trees. The reference
area is HTO. Control parameter NCut = 0.10. Total number of trees is 1596.

Parameter Recall Precision
Layer Lower Middle Upper Total Lower Middle Upper Total
Broadleaf trees 0.18 0.33 0.84 0.63 0.15 0.50 0.73 0.66
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(a) (b)

(c) (d)

(e) (f)
Figure 5. Impact of parameter NCutmax calibrated for conifers and broadleaf trees. Coniferous tree
segments are in blue; broadleaf tree segments are in yellow. (a) Cut-out of aerial image in forest area of
Šumava National Park. Approximate location is 48◦47′57′′N, 13◦51′27′′E. Approximate size is 655 m
× 310 m. (b) Cut-out of aerial image in forest area of Bavarian Forest National Park. Approximate
location is 48◦55′45′′N, 13◦20′15′′E. Approximate size is 456 m × 216 m. (c) Tree segments in area (a)
NCutmax = 0.16. (d) Tree segments in area (b) NCutmax = 0.16. (e) Tree segments in area (a) NCutmax =
0.10. (f) Tree segments in area (b) NCutmax = 0.10.

3.2. Classification of Conifers and Broadleaf Trees

For the Czech and German parts of the forest areas, we trained two separate classifiers for
classification of conifers and broadleaf trees because the aerial images were captured at various
times and with different cameras. We used 3D geometry features Sg describing crown shape and point
distribution per tree and feature set Scov generated from the aerial images (see Section 2.7). Interestingly,
the intensity features SI finally had to be ignored because, in some areas, the intensity distribution was
not consistent and showed severe tiling effects (see Figure 6a,b).

Tables 12 and 13 show the validation of the classifiers on test data taken from four reference
areas. In general, the classification results were excellent. For Šumava National Park, the overall
accuracy (OA) of 97.5% was better by 5–7%. Moreover, the confusion between conifers and broadleaf
trees was significantly lower, and broadleaf trees were better classified in terms of recall and
precision. Very likely, the fall foliage helped to discriminate among conifers and broadleaf trees
in Šumava National Park for this accuracy level.
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(a) (b)
Figure 6. Intensity issues in the mixed forest area. (a) Tile effect between neighboring laser strips (b)
Mis-classified broadleaf trees.

Table 12. Results for the classification of conifers and broadleaf trees. Bavarian Forest National
Park: Test data are from reference areas HTO and C1: 1637 conifers and 636 broadleaf trees for
training. 722 conifers, 253 broadleaf trees for testing (=Reference #1). 293 conifers, 236 broadleaf trees
for testing (=Reference #2 only from HTO).

Reference #1 Reference #2
Conifer Broadleaf Precision Conifer Broadleaf Precision

Pr
ed

ic
te

d

Conifer 687 15 0.98 269 44 0.85
Broadleaf 35 238 0.87 24 192 0.89
Recall 0.95 0.94 0.92 0.81
OA: 94.9% Kappa: 0.87 OA: 87.1% Kappa: 0.89

Table 13. Results for the classification of conifers and broadleaf trees. Šumava National Park: Test data
are from reference areas Bioklim CZ, B1 and B2: 3480 conifers and 712 broadleaf trees for training. 1493
conifers, 314 broadleaf trees for testing (=Reference #3). 138 conifers, 187 broadleaf trees for testing
(=Reference #4 only from Bioklim CZ).

Reference #3 Reference #4
Conifer Broadleaf Precision Conifer Broadleaf Precision

Pr
ed

ic
te

d

Conifer 1482 19 0.98 131 1 0.99
Broadleaf 11 295 0.96 7 186 0.96
Recall 0.99 0.94 0.95 0.99
OA: 97.5% Kappa: 0.94 OA: 97.5% Kappa: 0.95

3.3. Classification of Standing Dead Trees

For both parks, we trained two separate classifiers to classify dead trees using the feature data set
Scov because of the different acquisition times for the aerial imagery. Note that the training data set was
automatically balanced. Therefore, the number of dead trees and living trees in the confusion matrices
differed from the relevant numbers indicated for training and testing in Tables 14 and 15. Moreover,
a class probability pdead = 90% was used to classify a dead tree.

For Bavarian Forest National Park, the OA of 91.7% calculated from the training data with
five-fold cross validation was confirmed by the OA of 92.6% performed in the test area. Conversely,
the OA of 82.8% for Šumava National Park was slightly reduced for the training data. Very likely,
the classifier was influenced by the spectral similarity of the dead trees and the beeches. The OA
of 100% for the test data was certainly too optimistic. Presumably, manually labelled trees could be
classified easier.
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3.4. Classification of Snags

In experiment #4, only one classifier was trained because the used feature set S3DSC solely depends
on lidar data, and the 3D structure of snags was assumed to be the same for both parks. Balancing of
the training data and usage of class probability psnag were the same as for the classification of dead
trees. The excellent OA of 90.9% in the training area is in the same order of magnitude as the OA
calculated with the test data (see Table 16). Figure 7 shows examples for labelled snags that were
classified as snags with psnag > 90%. However, the analysis of the test reference revealed a significant
confusion between snags and living trees.

(a) (b) (c)

Figure 7. Verification of the snag classifier in Bavarian Forest National Park. (a) Small forest scene
with living trees, dead trees and snags. (b) Labelled snags for verification (green). (c) Classified snags
(orange) with threshold psnag > 90%.

Table 14. Classification results of dead trees. Labelled data are from areas A1, A2, and A3. Bavarian
Forest National Park: 124 dead trees, 186 living trees for training. 310 dead trees, 761 living trees for
testing. Confusion matrices for training (left): Number of living trees are reduced to the number of
dead trees. Numbers refer to the average of the five test sets of the five-fold cross-validation.

Training Reference Test Reference
Dead Living Precision Dead Living Precision

Pr
ed

ic
te

d

Dead 22 2 0.92 255 24 0.91
Living 2 22 0.92 55 737 0.93
Recall 0.92 0.92 0.93 0.86
OA: 91.7% Kappa: 0.93 OA: 92.6% Kappa: 0.81

Table 15. Classification results of dead trees. Labelled data are from areas A1, A2, and A3. Šumava
National Park: 163 dead trees with crowns, 356 living trees for training. 109 dead trees, 142 living trees
for testing. Tree segments are classified as dead trees if the threshold for class probability pdead > 90%.

Training Reference Test Reference
Dead Living Precision Dead Living Precision

Pr
ed

ic
te

d

Dead 27 6 0.82 109 0 1.0
Living 5 26 0.84 0 142 1.0
Recall 0.84 0.81 1.0 1.0
OA: 82.8% Kappa: 0.65 OA: 100.0% Kappa: 1.0
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Table 16. Results of the classification of snags for both parks. Labelled data are from areas A1, A2, and
A3. 55 snags and 524 living trees for training. 76 snags and 1513 living trees for testing. Confusion
matrices for training (left): Number of living are reduced to the number of snags. Numbers refer to the
average of the five test sets of the five-fold cross-validation. Tree segments are classified as snags if the
threshold for class probability psnag > 90%.

Training Reference Test Reference
Snag Living Precision Snag Living Precision

Pr
ed

ic
te

d

Snag 10 1 0.91 50 39 0.56
Living 1 10 0.91 26 1474 0.98
Recall 0.91 0.91 0.66 0.97
OA: 90.9% Kappa: 0.81 OA: 95.9% Kappa: 0.58

4. Discussion

4.1. Main Goals of the Study

The main goals of the current study were to classify two tree classes (coniferous and deciduous),
standing dead trees, and snags in a large forest area using lidar and multispectral imagery. We also
showed a novel calibration of a control parameter that stops the iterative normalized cut segmentation.

4.2. Single Tree Detection

The experiments clearly showed that the segmentation accuracy depends on conifers and
broadleaf trees. The best values for parameter NCutmax, which controls the stopping of the iterative
normalized cut method, were 0.10 for conifers and 0.18 for broadleaf trees. Reitberger et al. [6]
recommended an average value of 0.16 for both tree groups. Instead, we used two different parameters
for NCutmax and could improve the segmentation quality in terms of precision by 13%. However,
we had to rerun the segmentation for broadleaf trees again. Thus, the improvement in accuracy was
gained with an increased computation time of roughly one-third. Recently, Amiri et al. [9] replaced
control parameter NCutmax with an adaptive stopping criterion that analyses the remaining point
cloud of the segmented clusters and allows a classifier to determine the termination of bisecting of the
clusters. However, this method only works for conifers and is not applicable for broadleaf tree.

4.3. Classification of Conifers and Broadleaf Trees

In general, the results of tree classification were excellent, with values for OA beyond 95% for
both parks. The laser intensity, calculated as a mean value for the upper part of the tree crown, turned
out as useless. Very likely, the calibration parameter for intensity normalization was not representative
for the entire project area. Interestingly, the spectral information of CIR aerial imagery successfully
replaced the laser intensity as the salient feature in the tree classification process.

The OA in Tables 12 and 13 calculated from different test data sets (Reference #1 and #2 for
Bavarian Forest National Park; Reference #3 and #4 for Šumava National Park) also demonstrated the
transferability of the classifiers. For Bavarian Forest National Park, we noticed a difference of 7.8%,
whereas the OA for Šumava National Park was essentially the same for both test areas.

4.4. Classification of Dead Trees and Snags

In both parks, the classification of dead trees performed with excellent accuracy, better than 90%
in terms of recall and precision. In comparison, the accuracy in Šumava National Park was slightly
reduced because the fall foliage of broadleaf trees was spectrally similar to the crowns of the dead trees.

Finally, the training of the snag classifier showed a fairly good OA of 91%. Although the OA
for the test data was even better with 96%, the recall and precision for snags was only 66% and 56%,
respectively. Because of the smooth transition from dead spruces with crowns and without crowns
(=snags), we could not find an optimal classifier for snags. A detailed analysis revealed that some false
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positives were dead trees with only a few branches. Thus, they could also be considered snags in the
labelling process.

4.5. Comparison with Related Work

First, we contrasted our results for tree segmentation with the findings of Reitberger et al. [6],
which also investigated a forest site in Bavarian Forest National Park. In general, our recall for the upper
layer (89% for conifers and 84% for broadleaf trees) was in the same order of magnitude. However,
for the middle layer, we obtained a better recall of 43% (mean for conifers and broadleaf trees) compared
to 32% reported in [6]. For the lower layer, the mean recall of 14% corresponded well with 17% shown
in [6]. Our total precision of 74% was worse than the precision of 90% in [6].

Second, we compared the averaged results of the tree segmentation for the HTO data set with
four studies: see Strîmbu and Strîmbu [4], Li et al. [40], Holmgren and Lindberg [41] and Silva et al.
[42] (see Table 17). Note that two study areas are dominated by conifer pine trees, and that the stem
densities of three studies are by a factor of 1.4 to 3.2 lower. In Table 17, the results of our study are
presented with regard to (i) coniferous plots and (ii) all plots (=mixed) for the upper layer (see also
Table 10 and Table 11). Li et al. [40] demonstrated in a Sierra mixed conifer pine forest a detection
rate of 86% and precision of 94%. This method segmented trees using a top-to-bottom region growing
approach. Strîmbu and Strîmbu [4], using a three-dimensional approach in which a weighted graph
was built from hierarchical topologies, reported for a pine dominated forest a recall of 84% and
precision of 90%. Silva et al. [42], applying the method to an open canopy longleaf pine forest area,
segmented trees with a detection rate of 82% and precision of 85%. Recently, Holmgren and Lindberg
[41] demonstrated a new watershed-based tree detection method that used a tree crown density
model trained from the laser returns and some arbitrarily selected reference trees. The evaluation of a
managed hemi-boreal forest showed a recall of 85% and precision of 82%. Although the stem density
of our study was significantly higher in three cases, the tree segmentation detected coniferous trees
slightly better. However, the precision turned out to be somewhat worse. For all the reference plots
of our study, representing a mixed temperate forest, the recall was also still better or similar. Clearly,
the corresponding precision was lower by 7-16% because some of the deciduous trees, which are
generally more difficult to segment, could not be found in the point cloud.

Table 17. Parameters and accuracy performance of tree segmentations methods compared with our
study. Note that recall and precision values were evaluated from field measurements of HTO plots.

Study Recall Precision Points/m2 Trees/ha Coniferous (%) Deciduous (%)

Li et al. [40] 0.86 0.94 6 400 100 0

Strîmbu and Strîmbu [4] 0.84 0.90 10 206 63 37

Silva et al. [42] 0.82 0.85 5 170 100 0

Holmgren and Lindberg [41] 0.85 0.82 83 626 >50 <50

Our study (coniferous) 0.89 0.85 55 550 100 0

Our study (mixed) 0.86 0.78 55 550 43 57

Third, we focused on the quality of the classification of conifers and broadleaf trees and how it
compared to the results published in Yao et al. [21]. In this other study, which was also conducted
in Bavarian Forest National Park, the lidar point density was 25 points/m2. Several feature sets
were investigated, including height- and density-dependent features, as well as intensity features.
Very interestingly, our OA of 94.9% (see Table 12) obtained with feature sets Sg (=geometric tree features;
density- and height-dependent features) and Scov (=features from aerial images) was equivalent to
OA = 94% reported by Yao et al. [21]. Very likely, the radiometric content of aerial imagery could
successfully substitute for the lidar intensity in our case.
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Forth, we compared our classification of dead tree and snags with other approaches obtained from
the same forest site. Yao et al. [21] reported a classification accuracy between 71% to 73%, which was
significantly worse than ours. The study in Polewski [23] reported an accuracy of around 88%, which is
slightly worse than our findings. Although both of these other studies measured the reference data
manually using orthophotos superimposed on the tree crown polygons, the combination of lidar data
and multispectral optical imagery in a two-class classification made the classification of dead trees
possible with high accuracy. Lastly, our snag detection was better by more than 10% when compared
with the results presented in [24]. Again, we concluded that the increased point density of 55 points/m2

better reflects the 3D structure of a snag.
Finally, we concluded that all the main findings of our large-scale experiment confirmed the

results of several studies that were conducted in a temperate forest.

4.6. Practical Implementation

We present some interesting statistical numbers for this large-scale mapping of forest
parameters. All the methods of Section 2.4.2 and related algorithms are coded in C++ and run under
Windows (© Microsoft) and Ubuntu. The tree segmentation and the tree classification are parallelized,
thereby taking advantage of any multi core PC systems. In total, we used eight PC workstations in
parallel, each of them equipped with up to 22 cores and 128 GByte RAM. Therefore, we split up the
forest areas into 6 km × 6 km macro blocks. Each workstation processed one or two super macro
blocks comprising 2 × 2 macro blocks. In total, we processed 27.321.962 single trees on a forest area 924
km2 in size. Table 18 gives an overview of the number of tree types classified with respect to conifers,
broadleaf trees, dead trees, and snags. The time critical process was the tree segmentation due to the
time-consuming solving of the inherent general eigenvalue problem. Our most powerful workstation,
with 22 cores, 2.2 GHz performance, and 128 GByte RAM, processed the tree segmentation and tree
classification at 25 sec/ha and 0.38 sec/ha, respectively (see Table 19). By contrast, the processing times
of the other two processes are significantly higher because the code is not parallelized.

Table 18. Number of classified trees.

Tree Type Conifer Broadleaf Dead Trees Snag
Šumava 16.693.391 (=84%) 2.396.850 (=12%) 641.098 (=3%) 224.533 (=1%)
Bavarian Forest 4.446.373 (=60%) 2.453.498 (=33%) 312.058 (=4%) 154.161 (=2%)

Table 19. Time performance of implemented algorithms.

Process Speed (sec/ha)
Tree segmentation 25
Classif. of conifers/broadleaf trees 0.38
Dead tree classification 79
Snag classification 75

We also have to address the time and effort needed for manual interactions to label additional
tree samples, to train the classifiers, and to check the results of the individual processes. Interestingly,
we had to add the reference areas A1, A2, A3, B1, B2, and C1 because the other reference areas from
the original field measurements did not fully represent the forest characteristics and were somewhat
imprecise in parts. This entire project could be finalized by one single person within 11 months.
This included one month for data preprocessing (quality check of the lidar data, intensity calibration,
and structuring the data into a block structure (see Section 2.2) and around three months for the
manual editing part. The remaining seven months were dedicated to the processing of the remote
sensing data. Note that we had to process the segmentation twice on roughly half of the entire forest
because of another NCutmax value useful for broadleaf trees. Moreover, the retraining of relevant
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classifiers instigated a second run for the classification of conifers, broadleaf trees, and dead trees as
well. In addition, half the workstations were only equipped with processors using eight cores.

The tree segmentation and the classification of conifers and broadleaf trees were processed with
the TreeFinder software package [43]. The detection of dead trees and snags was performed with an
in-house software.

Finally, we show in Figure 8 the mapping of conifers, broadleaf trees, standing dead trees, and
snags for a small part of the Bavarian Forest National Park.

Figure 8. Mapping of conifers, broadleaf trees, dead trees, and snags superimposed with
orthophoto. Image source is from Bavarian Forest National Park.

5. Conclusions

In summary, we were able to demonstrate that tree segmentation based on normalized cut can be
successfully performed with a stopping criterion specifically calibrated for tree groups ’conifers’ and
’broadleaf trees’, thereby significantly reducing the effect of under- and oversegmentation. In our case,
the precision for tree segments of broadleaf trees could be improved by 13%. However, this concept
to calibrate parameter NCutmax regarding the tree groups bears the drawback that the segmentation
needs to be performed manifold in the case of multiple tree species. We further showed the successful
mapping of conifers, broadleaf trees, and standing dead trees (with and without crowns) on a large
forest 924 km2 in size. Conifers and broadleaf trees could be classified in both parks with an accuracy
better than 90%. Furthermore, the classification of standing dead trees was also possible with a
high accuracy of more than 90%. The large consistent data set can be used by both parks for future
preparation of cross-border management plans and studies on biodiversity [44].
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