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Abstract: Wheat is a leading cereal grain throughout the world. Timely and reliable wheat yield
prediction at a large scale is essential for the agricultural supply chain and global food security,
especially in China as an important wheat producing and consuming country. The conventional
approach using either climate or satellite data or both to build empirical and crop models has prevailed
for decades. However, to what extent climate and satellite data can improve yield prediction is still
unknown. In addition, socio-economic (SC) factors may also improve crop yield prediction, but their
contributions need in-depth investigation, especially in regions with good irrigation conditions,
sufficient fertilization, and pesticide application. Here, we performed the first attempt to predict wheat
yield across China from 2001 to 2015 at the county-level by integrating multi-source data, including
monthly climate data, satellite data (i.e., Vegetation indices (VIs)), and SC factors. The results show
that incorporating all the datasets by using three machine learning methods (Ridge Regression (RR),
Random Forest (RF), and Light Gradient Boosting (LightGBM)) can achieve the best performance in
yield prediction (R2: 0.68~0.75), with the most individual contributions from climate (~0.53), followed
by VIs (~0.45), and SC factors (~0.30). In addition, the combinations of VIs and climate data can
capture inter-annual yield variability more effectively than other combinations (e.g., combinations of
climate and SC, and combinations of VIs and SC), while combining SC with climate data can better
capture spatial yield variability than others. Climate data can provide extra and unique information
across the entire growing season, while the peak stage of VIs (Mar.~Apr.) do so. Furthermore,
incorporating spatial information and soil proprieties into the benchmark models can improve wheat
yield prediction by 0.06 and 0.12, respectively. The optimal wheat prediction can be achieved with
approximately a two-month leading time before maturity. Our study develops timely and robust
methods for winter wheat yield prediction at a large scale in China, which can be applied to other
crops and regions.

Keywords: machine learning (ML); multi-source data; yield prediction; winter wheat

1. Introduction

Wheat (Triticum aestivum L.) is the leading cereal grain in the world, providing the most calories
and protein for world food supply [1,2]. China is the major wheat producing and consuming country

Remote Sens. 2020, 12, 750; doi:10.3390/rs12050750 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs12050750
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/5/750?type=check_update&version=3


Remote Sens. 2020, 12, 750 2 of 22

globally [3–6], with winter wheat reaching about 85% of its total summer grain production [7]. Wheat
yield in China, however, has stagnated in recent years [7,8]. Timely and reliable crop yield prediction
has increasingly become one of the key issues for food security, supply chain planning of agriculture
industry, and market prediction for the entire population [9,10]. Furthermore, such yield estimations
will also help farmers to make informed management and financial decisions in advance [11,12].
In recent years, extensive studies have focused on crop yield prediction at different spatial scales by
either using statistical regression models or crop models in various countries [13–16]. With some
explicit cause-effect relationships [7,8], regression models have been increasingly replaced by crop
models due to their lower required explanation and limited spatial generalization in recent years [17].
However, there are still many problems regarding crop models since they over-depend on extensive
input data such as climate, cultivar, management, and soil conditions, as well as huge requirements in
replicability, transparency, and code efficiency [1,16,18]. Thus, the problems associated with the above
two methods highlight the need for another novel approach with an ability to provide timely, reliable,
and cost-effective wheat yield prediction.

Machine learning (ML) has been widely and successfully applied in various data-driven fields, such
as for analysis of landslides susceptibility, image processing, and facial expression recognition [19–24],
as well as in various agricultural fields such as crop classification [25,26], grassland fuel content
estimation [27], and crop yield estimation [28,29]. Compared with crop models and the traditional
statistical methods, ML has limited process-based interpretation and can handle nonlinear relationships
for crop yield prediction. Several previous studies had proved its ability in improving crop yield
prediction [1,12,28,30–33]. However, such methods have rarely been tested for crop yield prediction
in China.

Crop yields are affected by many variables, which are generally classified into dynamic and static
variables. Climate, vegetation indices (VIs), and social-economic (SC) factors belong to the former,
which can be monitored at various temporal scales [1,34]. Climate and VIs are usually available through
observation stations or remote sensing, while SC factors are reported in annual statistic reports of
different administrative units [8,18]. Variables unchanged during the growing season are the static ones,
including spatial information (e.g., latitude and longitude) and soil features. Distinct spatial patterns of
crop yields have substantiated strongly that these static variables have impacts on final yields [1,35,36],
implying their potential roles in improving wheat yield estimation and gap analysis [37].

Satellite remote sensing has been successfully used for monitoring crop growth, tillage
differentiation, and yield prediction owing to spatiotemporal capture of earth’s surface across various
spectral bands [38]. Among them, visible and near-infrared data have the most advantages in
monitoring crop growth for estimating crop yield by developing various vegetation indices [38–41].
Since Tucker et al. (1980) developed the first Normalized Difference Vegetation Index (NDVI) [42],
several popular VIs have been extensively applied in the agricultural field (e.g., NDVI, enhanced
vegetation index (EVI), green chlorophyll vegetation index (GCVI)) [18,25,40]. Given the spectral
indices can dynamically capture crop growing conditions through various combinations, and these
various products have commonly shared and complementary information to contribute to yield
prediction, we focused on three VIs associated strongly with yield: EVI, GCVI, and NDVI, to determine
their contributions to wheat yield prediction in China [43–46]. In addition, climate variables (e.g.,
temperature and precipitation) are the primary inputs for crop yield prediction, which can capture the
environment information [1,34].

With exception of dynamic variables (e.g., VIs, climate data) monitoring natural environment
states, SC factors also play an important role in crop yield and production [47,48], especially irrigation,
fertilizer application, pesticide use, farm mechanization status, and others. For example, adopting the
best farm management practices could increase crop yield [49,50]. Understanding how changes in farm
management practices can benefit crop yield prediction, especially for spatial analyses of yield [47,49].
However, very few studies have considered the contribution of SC factors for crop yield prediction at a
regional scale so far.
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Although the availability and accessibility of multi-source data with potentially valuable
information for agricultural applications increase, very few studies have quantified their shared
and unique contributions to predicting wheat yields and their spatiotemporal variations across China.
Therefore, we first adopt exploratory data analysis (EDA) to select variables that are significantly
related to crop yield. Then a multiple linear regression [ridge regression (RR)] and two machine
learning methods—Random Forest (RF) and Light Gradient Boosting (LightGBM)—are applied to
estimate wheat yield and compare their yield prediction performance by using different combinations
of input variables with different growing stages. In this paper, the following questions need to be
solved: (1) how can we integrate such multi-source data (climate, satellite, and SC factors) to derive the
best wheat yield prediction model to explain the spatio-temporal variation of yields? (2) how much
will such unique and shared information from temporal dynamic data improve wheat yield prediction
across China? (3) how do ML techniques perform compared with the common regression technique
for crop yield prediction? (4) to what degrees will the static variables (spatial information and soil
properties) improve wheat yield prediction in China?

2. Material and Methods

2.1. Study Area

In this study, the main winter wheat producing areas in China—North China Plain (NCP) (Figure 1)
was selected as our research study, which covers 398 counties in five provinces (Hebei, Shandong,
Henan, Jiangsu, and Anhui). This region, between 29◦41′N~42◦40′N and 111◦21′E ~ 122◦43′E, is one
of the important food baskets in China, with a total wheat cultivation area of 16.18 × 104 ha, accounting
for 67.02% of the total wheat area and 75.79% of the total wheat yield in China [17,51]. The region
mainly has a semi-humid climate, with the total annual precipitation from 400 to 800 mm, and the
total amount is relatively low for winter wheat growth. Therefore, the abundance and shortage of
water resources greatly affects winter wheat yield, and the social and economic development factors
(e.g., agricultural irrigation, fertilizer, and pesticide consumption) play a great role in crop yield [17,51].
Winter wheat grown across this region is generally sown at the beginning of October (spring) and
harvested at the end of May or the beginning of June (autumn) in the following year [17].
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Figure 1. The location of study area. (a) The main winter wheat producing provinces (black line) and
counties (orange line), which includes ~76% of the total wheat yield in China; the green shading refers
to winter wheat cropping areas. (b) The scope of the China and provincial boundaries (gray line).
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2.2. Dataset and Preprocessing

The yield records, cropping area, climate, SC, and satellite variables were obtained from various
sources (Table 1). We first unified spatial and temporal resolutions of climate and satellite data into 1
km and monthly interval, respectively. Then crop maps were used to mask climate and satellite data,
and aggregate mean monthly variables at the county-level.

Table 1. Summary in the collected datasets for winter wheat yield prediction in China. The Tmax, Tmin,
Pre, Vpd, and Vap refer to maximum temperatures (◦C), minimum temperatures (◦C), precipitation
(mm), vapor pressure deficit (kPa), and vapor pressure (kPa), respectively; IA, CCF, CAP, TPAM, and
ECRA refer to the irrigation area (ha), the consumption of chemical fertilizers (ton), the consumption
of agricultural pesticide (CAP), the total power of agricultural machinery (TPAM), and the electricity
consumed in rural areas (ECRA), respectively.

Category Variables Spatial
Resolution

Temporal
Resolution

Available
Records References

Crop yield and
area

Crop yield County-level Yearly 2001-2015 http://www.stats.gov.cn

Crop area 1 km Five-year 2005, 2010,
2015 [45,46]

Satellite data
MOD09A1 500 m 8-day 2001–2018 MODIS MOD09A1

DEM 90 m 2000 2000 SRTM3 V4.1

Climate data Tmin, Tmax, Pre,
Vpd, and Vap ~4 km Monthly 1958–2018 [51]

Socio-economic
factors

CAP, CCF, ECRA, IA,
and TPAM County-level Yearly 2001–2015 http://www.stats.gov.cn

Soil properties
data

soil depth, soil
texture, organic

carbon content, pH,
cation exchange

capacity, and bulk
density

0.00833 (~1 km) 2012 2012 [52]

2.2.1. Crop Yield and Area

The winter wheat yields at county-level were obtained from the Agricultural Yearbook of each
county (http://www.stats.gov.cn) from 2001 to 2015 (unit: kg/ha). A preliminary data quality check was
conducted to identify and filter the outliers: (i) those that fell outside the range of biophysical attainable
yield records. (ii) those that fell outside the range of the mean from 2001 to 2015 plus or minus two times
of standard deviation [17,52,53]. Furthermore, the accurate information of annual winter wheat regions
is vital to predicting yield, but is not available in the public domain. The National Land Cover Dataset
(NLCD) of China, with a spatial resolution of 1 km for 2005, 2010, and 2015, was provided by Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn/).
These datasets are generated by visual interpretation and digitization of Landsat TM/ETM+ images
with an overall classification accuracy above 90% [54,55]. The typical cropping system of this region is
a winter wheat-summer maize rotation system, and only wheat is sown in dryland during our study
period [7,8]. Therefore, we extract dryland in cultivated land as the winter wheat areas in the three
time periods and then use the three generated area maps as the broad wheat cropping areas (Figure 1).
According to the statistical data from Agricultural Yearbook of each province (Figure A1), we assume
that there is no significant crop area change in the five years. Therefore, the crop coverage map of
2005 was used to mask the explanatory variables (i.e., climate, satellite data, and soil properties) for
2001-2005, 2010 for 2005-2010, and 2015 for 2010-2015, respectively.

2.2.2. Satellite Data

Moderate Resolution Imaging Spectroradiometer (MODIS) Terra MOD09A1 Version 6 with 500 m
and 8-day resolution (https://doi.org/10.5067/MODIS/MOD09A1.006) from 2000 to 2015 were retrieved
from GEE (Google Earth Engine) platform. The GEE platform hosts remotely sensed imagery and
other data that are freely available. NDVI is the widest indicator to monitor crop growth and predict

http://www.stats.gov.cn
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yield since the early 1980s [42,56], which is highly correlated with the vegetation vigor and canopy
background variations [46]. EVI can improve sensitivity in high biomass regions and indicate a potential
photosynthetic capacity due to its usefulness in estimating the fraction of absorbed photosynthetically
active radiation (fPAR) related to chlorophyll contents [44]. GCVI has been found to have the most
significant linear relationship with the leaf area index (LAI) compared with other VIs [43,45]. Therefore,
we chose three commonly used VIs—NDVI [42], EVI [44], and GCVI [43] to approximate aboveground
vegetation dynamics associated with biomass and photosynthesis. The three indexes were calculated as

NDVI = (NIR − RED)/(NIR + RED), (1)

GCVI = (NIR/GREEN) − 1, (2)

EVI = G × (NIR − RED)/(NIR + C1 × RED − C2 × BLUE + L), (3)

where NIR, RED, GREEN, and BLUE represent reflectance at near infrared, red, green, and blue
wavelengths, respectively. Here, the values of coefficients for EVI were set at G = 2, C1 = 6, C2 = 7.5,
and L = 1.

2.2.3. Climate Data

Meteorological forcing data were obtained from the TerraClimate dataset (http://doi.org/10.7923/

G43J3B0R) within the GEE platform. This monthly dataset generated from climatological aided
interpolation, with a high spatial resolution (1/24◦, ~4 km) for global terrestrial surfaces from 1958–2018,
was produced by Abatzoglou et al., (2018). Compared with the Climatic Research Unit (CRU) and other
coarser resolution gridded datasets, TerraClimate data showed significant improvements in the overall
mean absolute error and increased spatial realism over maximum (Tmax), minimum temperatures
(Tmin), precipitation (Pre), vapor pressure (Vap), and other variables [57].

2.2.4. Socio-Economic Factor

Except for climate and satellite data, socio-economic features could also improve winter wheat yield
prediction, especially in the NCP. Winter wheat in this region is generally grown under non-limiting
conditions, with sufficient irrigation, and fertilizer applications [51]. Therefore, the irrigation area (IA;
unit: ha), the consumption of chemical fertilizers (CCF, unit: ton), the consumption of agricultural
pesticide (CAP, unit: ton), the total power of agricultural machinery (TPAM, unit: kw), and the
electricity consumed in rural areas (ECRA, unit: kwh) at the county-level were obtained from the
Agricultural Yearbook of each county (http://www.stats.gov.cn) from 2001 to 2015 to assess the influence
of socio-economic factors on yield prediction.

2.2.5. Other Datasets

The DEM (digital elevation model) with 90 m × 90 m was obtained from the Shuttle Radar
Topography Mission (SRTM) digital elevation dataset. Soil properties [58] including soil depth, soil
texture, organic carbon content, pH, cation exchange capacity, and bulk density for the topsoil layer
(0–30 cm) and the subsoil layer (30–100 cm) at 0.00833◦ (~1 km) were also collected, which were
gathered from a soil particle-size distribution dataset in China (http://globalechange.bnu.edu.cn).

2.3. Methods

Two high-performance-based machine-learning methods (RF and LightGBM) and a traditional
multiple regression method (RR) were applied to winter wheat prediction in the NCP. First, all the
variables and yields from 2001 to 2015 were normalized to have mean zero and unit standard deviation.
Therefore, all of the variables in the models are at a common level and are comparable [34]. Second,
the whole dataset across all years and counties were randomly divided into two parts: training
(70%) and testing (30%) datasets. Then, the cross-validated R2 was calculated by applying 10-fold

http://doi.org/10.7923/G43J3B0R
http://doi.org/10.7923/G43J3B0R
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http://globalechange.bnu.edu.cn
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cross-validation and GridSearchCV packages in Python 3.7 to optimize hyper-parameters for each
method from empirical candidates only using the training data [1]. Finally, we employed the three
optimized models on the testing dataset and calculated the predicted R2. In order to minimize the
uncertainty of R2, the whole process for one predicted R2 was repeated 100 times to calculate the
mean predicted R2, which was used to evaluate the performance of different models. All the R2 in
the following sections refer to the mean predicted R2. The results of those models were utilized to
compare with each other. Here, Python 3.7 was applied to develop the three models. The following
sections describe the three methods in details.

2.3.1. Ridge Regression (RR)

RR is one of the most popular multiple linear regression methods proposed by Hoerl and Kennard
(1970). Compared with other linear regression methods, this algorithm introduces a method for
showing in two dimensions the effects of nonorthogonality, namely ridge trace [59], which locates the
minimum residual sum of squares of the prediction and limits the sum of squares of the regression
coefficients [60,61]. The alpha (Regularization strength) is the main hyper-parameter that needs to
be tuned. RR method is mainly applied to multiple regression data with high correlations. When
correlation occurs, least squares estimates are unbiased, but their variances are large so they may be
far from the true value. By adding a degree of bias to the regression estimates, RR can reduce the
standard errors. Thus, the RR performs well and results in parsimonious models. Since the input
variables (i.e., climate and VIs in different months) have correlations, it is rational to use the RR model
for predicting yield.

2.3.2. Random Forest (RF)

RF, first developed by Breiman (2001), is an ensemble learning method, which creates many
regression trees that are generated by a large set of decision trees for computing regression [62]. The RF
algorithm has been applied to research as a powerful tool for yield prediction [1,33]. Each in the RF
algorithm increases diversity among the regression trees by selecting a random set of variables and
samples of the dataset over the different tree induction processes [63]. The number of trees in the forest,
the tree number of predictive variables used to split the nodes, and the maximum depth of tree are
three user-defined hyper-parameters that needed to be tuned [1]. The RF usually performs overall
better and is more accurate than any of decision tree [63], as the bias is compensated for by the single
decision tree due to the randomness. Furthermore, RF can effectively deal with high-dimensional
datasets [1], which can analyze these datasets, in our research (e.g., five monthly climate variables and
three monthly indices derived from the satellite data over seven months).

2.3.3. Light Gradient Boosting Machine (LightGBM)

The LightGBM, generated by Ke and colleagues in 2017, is a relatively new machine learning
method, which is also an ensemble learning method and is mainly based on the Decision Tree
algorithm [64]. This method has been applied to many different kinds of data mining tasks (e.g.,
classification, regression, and ordering) and exhibits excellent accuracy [65]. The LightGBM algorithm
contains two novel techniques: the gradient-based one-side sampling and the exclusive feature
bundling, respectively, which are convenient for dealing with a number of data instances and a number
of features. Therefore, compared with other similar algorithms (e.g., eXtreme Gradient Boosting) [66],
LightGBM can significantly perform better in terms of computational speed and memory consumption.
The number of leaves per tree, the speed of iteration, the maximum depth of the tree, the minimum
number of the records for a leaf, the fraction of features selected randomly in each iteration, and the
fraction of data to be used for each iteration are the main parameters that needed to be tuned in the
LightGBM algorithm [66].
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2.4. Experiment Design

Three experiments were designed to identify the contribution of multi-source data to improving
wheat yield prediction and answer the four questions by using RR, RF, and LightGBM mentioned
above. The details about those experiments are shown in the following sections.

2.4.1. The First Experiment to Separate the Spatial and Temporal Variations of Yields and Combine the
Explanatory Ones Differently

To distinctly capture the spatial and temporal patterns, three options for yield were performed
(Figure 2). Option 1: all recorded yields and input variables were selected in a county as a sample,
namely “Raw”. Such raw yield essentially includes both spatial and temporal features of yield
variability. Option 2: Linear trends of the raw yield and input variables at the county level (i.e., detrend)
were removed. Then we obtained the corresponding detrended datasets, namely “Detrend”, which
thus removed their spatial variabilities at the county-level while the remaining temporal variabilities
remained both in yield and input variables when compared with raw values [34]. Comparing the results
between Option 1 and 2 can reveal their distinctions in explaining spatial and temporal variability.
Option 3: Using the average of the raw data covering 2001-2015 for each county plus the “Detrend”
(Option 2) to obtain another new dataset, namely “Detrend+Mean”. It maintains the spatial variability
when compared with the “Detrend” dataset, but removes the multi-year linear trend when compared
with the raw one [34].
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Figure 2. A typical example to illustrate the differences in spatial and temporal patterns of data from
Options 1–3. Option 1 uses raw county-level data (the red dashed line shows its linear fit) (a); Option
2 removes the linear trend (the red line in Option 1) from the raw data (b), and Option 3 adds the
multi-year average of the raw county-level data into the Option 2 data (c); (e)–(g) express the spatial
patterns of the three types of yields corresponding to each Option.

Based on the three dynamic datasets included as explanatory variables (climate, satellite, and
SC factors), seven different combinations were applied to develop the models: (1) SC only; (2) VIs
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only; (3) Climate only; (4) SC combined with VIs; (5) SC combined with climate; (6) VI combined
with climate; (7) SC combined with VIs and climate. Therefore, a total of 21 (3 × 7) experiments were
conducted. Through comparing the prediction R2 of the above seven inputs and three types of yield
data, we tried to investigate which combination and which method perform the best in explaining the
temporal and spatial patterns of yield variability at the county-level.

2.4.2. The Second Experiment to Quantify the Contributions of Time Series Data to Yield Prediction

The first sub-group experiment is designed to investigate how climate and VIs during different
growing stages—separated by early (Oct.–Feb.: the emergence to green-up period), peak (Mar.
–Apr.: the green-up to heading period) and late (May–Jun.: the heading to maturity period)
stages [51]—contribute to yield prediction (the second question). Then to evaluate the influence
of climate and VIs from different growing stages on crop yield estimation, VIs (climate) data from
the whole growing season but only the climate (satellite) data during one specific growing stage in
the following six options WERE used. Option 1: only using climate data during the early growing
stage (“early climate + all VIs data”); Option 2: only using climate data during the peak growing stage
(“peak climate +all VIs data”); Option 3: only using climate data during the late growing stage (“late
climate +all VIs data”). Option 4: only using satellite data during the early growing stage (“early VIs +

all climate data”); Option 5: only using satellite data during the peak growing stage (“peak VIs + all
climate data”); Option 6: only using satellite data during the late growing stage (“late VIs + all climate
data”). The predicted R2 values of the new models were compared with the corresponding benchmark
and determined climate (VIs), at which stage we could have more additional contributions to the final
yield prediction.

The second sub-group experiment was focused on the temporal progress of the model performance
after inserting another monthly variable. For any month during the growing season, the input
information from the current month and all previous months since the beginning of the growing season
was used to predict the final wheat yield. The predicted R2 from different models based on different
combinations of inputs (i.e., climate data only, VIs data only, and all data combined) were obtained
and compared to quantify the added values of either climate data or VIs data over the time for final
wheat yield prediction.

2.4.3. The Third Experiment to Investigate the Values of Static Variables on Yield Prediction, and to
Validate the Model Performances

The third experiment was designed to determine whether adding spatial and soil proprieties
information can improve the performance of wheat yield prediction. There were three static spatial
information variables (DEM, latitude, and longitude) and 14 soil proprieties (topsoil and the subsoil
layer) in the following two options: Option 1: only adding spatial information (“With spatial features”),
Option 2: only adding soil features (“With soil features”). Their predicted R2 with those of benchmark
models (Option 3) was compared and investigated to obtain the additional values of spatial and soil
features for predicting wheat yield.

Finally, the “leave-one-year-out” validation was performed from 2001–2015 to assess the
generalization ability of those models. Specifically, One-year data were used for testing and all
the other years for training. For example, the 2001-2014 data were chosen as training data to predict
the crop yield in 2015, and the data for 2001–2013 and 2015 were applied as training data to predict the
crop yield for 2014.

3. Results

3.1. Exploratory Data Analysis (EDA)

The correlations between the variables and wheat yields were conducted by using the 2001–2015
raw data (Table 2). The results show that all variables are significantly correlated with yield (p < 0.01),
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hence they would be included to develop yield models. Tmax (0.03) and Tmin (−0.08) are negatively
and positively correlated with yields, respectively. However, a negative correlation (−0.4) is found
between Pre and Yield, suggesting that good irrigation conditions in the NCP should have offset the
adverse impacts from insufficient precipitation. Some related studies show that irrigation conditions
there have been able to complement the normal water requirements during winter wheat growing
seasons since the 1980s. Not surprisingly, consistently positive relations are indicated by all SC factors,
highlighting that the increasing inputs from the socio-economic measures benefit winter wheat yield,
especially IA (0.09), TPAM (0.16), and CCF (0.16). Similarly, the consistently positive impacts of VIs
further substantiate that the remote sensing derived data could explain the variability of crop yields.
The fifteen-year-averaged (2001–2015) spatial patterns of the VIs, climate, and SC factors in March are
plotted (Figure 3). The similar spatial patterns among NDVI, EVI, GCVI, and Yield also support the
above findings.

Table 2. EDA results showing the correlations among the 13 variables and correlations between each
variable and yields (last column). The input variables were grouped into three categories with different
colors: red for climate-related variables, yellow for socio-economic ones, and blue for VIs.

Tmax Tmin Pre Vap Vpd CAP CCF ECRA IA TPAM NDVI GCVI EVI Yield
Tmax 1.00 0.78 0.33 0.58 0.35 −0.09 −0.16 −0.14 −0.19 −0.19 0.48 0.41 0.45 0.03 (**)
Tmin - 1.00 0.67 0.90 −0.22 −0.05 −0.15 −0.14 −0.11 −0.16 0.49 0.43 0.43 −0.08 (***)
Pre - - 1.00 0.82 −0.58 −0.06 −0.21 −0.16 −0.14 −0.19 0.32 0.28 0.20 −0.40 (***)
Vap - - - 1.00 −0.52 −0.06 −0.19 −0.19 −0.11 −0.20 0.42 0.38 0.33 −0.23 (***)
Vpd - - - - 1.00 −0.01 0.03 0.03 −0.09 0.01 0.01 0.00 0.09 0.29 (***)
CAP - - - - - 1.00 0.42 0.08 0.37 0.42 0.05 0.04 0.05 0.10 (***)
CCF - - - - - - 1.00 0.57 0.83 0.82 −0.12 −0.13 −0.09 0.16 (***)
ECRA - - - - - - - 1.00 0.46 0.50 −0.09 −0.09 −0.07 0.12 (***)

IA - - - - - - - - 1.00 0.74 −0.16 −0.16 −0.13 0.09 (***)
TPAM - - - - - - - - - 1.00 −0.10 −0.10 −0.07 0.16(***)
NDVI - - - - - - - - - - 1.00 0.99 0.97 0.31 (***)
GCVI - - - - - - - - - - - 1.00 0.97 0.39 (***)
EVI - - - - - - - - - - - - 1.00 0.33 (***)

Note: double asterisk ** and threefold asterisks (***) indicate a correlation coefficient (r) with statistical significance
levels of p-value 0.01 and p-value b 0.001, respectively.

3.2. The Performances of Multi-Models for Predicting Wheat Yield

The results from the first experiment (Figure 4a) distinguish both the shared and unique information
of the different predictor variables. A ranking of those combinations from high to low ranges from:
“VI + Climate + SC” (R2, 0.68~0.75) > “VI + Climate” (0.63~0.73) > “Climate +SC” (0.54~0.70) > “VI +

SC” (0.50~0.55) > “Climate” (0.45~0.58) > “VI” (0.41~0.47) > “SC” (0.30~0.43). As expected, the model
performances increase with more input variables. For example, the models with VIs, climate and SC
data together perform best for raw crop yields. However, the models with only climate data achieve
the highest R2, followed by those with VIs and SC factors.

In addition, we compare the performances of three model groups driven by different input
variables to explain the spatio-temporal variability of wheat yield (Figure 4). Please note “Raw” data
(Option 1) reflects both spatial and temporal variability, while “Detrend” data (Option 2) only reflect
inter-annual variability of the wheat yield, and “Detrend + Mean” (Option 3) reflect spatial and
inter-annual variability, respectively. Therefore, comparing results between Option 2 and 3 (Option
3 - Option 2) can reveal the differences in explaining spatial variability (Figure A2). The averaged
R2 (0.68~0.75) of “Raw” models is higher than that of “Detrend” (0.41~0.46), suggesting that it
should be more difficult to predict inter-annual yield variability compared with the yield variability
between counties (Figure 4b). Moreover, the combination of “VIs + Climate” predicted the detrended
yields more accurately than others, indicating this combination can capture better inter-annual yield
variability than other combinations (“VI + Climate” (~0.49) > “Climate + SC” (0.42–0.47) > “VI +

Climate + SC” (R2, 0.42–0.46) > “Climate” (0.40–0.42) > “VI + SC” (0.34–0.42) > “VI” (0.22–0.33) > “SC”
(0.20–0.22)). Moreover, the prediction R2 of “Raw” (0.68–0.75) is slightly lower than “Detrend + Mean”
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(0.76–0.83), suggesting that the multi-year linear trend should matter and that removing the linear
trend should increase R2 of the predictive model. The combination of “Climate + SC” can achieve the
best prediction results for “Detrend + mean” than others (“Climate + SC” (0.76–0.83) > “VI + Climate +

SC” (R2, 0.74–0.81) > “VI + Climate” (0.63–0.72) > “Climate” (0.60–0.75) > “VI + SC” (0.54–0.58) > “VI”
(0.43–0.50) > “SC” (0.30–0.43)), suggesting that the “SC + Climate” should better capture the spatial
and inter-annual yield variability than other options. Furthermore, the prediction R2 of “Detrend +

Mean” (0.76–0.83) is much higher than “Detrend” (0.41–0.46), suggesting that capturing spatial yield
variability should be easier than capturing inter-annual yield variability. In order to explain which
combination can best capture the spatial yield variability, the results of “Option 3 – Option 2” are
calculated (Figure. A2), which show that the “SC + Climate” can better capture it than others (~0.34).
Finally, the ML models (RF and LightGBM) overall outperform the traditional linear model (RR),
largely because the relationships between yield and the variables are non-linear, and the linear model
could not well capture their complex relationships.
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Figure 3. Fifteen-year-averaged (2001–2015) spatial patterns after normalization of crop yield (a),
the satellite-based variables (b–d), climate variables (e–i), socio-economic factors (j–n) and for all
counties in the study region. Note: all of the data have a mean of zero and standard deviation of one;
b–i are based on March of every year.



Remote Sens. 2020, 12, 750 11 of 22
Remote Sens. 2020, 12, 750 11 of 22 

 

 
Figure 4. The model performances (predicted R2) of the three methods separated by the three 
Options with different inputs for the entire growing season. (a) “Raw”; (b) “Detrend”; and (c) 
“Detrend+Mean”. The blue color is for RR, green for RF and red for LightGBM. The error bars are 
one standard deviation of predicted R2 from 100 ensembles by randomly dividing training and 
testing datasets. 

3.3. Quantifying Unique and Shared Information from Climate and VIs 

The results of the first sub-group of the second experiment were shown in Figure 5 to indicate 
how sequential information (climate and VIs) during different growing stages (early, peak, and late 
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data show an increased R2 ranging from 0.05 to 0.25, especially for LightGBM models (Figure 6a). 
Moreover, the RR models perform better than RF and LightGBM models when only using VIs data 
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and added information for better yield estimation. 
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(Figure 6b) is smaller than those in Figure 5a, except for the RR models with peak VIs. More 
interestingly, the largest improvement of R2 (0.07~0.15) is found in the models with the peak VIs, 
while smaller changes for those with the other two stages, especially for the late VIs. The roles of VIs 
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both biotic and abiotic stresses, while crop at “Late” stage enters the senescence stage and vegetation 
index is not a good indicator of biomass and final yield anymore. 

Figure 4. The model performances (predicted R2) of the three methods separated by the three Options
with different inputs for the entire growing season. (a) “Raw”; (b) “Detrend”; and (c) “Detrend+Mean”.
The blue color is for RR, green for RF and red for LightGBM. The error bars are one standard deviation
of predicted R2 from 100 ensembles by randomly dividing training and testing datasets.

3.3. Quantifying Unique and Shared Information from Climate and VIs

The results of the first sub-group of the second experiment were shown in Figure 5 to indicate how
sequential information (climate and VIs) during different growing stages (early, peak, and late stages)
contribute to crop yield prediction. The models developed by all VIs with a specific climate data show
an increased R2 ranging from 0.05 to 0.25, especially for LightGBM models (Figure 6a). Moreover,
the RR models perform better than RF and LightGBM models when only using VIs data (the black
dashed lines), but do worse when using both VIs and climate data. The different performance might
be that RR characterized by a linear model could not fully capture the no-linear relationships between
climate variables and yield. Additionally, all the R2 of three models have improved significantly (bars
above the dashed line in Figure 5a) after combining a specific climate data with VIs, suggesting the
climate inputs across the whole growing seasons could provide unique and added information for
better yield estimation.

On the other side, the increased R2 (0.01–0.15) with all of climate variables and a specific VIs
(Figure 6b) is smaller than those in Figure 5a, except for the RR models with peak VIs. More interestingly,
the largest improvement of R2 (0.07~0.15) is found in the models with the peak VIs, while smaller
changes for those with the other two stages, especially for the late VIs. The roles of VIs are different
because the peak-value vegetation index reflects most crop growth states suffering from both biotic
and abiotic stresses, while crop at “Late” stage enters the senescence stage and vegetation index is not
a good indicator of biomass and final yield anymore.
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unique VIs, except for the RR model in the “Later” trajectory. Moreover, both climate and their 
combinations start with a relatively high performance (R2 > 0.4) for the RF and LightGBM models 
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explained at a county scale with each county as an independent sample; and all models predict both 
spatial and temporal variability in the study. More specifically, climate information during the early 
season usually captures some spatial patterns of yield. Temperature gradient in space is largely 
maintained from the early to the late growing season. Therefore, early season temperature will 
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Figure 5. (a) The model performance (predicted R2) using VIs during the whole growing season and
climate data during a specific stage, either for Early (Oct. and Feb.), or Peak (Mar. and Apr.), or Late
stage (Jun. and Jul.). The dashed line in (a) represents the benchmark model performance by only
using VIs. (b) The model performance (predicted R2) using the climate data during the whole growing
season and VIs during a specific stage (the same stage in (a)). The dashed line in (b) represents the
benchmark model performance by only using climate data. The error bars are one standard deviation
of predicted R2 from 100 ensembles by randomly dividing training and testing datasets.

We further summarize in the temporal progresses of the three models’ R2 more detail using
different combinations of input variables (Figure 6a–c). The consistent temporal patterns have been
indicated by all R2 trajectory curves that R2 would increase with more input data being included until
it reaches a saturation at the “Peak” stage (i.e., April). The combinations of inputs perform better than
only individual either VIs or climate data. Overall, only climate inputs obviously outperform unique
VIs, except for the RR model in the “Later” trajectory. Moreover, both climate and their combinations
start with a relatively high performance (R2 > 0.4) for the RF and LightGBM models and R2 increases
gradually (0.1~0.3) with the growing season moving on, with the largest increase in June (Figure 6b–c).
However, only VIs inputs start with a much lower performance (~0.1) and achieve larger increases in
performance as crops become mature (R2 increase in 0.3~0.4) (Figure 6a–c). These results might be
associated with our modeling framework. For example, the research is explained at a county scale with
each county as an independent sample; and all models predict both spatial and temporal variability
in the study. More specifically, climate information during the early season usually captures some
spatial patterns of yield. Temperature gradient in space is largely maintained from the early to the late
growing season. Therefore, early season temperature will capture some yield patterns in space if the
yield is correlated with temperature. Consequently, the relatively high predictive performances of
models using climate inputs during the early season would attribute largely to their spatial patterns
that can capture some spatial variability of yields. In contrast, the early VIs are consistently low in
space and provide less information about the spatial pattern of yields.
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In addition, the increased values of the individual dataset over time are also calculated (Figure 
6d-f). The distinctly consistent patterns of the declined contributions of climate data as wheat grow 
from the “Early” to the “Late” stages, while increased ones for VIs. These results suggest that as the 
growing season progresses, the roles from climate have been replaced gradually by those of VIs. Of 
course, it is worth noting the obvious difference between the roles of climate data in Figure 6 and 
those in Figure 5. We could primarily ascribe such a disparity to the different experimental design. 
Figure 5 shows the increased roles of a specific climate/VIs during different stages combining with 
all VIs/climate information from the whole growth stages, while Figure 6 indicates the accumulative 
roles of the individual dataset at different monthly scales. 

Figure 6. The temporal progression of the model performance based on the three methods (RR, RF, and
LightGBM). The left panel shows the temporal progress of model performance according to each month
(i.e., the prediction at any specific month contains input data covering the period from the beginning
of the growing season to that specific month, thus the later period contains more inputs and usually
has a higher performance). Blue refers to the model performance of using input sources including
climate data and VIs; orange for VIs only inputted; and gray for climate data only. The right panel
shows the differences of model performance between combined input sources and VIs only (a blue
column indicates the benefits from VIs, calculated by subtracting the orange line from the blue line
in the corresponding left panel); and the differences between VI + climate and climate only (a gray
column indicates the benefits from VIs, calculated by subtracting the gray line from the blue line in the
corresponding panel).

In addition, the increased values of the individual dataset over time are also calculated (Figure 6d–f).
The distinctly consistent patterns of the declined contributions of climate data as wheat grow from the
“Early” to the “Late” stages, while increased ones for VIs. These results suggest that as the growing
season progresses, the roles from climate have been replaced gradually by those of VIs. Of course, it is
worth noting the obvious difference between the roles of climate data in Figure 6 and those in Figure 5.
We could primarily ascribe such a disparity to the different experimental design. Figure 5 shows
the increased roles of a specific climate/VIs during different stages combining with all VIs/climate
information from the whole growth stages, while Figure 6 indicates the accumulative roles of the
individual dataset at different monthly scales.

3.4. The Effects of Spatial Information and Soil Properties on Improving Yield Estimation

Comparing with the roles of dynamic variables (climate and satellite data) for improving yield
estimation, those of two types of static variables are shown in Figure 7. The results show that both
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spatial information and soil properties contribute significantly to wheat yield prediction (an increased
R2 by 0.05–0.16), especially for spatial information (Figure 7). The underlying reasons might be that
elevation, longitude, latitude, and soil properties can characterize county-specific features over a long
time, while dynamic factors (climate, VIs, SC factors) capture dynamic states related to yield during
the crop growth season. For example, high-yield areas are usually characterized by fertile soils, lower
elevations, and other suitable environmental conditions and vice versa for low-yield areas. All such
features can be comprehensively represented by spatial information and soil properties, rather than by
VIs, climate, or SC factors.
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Figure 7. The model performance (predicted R2) after including spatial information and soil properties;
the green and red columns mean the R2 after including the soil properties and spatial information in
the benchmark model (blue color), respectively. The error bars are one standard deviation of predicted
R2 from 100 ensembles obtained by randomly dividing training and testing datasets.

4. Discussion

4.1. The Best Combinations of Explanatory Variables to Explain Spatial or Temporal Variability of Wheat Yield

In the study, three levels of yield data were separated, namely “raw”, “Detrend”, and “Detrend +

Mean” (Figure 4). The models, driven by different combinations of inputs (i.e., climate, VIs, and SC),
show disparate performances to track spatial or temporal crop yield variability (Figure 4). For example,
the combination of VIs and Climate data can best capture inter-annual yield variability, but SC
and climate combination capture spatial yield variability, suggesting that VIs and climate are key
factors controlling inter-annual yield variability, and SC and climate for yield variability among
counties [1,53,67]. These results might be caused by the fac that the information on VIs and climate
variables during a specific period might related to the crop yield for that period, while others such as
irrigation and fertilizer application can characterize different features among counties and over a long
time. No doubt that the combination of the three datasets can predict yield most accurately for tracking
both spatial and temporal yield variability (Figure 4); the reason for this accuracy may be that crop
growing status is not only affected by abiotic factors, but also by biotic factors [68,69]. For example,
high-yielding can be characterized by fertile soils, water conditions, well-educated farmers, good
technologies, well-equipped irrigation facilities, and suitable climate conditions. Thus, combinations
of multi-source data may be sufficient to predict yield. Additionally, the results also demonstrate
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capturing inter-annual yield variability is more difficult and challenging than spatial pattern of crop
yield. Our findings are in-line with some previous studies [1,70].

Our results also demonstrate our approaches’ capability of predicting wheat yield with a lead time
up to two months before the maturity (Figure 6) in China, which shows the R2 reaches its highest value
around May. The best model, i.e., LightGBM, can achieve a yield prediction of 0.79 for the predicted
R2 in Oct. The model performance and the lead time of our prediction are consistent with or better
than the existing prior work, for instance, Cai et al. (2019) shows their yield model can achieve an R2

ranging from 0.5 to 0.73 with about two months of lead time before the harvest time.

4.2. The Unique and Shared Contributions of Different Data Sources for Predicting Crop Yield

The dynamic variables such as the climate and satellite (especially Visible-NIR based VIs) data
have been the domain sources for crop monitoring and yield prediction [34,36,71]. Understanding
their shared and unique contributions will better predict and monitor crop yield more scientifically and
accurately. First, about 53% and 45% of the raw crop yield variability can be explained by only using
climate information and VIs, respectively, and a combination of VIs and climate information can attain
a better performance, which is better than previous research (Figure 4) [34]. Second, the increased R2

from a specific VIs combing all climate are much smaller than those from a specific climate combing
VIs (Figure 5). The finding further substantiates that climate data supplies more information than VIs
for accurately estimating wheat yield, or that the information from VIs includes mixed information of
land surfaces, rather than that only related to winter wheat growth [8]. Given that the climate data and
satellite data have large overlapping amounts of information, our study reveals their unique individual
contribution. Third, regarding the contributions of dynamic variables (VIs and climate data) during
different stages (the early, peak, and late stages), peak VIs can provide more information than the
other two stages (Figure 5b). It is generally accepted that peak VIs strongly associate with biotic or
abiotic factors, which eventually determine final yields [17,72]. However, no such differences have
been indicated by climate data, suggesting that unique individual information exists across the whole
season (Figure 5a), rather than in a specific stage. The results further suggest that climate variables
over the entire growing season play vital roles in determining the final wheat yield across China for the
past 15 years. Moreover, the contributions for wheat yield of other critical factors such as SC factors,
soil properties, and spatial information were identified and isolated for the first time. Those factors can
also contribute to explain more yield variability, proving the hypothesis from previous research [1,34]

4.3. Method Comparison

The non-linear ML methods (RF and LightGBM) perform overall better than the traditional
linear method (RR) in yield prediction (Figures 4–8), and such results have been reported in previous
studies [19,63]. This could be explained by the non-linear relationships between variables and crop
yields [1,34]. The following findings in the current study would further substantiate this finding:
1) for estimating the raw yields (Figure 4a), the RF and LightGBM models performed much better
than the RR model for all combinations including climate data (e.g., climate, climate + SC, climate +

VIs, climate + VIs + SC); 2) the RF and LightGBM models have improved more than the RR model
when the raw yields are estimated by using climate data rather than by using VIs and SC factors
(Figure 5a); 3) the added value of climate data after being combined with all VIs for RR models is
smaller than for the RF and LightGBM models, suggesting the linear RR model could not fully capture
the non-linear yield responses to climate data. Such responses had been extensively indicated by
temperature and precipitation [25,34]. In addition, recent rapid development in artificial intelligence
has led to increased development of deep learning (DL) algorithms, which has been successfully
applied in various domains and obviously outperform other techniques (e.g., ML). Therefore, DL could
then be used for crop yield estimation in further research [65,73].



Remote Sens. 2020, 12, 750 16 of 22

Remote Sens. 2020, 12, 750 16 of 22 

 

applied in various domains and obviously outperform other techniques (e.g., ML). Therefore, DL 
could then be used for crop yield estimation in further research [65,73]. 

To validate the model’s generalization, a series of “leave-one-year-out” experiments were 
conducted by using the best combinations of all variables (e.g., VIs, climate and SC factors), and the 
results were shown in Figure 8. The highest R2 was found in both 2011 (0.76~0.84) and 2014 
(0.78~0.83), while the lowest R2 in 2007 (0.48~0.55), followed by 2002 (0.58~0.66). The worse 
performances in 2007 and 2002 might have been caused by some extreme events, which significantly 
lowered yields. Since these models in the study were developed based on a very small number of 
event records, condition variables capturing the events might not have been sampled during the 
historical training, and thus the yield predictions in such extreme years will inevitably deviate from 
the reality. Such findings also highlight that more efforts and a novel method should be focused on 
yield loss estimation for the extreme yields. 

 

Figure 8. The results of the “leave-one-year-out” experiment across different years. One-year data 

are selected for testing, while data from other years for training. The worst performance in 2002 and 

2007 may be due to extreme events (black for RR, red for RF, and green for LightGBM model). 

4.4. Some Limitations of this Study 

The first limitation is that using the dryland (one of cultivated land) as winter wheat planting 
area could lead to errors when we extract the area for the input variables (e.g., satellite and climate 
data), and so for when the aggregated yield is needed [1]. Therefore, detailed winter wheat cover 
information will best isolate the relevant areas from the input variables. Using the land use data for 
2005, 2010, and 2015 to mask cropland cover is feasible to some degree, but the wheat growing area 
changes yearly [1]. Hence, it is highly essential in future studies to produce more accurate crop 
classification each year [1,74] to reduce potential errors. Secondly, we only used vegetation indices 
(VIs) from optical and near infrared. Although these VIs can provide indicators of photosynthetic 
canopy cover or leaf area index [34,41], other satellite data encompassing diverse spectral ranges 
contain complementary information on crop growth and yield. Many other options might further 
improve the crop yield prediction [25,34], such as solar-induced fluorescence (SIF), thermal-based 

Figure 8. The results of the “leave-one-year-out” experiment across different years. One-year data are
selected for testing, while data from other years for training. The worst performance in 2002 and 2007
may be due to extreme events (black for RR, red for RF, and green for LightGBM model).

To validate the model’s generalization, a series of “leave-one-year-out” experiments were
conducted by using the best combinations of all variables (e.g., VIs, climate and SC factors), and the
results were shown in Figure 8. The highest R2 was found in both 2011 (0.76~0.84) and 2014 (0.78~0.83),
while the lowest R2 in 2007 (0.48~0.55), followed by 2002 (0.58~0.66). The worse performances in 2007
and 2002 might have been caused by some extreme events, which significantly lowered yields. Since
these models in the study were developed based on a very small number of event records, condition
variables capturing the events might not have been sampled during the historical training, and thus
the yield predictions in such extreme years will inevitably deviate from the reality. Such findings also
highlight that more efforts and a novel method should be focused on yield loss estimation for the
extreme yields.

4.4. Some Limitations of this Study

The first limitation is that using the dryland (one of cultivated land) as winter wheat planting area
could lead to errors when we extract the area for the input variables (e.g., satellite and climate data),
and so for when the aggregated yield is needed [1]. Therefore, detailed winter wheat cover information
will best isolate the relevant areas from the input variables. Using the land use data for 2005, 2010,
and 2015 to mask cropland cover is feasible to some degree, but the wheat growing area changes
yearly [1]. Hence, it is highly essential in future studies to produce more accurate crop classification
each year [1,74] to reduce potential errors. Secondly, we only used vegetation indices (VIs) from optical
and near infrared. Although these VIs can provide indicators of photosynthetic canopy cover or leaf
area index [34,41], other satellite data encompassing diverse spectral ranges contain complementary
information on crop growth and yield. Many other options might further improve the crop yield
prediction [25,34], such as solar-induced fluorescence (SIF), thermal-based Evapotranspiration (ET),
QuikSCAT Ku-band radar backscatter, AMSR-E X-band passive microwave Vegetation Optical Depth
(VOD), and so on. For example, the SIF can provide a general proxy of plant photosynthesis [1,34,75];
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the thermal bands are correlated with crop growth for closed canopies and water stress [1,38]; passive
or active microwave remote sensing data provide canopy biomass; and water content [1]. All those
data may provide complementary information than VIs that are used here. Thirdly, our analysis was
based on a relatively coarse county level. ML models are more likely to perform better by collecting
more field-level data [12], hence more detailed information will be collected at the field-level for further
analyses in the future. Finally, due to their complex model structure for both RF and LightGBM models
(so-called black box), it is difficult for us to produce testable hypotheses that could potentially provide
biological insights into crop growth and final yield. In the future, we need to combine a crop growth
model with ML/DL for predicting yield, forecasting, and monitoring disasters at a large spatial scale.

5. Conclusions

In this study, two ML and RR models were applied to predict wheat yield in China based on
climate, satellite data, and other data. The results showed that integrating climate data, satellite
data and SC factors can achieve the best performance for raw wheat yield prediction. However, the
combination of VIs and climate can best capture inter-annual yield variability, and combining SC with
climate can capture spatial yield variability. More specifically, the satellite data can gradually capture
crop yield variability, but climate information serves as a unique contribution to wheat yield prediction
across the entire growing season. By adding spatially locations and soil properties into benchmark
results, the performances of all models further improved, suggesting they convey unique information
for prediction yield. In addition, a decent yield prediction can be obtained around two months before
harvest in the NCP. This study formulates a robust modeling framework to integrate multi-source
data and predict crop yield at a large spatial scale. This framework can be applied to other crops
and regions.
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