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Abstract: To understand the timing, extent, and magnitude of land use/land cover (LULC) change in
buffer areas surrounding Midwestern US waters, we analyzed the full imagery archive (1982–2017)
of three Landsat footprints covering ~100,000 km2. The study area included urbanizing Chicago,
Illinois and St. Louis, Missouri regions and agriculturally dominated landscapes (i.e., Peoria, Illinois).
The Continuous Change Detection and Classification algorithm identified 1993–2017 LULC change
across three Landsat footprints and in 90 m buffers for ~110,000 surface waters; waters were also
size-binned into five groups for buffer LULC change analyses. Importantly, buffer-area LULC change
magnitude was frequently much greater than footprint-level change. Surface-water extent in buffers
increased by 14–35x the footprint rate and forest decreased by 2–9x. Development in buffering
areas increased by 2–4x the footprint-rate in Chicago and Peoria area footprints but was similar to
the change rate in the St. Louis area footprint. The LULC buffer-area change varied in waterbody
size, with the greatest change typically occurring in the smallest waters (e.g., <0.1 ha). These novel
analyses suggest that surface-water buffer LULC change is occurring more rapidly than footprint-level
change, likely modifying the hydrology, water quality, and biotic integrity of existing water resources,
as well as potentially affecting down-gradient, watershed-scale storages and flows of water, solutes,
and particulate matter.

Keywords: Continuous Change Detection and Classification (CCDC); development; Landsat; land
use/land cover (LULC) change; p23r31; p23r32; p24r33; random forest; size class; surface-water
buffers; time series; wetland

1. Introduction

Land use and land cover (LULC) progression in the Midwestern United States (US) has changed
from historically widespread tallgrass prairie and forested landscapes to intensively managed
agricultural lands and highly developed urban landscapes [1–5]. This massive transformation
has made the Midwestern US one of the most agriculturally productive regions of the US, where
nine states (Illinois, Indiana, Iowa, Kansas, Minnesota, Missouri, Nebraska, Ohio, and South Dakota)
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are responsible for 76% of the total US crop production [6]. Similarly, urbanization has altered the
landscape; between 1940 and 2000 the number of housing units in the Midwestern US grew by 146%,
with much of the urbanization occurring in areas peripheral to the metropolitan centers [7].

However, LULC change such as that experienced in the Midwestern US also dramatically alters
local- to continental-scale landscape structure, function, connectivity, productivity, and processes [8].
Specific to aquatic resources, research has demonstrated that LULC change affects hydrological
functions, including stream discharge [9], peak flows [10], surface runoff [11], water levels [12], and
sedimentation rates [13–15]. The impacts of LULC change at local to regional scales can further affect
watershed-scale biogeochemical processing rates, with concomitant impacts on water quality [16].
Loss of “bioreactive” landscape elements [17], such as wetlands and similar waters, and transformation
to different LULC types may cumulatively increase nutrient loading to down-gradient systems [4,18–22].

The effects of anthropogenic alterations on down-gradient biogeochemical concentrations can vary
based on waterbody size classes. For instance, Evenson et al. [22] reported that the removal of smaller
water bodies (e.g., drained or filled) across a watershed could substantially alter watershed-scale water
residence times, which is also likely to affect biogeochemical processing rates. In a literature review of
over 600 papers, Cheng and Basu [23] determined that smaller water bodies are more biogeochemically
reactive than larger systems. Van Meter and Basu [24], Serran and Creed [25], and Creed et al. [19] have
reported that small aquatic systems, such as wetlands, are more likely to experience LULC change
(i.e., be hydrologically altered or destroyed), thereby disproportionately affecting watershed-scale
hydrological characteristics and biogeochemical processing rates.

Modifications to the areas buffering surface waters can also have profound impacts on the water
quantity and quality in a given water body [13,14,26–28]. Buffers affect water quality and quantity
through energy dissipation and the physical settling of entrained particles. Furthermore, settled
particles and solutes can undergo biogeochemical processing in areas buffering water bodies [29,30].
Hence, changes to the buffers (e.g., width, structure) can harbinger state changes affecting aquatic
resources [26,31,32], as well as affecting the condition of downstream systems [8].

Remotely sensed LULC change data over time provide informative LULC analyses and syntheses
useful for managing watersheds and the water bodies of all sizes that remain therein. However, these
analyses tend to focus on gross image-wide changes rather than on the effects of LULC change in
areas buffering surface-water bodies [26]. Thus, the signal of LULC change in buffering areas may
be lost in the “noise” of LULC change occurring elsewhere across the broader landscape. This signal
dampening affects both how we quantify the functions and ecosystem services provided by areas
buffering the remaining surface water resources (e.g., [8]) and how shifting LULC changes affect these
waters themselves (e.g., [26]). Research advances are therefore needed to understand how—and to
what extent—surface water buffers are modified in the broader landscape mosaic of LULC changes.

To address these research gaps, we conducted an analysis of temporally continuous LULC
change across a 25 year time period in the Midwestern US. The analysis covers three Landsat
footprints including the developing urban lands of Chicago, Illinois, and St. Louis, Missouri, as
well as the predominantly agricultural areas surrounding the smaller urban center of Peoria, Illinois.
We explored not only 25 consecutive years of footprint-wide change, but also analyzed changes to
buffers surrounding different surface-water body size classes. Specifically, we sought to answer the
following research questions:

1. What is the magnitude, spatial distribution, and annual rate of LULC change across three Landsat
footprints (nearly 100,000 km2) of the Midwestern US?

2. How has LULC change occurred over time in buffers surrounding different water body sizes
within the three study areas?

We hypothesized that urbanizing trends would continue apace, and hence LULC change would be
greatest in the urban-dominated Landsat footprints (i.e., Chicago, Illinois, and St. Louis, Missouri; [33]).
As smaller water bodies are more frequently altered as a result of landscape drainage and filling [13,19],
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we further expected that the smallest waters in our study, those < 0.1 ha in area, would experience the
greatest LULC change in their peripheral buffers. We conducted our analysis using the Continuous
Change Detection and Classification algorithm (CCDC, [34,35]) and ~1750 Landsat images for our
three study areas, incorporating 35 years of data.

2. Materials and Methods

2.1. Study Area

The Midwestern US comprises ~25% of the conterminous US by land area and contains 22% of
the nation’s population [36]. The regional climate consists of cold and long winters, with wet springs
and temperate summers [37]. However, global climate change models predict warmer and wetter
fall-through-spring seasons, with notably drier summer months [38]. The study area is almost entirely
in the Major Land Resource Area “Central Feed Grains and Livestock Region” [37] and has level to
gently sloping landscapes, much of which consist of the formerly glaciated plains. Our Midwestern
study area (Figure 1) includes three Landsat footprints (World Reference System path (p) and row (r)
of p23r31, p23r32, and p24r33). The area represented by the three Landsat footprints has both major
agricultural production zones and dense population centers [6,7]. As a result, approximately 85% of
the pre-European settlement wetlands and similar waters have been lost from the region to agricultural
drainage and urban development [39,40]. The urban centers include the cities of Chicago (Illinois) and
St. Louis (Missouri) in p23r31 and p24r33, respectively, as well as smaller urban centers in p23r32
(e.g., the Illinois cities of Peoria, Bloomington, Champaign, Decatur, and Springfield). For simplicity,
we will hereafter refer to the footprints, from north to south, as Chicago for p23r31, Peoria for p23r32,
and St. Louis for p24r33.
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Figure 1. Midwestern US study area encompasses over 100,000 km2, including urbanizing Chicago,
Illinois (p23r31) and St. Louis, Missouri (p24r33) regions, as well as rural areas of central Illinois
(including Peoria, the developed area in the northwestern corner of p23r32). The background land
use/land cover (LULC) data are from the 2001 national land cover dataset (NLCD) [41], binned into
gross LULC classes, as described in Section 2.3.2, below.
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2.2. Data Acquisition and Preprocessing

2.2.1. Landsat Data Downloading and Preprocessing

We downloaded geometrically and atmospherically corrected (i.e., USGS “Level 1T”) Landsat 4
and 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8
Operational Land Imager (OLI) data, including all imagery with ≤ 80% cloud-coverage by scene area
from the United States Geological Survey-Earth Resources Observation and Science online portal [42,43].
We downloaded a total of 1749 images for the Chicago, Peoria, and St. Louis footprints covering
the period 1982-2017, distributed evenly across the years and seasons (Figure 2A–C). We converted
raw digital numbers to surface reflectance (bands 1–5, 7) and brightness/surface temperature (band 6)
values using the Landsat Ecosystem Disturbance Adaptive Processing System algorithm [44]. We used
the GERSLab [45] preprocessing tool to stack the six spectral bands, one thermal band, and one Landsat
Level-1 pixel Quality Assessment (QA) or Landsat C version of Function of Mask band (CFMask,
providing information about the quality of the pixels in terms of clouds, cloud shadows and snow
contaminations [46–48]), for the analyses described below.

2.2.2. Land Cover Data Downloading and Processing

We acquired thematic land cover classification maps from the National Land Cover Dataset
(NLCD) for 2001, 2006 and 2011 from the USGS portal [43]. We used the 2001 NLCD in the land cover
classification, described in Section 2.3, and compared our classification with the three NLCD products,
described in Section 2.3.3. The NLCD maps were cropped to the Landsat footprint boundary and
re-projected to a common coordinate system (WGS 1984, UTM Zones 15N for St. Louis and 16N for
Chicago and Peoria).

2.3. Change Detection Model Implementation and Assessment

2.3.1. Continuous Change Detection and Classification (CCDC) algorithm

We analyzed regional time-series LULC change analysis using CCDC, which uses the Robust
Iteratively Reweighting Least Squares (RIRLS) method to iteratively fit observed data to the LULC
dynamic time-series model that incorporates seasonality, trend (for gradual changes), and breaks
(for abrupt changes) [34]. We used CCDC version 13.01 (64-bit Linux-machine version) downloaded
from Global Environmental Remote Sensing (GERS) Laboratory [45]. The model identifies breaks or
transitions using a data-driven thresholding approach on the included Landsat bands [34]. Breaks or
changes are identified in CCDC when the spectral signature deviates from the fitted model predictions
in consecutive dates of images [34,49]. Further CCDC application fundamentals and details of its
implementation can be found in Zhu and Woodcock [34].

2.3.2. Random Forest Training and Classification

We classified the CCDC model output data with version 1.02 of the CCDC Assistor tool [45] within
the CCDC environment using random forest [50]. Inputs to the supervised classification included
time-series model coefficients and the root mean square error (RMSE) values used to generate a
continuous land cover map of the modeling domain [34]. The 2001 NLCD dataset was used to train
the classifier using 20,000 pixels distributed proportionally across the original 15 land-cover classes
based on the optimized training data selection strategy [47]. Accordingly, the approach uses 600–8000
pixels per class [47,51].

We subsequently binned the continuous land-cover classification maps produced from the CCDC
and the NLCD data into six major land cover types for our analyses (see Figure 1): water (NLCD
classes of open water, woody wetlands, emergent herbaceous wetlands), forest (NLCD classes of
deciduous forest, evergreen forest, mixed forest, and shrub/scrub), grassland (NLCD classes of
grassland/herbaceous, pasture/hay), crops (NLCD class of cultivated crops), developed (NLCD classes
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of developed—open space, developed—low intensity, developed—medium intensity, developed—high
intensity), and barren (NLCD class of barren land—rock/sand/clay).

2.3.3. Classification Agreement with NLCD

We evaluated the spatiotemporal performance of the CCDC algorithm and subsequent random
forest classification over time through the generation of both omission and commission error metrics.
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We assessed classification correspondence with the 2001, 2006, and 2011 NLCD datasets [52–54].
We kept a minimum linear separation distance between any two points of 250 m (a distance selected to
decrease autocorrelation potential) that resulted in nearly 238,000 randomly distributed points across
the three footprints. We assessed classification agreement by (1) extracting the CCDC-derived class for
each pixel using July 1st of each year (thereby avoiding untilled agricultural lands and snow-covered
landscapes; [51]), and (2) developing confusion matrices contrasting the CCDC class with 2001, 2006,
and 2011 NLCD thematic data that we binned into major land-cover types (described above in 2.3.2).

2.4. Data Analyses

We analyzed the annual LULC change for a 25-year period from 1993–2017 at both the image-scale
and within a 90 m buffering distance around surface waters, a distance that approximates a commonly
used 100 m buffer for aquatic monitoring and assessments [31,55] and one that seamlessly comports to
the 30 m Landsat pixel size. The dataset from the period 1982–1985 was used for model initiation and
a six year CCDC output window (1986–1991) was used to identify “waters” from the random forest
classification (i.e., including open water, woody wetlands, and emergent herbaceous wetlands, as
described above). A conservative rubric was applied, such that a pixel was required to be classified as
water in at least five of six years between the period 1986–1991 to be considered “water”; this decreased
the likelihood that climatic vagaries and/or mixed-pixel (“edge effects”) would result in a pixel being
misidentified as water. We used 1992 imagery for final model initiation and conducted LULC change
analyses from the period 1993–2017. Waters ranged in size from a single pixel (0.09 ha) to 58,850 ha in
size across the three images. We excluded Lake Michigan, a 4000 km2 water body (the portion within
our Chicago footprint), from all analyses of the Chicago footprint.

We calculated the LULC change over 25 years using three approaches: (1) footprint-level time-series
LULC change, (2) water body buffer time-series LULC change within 90 m buffers for each footprint,
and (3) water body size-class analyses of time-series LULC change within a 90 m water body buffers
(i.e., a post-hoc approach analyzing each water body uniquely). We conducted the footprint-scale 90
m assessment by first buffering each water body (as determined above) within a GIS environment.
We then identified the corresponding 90 m buffer LULC pixels from the CCDC output for each year
using R (using R packages raster, rgdal, rgeos, and sf [56–59]). For the third analysis, each water body
had a unique 90 m buffer, with LULC calculated and exported for analyses. For the last analysis, we
calculated the area of each water body within a GIS environment and subsequently analyzed LULC
change over time, following Christensen et al. [40], binning surface water features into five size-based
categories: (a) < 0.1 ha, (b) 0.1 to < 1.0 ha, (c) 1.0 to < 10.0 ha, (d) 10.0 to < 100.0 ha, and (e) ≥ 100 ha.

3. Results

3.1. Thematic Classification Characterization

Confusion matrices (Tables 1–3) calculated an overall agreement of 81%–89% across all three
footprints and three NLCD datasets (2001, 2006, and 2011). Peoria (footprint p23r32) had the highest
overall correspondence of ~89%, whereas Chicago (footprint p23r31) and St. Louis (footprint p24r33)
had overall agreements of 84% and 81%, respectively. In general, water, developed, forest, and cropland
cover classes were more accurately classified, and grassland and barren classes were more poorly
classified. Misclassification errors with grassland and barren classes likely reflect the thresholding
process inherent within the NLCD (e.g., barren require <15% vegetation, whereas grasslands require
>80% vegetation) and approximate reported regional misclassification errors within the NLCD [41,60].
The small differences in overall agreement between years suggest that the model performed well over
time (e.g., overall agreement in Chicago footprint for the three time periods was 84.1% in 2001, 84.0%
in 2006, and 83.8% in 2011).
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3.2. Spatiotemporal LULC Change Dynamics at Footprint Level

Across all three footprints, developed lands cumulatively increased over 25 years of analyses,
while there were concomitant decreases in croplands in the Chicago footprint (Figure 3A),
croplands/grasslands/forested lands in the Peoria footprint (Figure 3B), and forested land cover
in the St. Louis footprint (Figure 3C). Whilst the percentages of LULC change may be relatively small
(e.g., ~1% in 25 years), the actual areal change is substantive—at least for the Chicago and St. Louis
footprints. For example, there was a 25 y increase of 280 km2 in developed lands in the Chicago
footprint (Figure 3A), while nearly 300 km2 of forested lands in the St. Louis area were converted to
other land cover types (see Figure 3C). Developed lands in the Peoria footprint increased ~36 km2;
all other changes at the footprint level in the Peoria analyses were <30 km2 (or <0.10%). All three
footprints showed increases in water and barren lands. Interestingly, the St. Louis footprint crop
LULC change decreased through ~2009 before demonstrating an increased cropland trend around
2009, ultimately resulting in a slight positive increase in croplands (see Figure 3C).

Dynamic change over time is evident in Figure 3A–C using CCDC; Figure 4A–D shows an LULC
change in a representative area between two points (2007 and 2015). Figure 5 provides information on
the spatiotemporal “year of change”, demonstrating the power of time-series analyses to identify the
temporal nature of LULC change.

Table 1. Chicago footprint confusion matrix contrasting agreement between the three NLCD validation
datasets. Overall agreement was consistently ~84%. Note that units are counts of 30 × 30 m pixels,
except Producer’s and User’s Accuracy and Overall Agreement, which are percentages.

LULC Water Developed Forest Barren Grassland Crops

2001 NLCD

Water 2015 120 625 24 31 85
Developed 261 15,191 1056 319 561 2460

Forest 8 48 4524 8 5 73
Barren 489 257 5 119 161 457

Grassland 135 993 481 66 1370 1814
Crops 187 671 481 193 540 43,413

Producer’s Accuracy (%) 65.1 87.9 63.1 16.3 51.3 89.9
User’s Accuracy (%) 69.5 76.5 76.7 46.1 28.2 95.4

Overall Agreement (%) 84.1

2006 NLCD

Water 2026 120 610 22 30 81
Developed 281 15,764 1099 541 601 2699

Forest 4 59 4454 7 4 58
Barren 478 241 2 119 154 437

Grassland 136 882 456 53 1317 1752
Crops 185 623 466 105 520 42,870

Producer’s Accuracy (%) 65.1 89.1 62.8 14.0 50.2 89.5
User’s Accuracy (%) 70.1 75.1 77.2 48.4 28.7 95.8

Overall Agreement (%) 84.0

2011 NLCD

Water 2035 111 607 20 35 100
Developed 307 16,025 1159 618 631 2921

Forest 10 53 4402 8 4 37
Barren 480 235 2 108 172 458

Grassland 128 778 418 43 1265 1714
Crops 176 567 453 91 510 42,573

Producer’s Accuracy (%) 64.9 90.2 62.5 12.2 48.3 89.1
User’s Accuracy (%) 70.0 74.0 76.5 50.5 29.1 95.9

Overall Agreement (%) 83.8
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Table 2. Peoria footprint confusion matrix contrasting agreement between the three NLCD validation
datasets. Overall agreement was consistently ~89%. Note that units are counts of 30 × 30 m pixels,
except Producer’s and User’s Accuracy and Overall Agreement, which are percentages.

LULC Water Developed Forest Barren Grassland Crops

2001 NLCD

Water 1068 13 166 3 23 26
Developed 52 3434 458 120 448 2983

Forest 2 3 3458 4 0 2
Barren 381 90 0 26 260 281

Grassland 33 206 427 5 1216 839
Crops 68 748 877 48 744 61,363

Producer’s Accuracy (%) 66.6 76.4 64.2 12.6 45.2 93.7
User’s Accuracy (%) 82.2 45.8 77.3 78.8 44.6 96.1

Overall Agreement (%) 88.3

2006 NLCD

Water 1076 12 145 6 24 36
Developed 56 3473 364 132 447 3011

Forest 2 3 3305 6 2 2
Barren 374 88 0 28 260 277

Grassland 33 199 282 8 1209 837
Crops 61 738 633 39 729 61,122

Producer’s Accuracy (%) 67.2 77.0 69.9 12.8 45.3 93.6
User’s Accuracy (%) 82.8 46.4 76.7 75.7 47.1 96.5

Overall Agreement (%) 88.9

2011 NLCD

Water 1064 11 148 6 28 38
Developed 60 3486 369 147 454 3041

Forest 1 2 3289 5 1 2
Barren 373 83 1 25 258 285

Grassland 36 192 285 10 1191 840
Crops 64 729 629 42 723 61,086

Producer’s Accuracy (%) 66.6 77.4 69.7 10.6 44.9 93.6
User’s Accuracy (%) 82.2 46.1 76.6 78.1 46.6 96.5

Overall Agreement (%) 88.8

3.3. Spatiotemporal LULC in Surface Water Buffers

3.3.1. LULC Change in Water Body Buffers Compared to Footprint-Scale

We identified 51,619 surface waters in Chicago, 22,186 in Peoria, and 34,475 in St. Louis footprints,
covering 3.9%, 2.1%, and 3.3% of each footprint, respectively. Adding the 90 m buffer resulted in the
buffer analyses covering approximately 8.2% of Chicago, 4.2% of Peoria, and 6.3% of the St. Louis
footprint areas. LULC change over the 25 year horizon occurred in the buffers of 41% of waters in
the Chicago-area footprint, 30% in the Peoria-area footprint, and 51% in the St. Louis-area footprint.
In Figure 6A–E, LULC change within the buffer surrounding a water body in the Chicago-area footprint
is evident, with development encroaching upon the water body (e.g., Figure 6E). Change to the
sinusoidal CCDC curves for select points within Figure 6 are presented in Figure 7A–E; indications of
LULC change-points across the 25 year time-period for pixels within the areas buffering the water
body have evidently occurred ~2004.

The overall LULC change in buffers surrounding water bodies, given in Figure 8A–C, was typically
similar in direction to that occurring in footprint-wide analyses (see Figure 3A–C). However, the
magnitude of LULC change in the buffering areas was frequently much greater than the footprint-level
analyses across all three footprints, as evidenced when contrasting between LULC change in the
footprint and the 90 m surface water buffer for Chicago (Figure 9A–F), Peoria (Figure 10A–F), and
St. Louis (Figure 11A–F). For example, substantial water expansion occurred in the Chicago study
area buffers at 35 times (35x) the relative footprint-wide rate (0.66% versus 0.02% over 25 years, see
Figure 9A). Areas buffering surface waters in the Chicago footprint followed the image-wide trend
of increased LULC development over 25 years, yet buffer increases were double the image-wide
proportional change (1.8% increase compared to ~0.9% increase, respectively (see Figure 9E)). Over the
25 years of Chicago footprint analyses, forests and grasslands buffering surface waters changed at
faster rates (decreasing at ~7x and ~3x, respectively; see Figure 9B–C) relative to the full footprint.

Twenty-five years of Peoria imagery analyses follow a similar pattern, with a nearly 15x increase in
surface water into the buffers relative to the footprint-wide analyses (see Figure 10A). Developed lands
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increased 4x in the Peoria buffers relative to the full footprint-wide change (0.35% versus 0.10%, see
Figure 10E), whereas there was a 9x decrease in forested lands (−0.63% versus −0.07%, see Figure 10B)
and a 4x decrease in grasslands (−0.28% versus −0.07%, see Figure 10C). This footprint also had an
increase in barren lands within the buffers 2x greater than the footprint-wide change (0.12% versus
0.06%, see Figure 10F).

Table 3. St. Louis footprint confusion matrix contrasting agreement between the three NLCD validation
datasets. Overall agreement was consistently ~81%. Note that units are counts of 30 × 30 m pixels,
except Producer’s and User’s Accuracy and Overall Agreement, which are percentages.

LULC Water Developed Forest Barren Grassland Crops

2001 NLCD

Water 2292 57 980 77 57 140
Developed 55 4622 1585 151 1430 1114

Forest 10 17 27,031 26 9 11
Barren 229 208 16 82 1237 760

Grassland 40 251 1834 39 9418 1865
Crops 146 162 896 63 1332 21,011

Producer’s Accuracy (%) 82.7 86.9 83.6 18.7 69.9 84.4
User’s Accuracy (%) 63.6 51.6 91.7 56.6 70.0 89.0

Overall Agreement (%) 81.3

2006 NLCD

Water 2315 60 988 70 52 226
Developed 62 4779 1594 189 1449 1151

Forest 13 15 26,820 49 11 10
Barren 220 235 12 87 1267 731

Grassland 45 260 1825 49 9356 1862
Crops 148 163 883 68 1315 20,874

Producer’s Accuracy (%) 82.6 86.7 83.5 17.0 69.6 84.0
User’s Accuracy (%) 62.4 51.8 91.5 58.8 69.8 89.0

Overall Agreement (%) 81.0

2011 NLCD

Water 2365 50 978 63 53 223
Developed 69 4884 1628 198 1485 1189

Forest 13 16 26,712 52 12 9
Barren 215 217 14 90 1279 724

Grassland 54 240 1824 50 9202 1844
Crops 137 146 880 72 1405 20,861

Producer’s Accuracy (%) 82.9 88.0 83.4 17.1 68.5 83.9
User’s Accuracy (%) 63.4 51.7 91.5 58.4 69.6 88.8

Overall Agreement (%) 80.9

Like Chicago and Peoria, surface waters in the St. Louis footprint buffers increased markedly,
14x greater than the entire footprint (1.31% versus 0.09%, see Figure 11A). St. Louis imagery analyses
demonstrated no meaningful differences in developed lands between the buffered and footprint-wide
changes over 25 years (0.71% versus 0.68%, respectively, see Figure 11E). Forested lands buffering
waters were converted at ~2x the footprint rate (−1.48% versus −0.95% over 25 years, see Figure 11B).
Grasslands buffering surface waters were converted more slowly than grassland change across the St.
Louis footprint, at 1/5 the LULC change rate (−0.03% in the buffer versus −0.16% at the footprint-level
over 25 years, see Figure 11C). Croplands in the buffer and footprint-wide followed a similar decreasing
trend through ~2008, increasing from that point such that by 2017 there was a slight increase (0.07%)
in footprint-wide cropland abundance (though still a substantial decrease in buffer-area croplands
(−0.42%; see Figure 11D)). Barren lands decreased in buffering areas (−0.09%) but switched direction
and increased at the footprint-scale (0.27%; see Figure 11F).
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of Peoria, and 38.6% of St. Louis buffers changed LULC twice during the study period. Three or more 
cumulative LULC buffering area changes occurred in Chicago (57.5%), Peoria (51.6%), and St. Louis 
(57.9%) across the 25 year analysis.    

3.3.2. LULC Change in Buffers by Water Body Sizes 

The vast majority of extant surface waters across all three Landsat footprints were <1.0 ha in size 
(87% of 51,619 surface waters in Chicago, 85% of 22,186 surface waters in Peoria, 88% of 34,475 surface 
waters in St. Louis). The smallest size class (< 0.1 ha) was the mode in Chicago (44%) though the 
second-most abundant size class in Peoria (40%) and St. Louis (42%), after waters between 0.1 to <1.0  
ha in both areas (Table 4). The largest waters, those ≥ 100 ha (and excluding Lake Michigan in the 
Chicago footprint), represented 0.1%–0.2% of the extant surface waters in our study areas. 

Figure 3. Cumulative footprint-level LULC change, both in percentage and approximate area, between
the period 1993–2017 for (A) Chicago, (B) Peoria, and (C) St. Louis footprints. Our areal analyses
throughout were calculated on pixel-change; we did not use a reference classification [61]. Note the
differences in y-axis values across panels A–C.

Changes in lands buffering surface waters were typically not a one-off event. Of the water buffers
that changed LULC during our study period, two changes was the mode within each of the three
footprints (e.g., from forest to barren, then from barren to developed); 39.6% of Chicago, 46.2% of
Peoria, and 38.6% of St. Louis buffers changed LULC twice during the study period. Three or more
cumulative LULC buffering area changes occurred in Chicago (57.5%), Peoria (51.6%), and St. Louis
(57.9%) across the 25 year analysis.

3.3.2. LULC Change in Buffers by Water Body Sizes

The vast majority of extant surface waters across all three Landsat footprints were <1.0 ha in
size (87% of 51,619 surface waters in Chicago, 85% of 22,186 surface waters in Peoria, 88% of 34,475
surface waters in St. Louis). The smallest size class (< 0.1 ha) was the mode in Chicago (44%) though
the second-most abundant size class in Peoria (40%) and St. Louis (42%), after waters between 0.1 to
<1.0 ha in both areas (Table 4). The largest waters, those ≥ 100 ha (and excluding Lake Michigan in the
Chicago footprint), represented 0.1%–0.2% of the extant surface waters in our study areas.
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Figure 4. Example of Chicago footprint LULC change between two points in time, (A) National
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changes in buffers surrounding waters of 1.0 to <10.0 ha (-0.68%) and 10.0 to <100.0 ha (-0.70%). Water 

Figure 5. CCDC-informed year-of-LULC change in Figure 4; the expansive barren area in the center of
the image appears to be a quarry that substantially expanded in the period from ~2008 onwards.

Buffer LULC change differed substantially depending on the size of the water body being buffered
(Figure 12A–C). In the Chicago footprint, developed, croplands, grasslands, and forested lands all had
the same approximate stair-step LULC-change trend over 25 y (Figure 12A), with the largest LULC
changes in the buffers surrounding the smallest waters and the least change around the largest water
bodies. For instance, there was a cumulative 25 y increase in developed lands that was greatest in
the buffers surrounding the smallest waters (<0.1 ha, 2.84%) followed by the second-smallest (0.1 to
<1.0 ha, 2.37%), etc. This trend held for decreases in the abundance of forested lands and grasslands;
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croplands followed suit, but no meaningful difference was discerned between changes in buffers
surrounding waters of 1.0 to <10.0 ha (−0.68%) and 10.0 to <100.0 ha (−0.70%). Water (and barren
lands) increased over the course of 25 y without any apparent trend associated with size classes in
the Chicago footprint. Exploring the temporal nature of the LULC changes, there was a substantive
increase in water (in particular), as well as forested and crops around 1999 across all five size classes
(Figure 13A–E).
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Figure 6. LULC change within a 90 m water body buffer, (A) aerial photo of surface water in Yorkville,
IL dated 05 April 1998, (B) aerial photo from 06 August 2009 after significant development, (C) CCDC
LULC classification of July 01, 1998, (D) CCDC LULC classification of 01 July 2009, (E) CCDC-informed
year of change (see Figure 7 for further information on inset points A–E).
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indicated), (C) LULC change (from crop to developed class), (D) LULC change (from crop to 
developed class), (E) LULC change (from crops to grassland). The panels in Figure 7 align with the 
five points (A–E) given in Figure 6. 

The smallest water bodies in Peoria had the largest LULC increase in percentage water, followed 
in stair-step fashion by the second smallest, etc. (see Figure 12B). The abundance of forested lands 
decreased in a similar manner, with the greatest change in the areas surrounding the smallest 
waterbodies and the least change in the largest waterbodies. Developed lands in buffers increased in 
tandem between waterbodies <1.0 ha (0.52-0.55%) and those between 1.0 ha and <100.0 ha (0.38–
0.39%) before halving to 0.18% in the largest waters. Croplands, grasslands, and barren lands did not 
evince any particular manner of change when contrasted with the binned data. There was a decrease 
in grasslands in the buffers surrounding the largest waters, starting in 1999, while LULC change in 
the remaining four size classes demonstrated a more consistent change-trajectory over the 25 y period 
of record in the Peoria footprint (Figure 14A–E). The largest water bodies (>100.0 ha) in the St. Louis 
footprint experienced the greatest increase in water in the buffering areas (1.73%), followed by the 
smallest water bodies (1.42%); the remaining size classes vacillated between 0.84%–0.99% increases 

Figure 7. LULC change occurred to the select pixels identified in Figure 6 ~2004, as indicated by the
break in the CCDC-fitted RIRLS models, (A) water body (no change indicated), (B) crops (no change
indicated), (C) LULC change (from crop to developed class), (D) LULC change (from crop to developed
class), (E) LULC change (from crops to grassland). The panels in Figure 7 align with the five points
(A–E) given in Figure 6.

The smallest water bodies in Peoria had the largest LULC increase in percentage water, followed
in stair-step fashion by the second smallest, etc. (see Figure 12B). The abundance of forested lands
decreased in a similar manner, with the greatest change in the areas surrounding the smallest
waterbodies and the least change in the largest waterbodies. Developed lands in buffers increased in
tandem between waterbodies <1.0 ha (0.52–0.55%) and those between 1.0 ha and <100.0 ha (0.38–0.39%)
before halving to 0.18% in the largest waters. Croplands, grasslands, and barren lands did not evince
any particular manner of change when contrasted with the binned data. There was a decrease in
grasslands in the buffers surrounding the largest waters, starting in 1999, while LULC change in the
remaining four size classes demonstrated a more consistent change-trajectory over the 25 y period of
record in the Peoria footprint (Figure 14A–E). The largest water bodies (>100.0 ha) in the St. Louis
footprint experienced the greatest increase in water in the buffering areas (1.73%), followed by the
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smallest water bodies (1.42%); the remaining size classes vacillated between 0.84%–0.99% increases
(see Figure 12C). The two largest classes, those water bodies ≥10.0 ha and larger, demonstrated the
greatest decrease in croplands in the buffering areas (−0.65% to −1.36%). The smaller water bodies
(i.e., the three binned classes <10.0 ha) had the greatest increases in developed lands in the St. Louis
footprint (0.86%–0.92%). Forested lands in the St. Louis footprint decreased in a stair-step manner as
in Peoria and Chicago, with the greatest decrease in the buffers surrounding the smallest water bodies
(<0.1 ha, −1.71%) followed by the next size class (0.1 to <1.0 ha) and so on. CCDC analyses indicated a
substantive increase in the abundance of water in areas buffering the largest systems, those ≥ 100 ha, in
2007 (Figure 15A–E).
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Figure 8. Cumulative LULC change in 90 m areas buffering surface waters between the period
1993–2017 for (A) Chicago, (B) Peoria, and (C) St. Louis footprints.

Table 4. LULC change around all study area water bodies was analyzed according to water body size
class, ranging from < 0.1 to ≥ 100 ha.

Chicago Footprint

Size (ha) Count Area (ha) Average (ha) Standard Deviation (ha)

<0.1 22,877 2058.9 0.1 0
0.1 to <1.0 21,828 7921.3 0.4 0.3
1.0 to <10.0 6019 17,631.6 2.9 2.1

10.0 to <100.0 822 21,582.8 26.3 19.5
≥ 100.0 73 20,612.1 282.4 303.9

All 51,619 69,806.7 1.4 16.1

Peoria Footprint

Size (ha) Count Area (ha) Average (ha) Standard Deviation (ha)

<0.1 8821 793.9 0.1 0
0.1 to <1.0 10,120 3785.3 0.4 0.2
1.0 to <10.0 2842 8015.4 2.8 2.0

10.0 to <100.0 363 9247.2 25.5 18.9
≥ 100.0 40 21,826.7 545.7 74.2

All 22,186 43,668.5 2.0 39.0

St. Louis Footprint

Size (ha) Count Area (ha) Average (ha) Standard Deviation (ha)

<0.1 14,291 1286.2 0.09 0
0.1 to <1.0 15,869 5895.4 0.4 0.2
1.0 to <10.0 3920 10,511.2 2.7 1.9

10.0 to <100.0 365 9064.4 24.8 18.4
≥ 100.0 30 6958.1 231.9 209.8

All 34,475 33,715.4 1.0 9.7
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Figure 9. Contrasting LULC change in the areas buffering waters with the Chicago-area footprint-wide change for (A) water, (B) forest, (C) grassland, (D) crops, (E) 
developed, and (F) barren classes. 
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Figure 12. Twenty-five years of LULC change in surface-water buffers binned into five aquatic system
size classes across (A) Chicago, (B) Peoria, and (C) St. Louis footprints.
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Figure 13. Chicago footprint LULC change over time in surface-water buffers binned into five aquatic 
system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, (E) ≥ 100.0 ha. 
Note the differences in the Y-values between plots. 

Figure 13. Chicago footprint LULC change over time in surface-water buffers binned into five aquatic
system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, (E) ≥ 100.0 ha.
Note the differences in the Y-values between plots.



Remote Sens. 2020, 12, 754 23 of 31

Remote Sens. 2019, 11, x FOR PEER REVIEW 24 of 32 

 

 

 

 
Figure 14. Peoria footprint LULC change over time in surface-water buffers binned into five aquatic 
system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, (E) ≥ 100.0 ha. 
Note the differences in the Y-values between plots. 

Figure 14. Peoria footprint LULC change over time in surface-water buffers binned into five aquatic
system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, (E) ≥ 100.0 ha.
Note the differences in the Y-values between plots.
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Figure 15. St. Louis footprint LULC change over time in surface-water buffers binned into five aquatic 
system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, (E) ≥ 100.0 ha. 
Note the differences in the Y-values between plots. 

Figure 15. St. Louis footprint LULC change over time in surface-water buffers binned into five aquatic
system size, (A) < 0.1 ha, (B) 0.1 to < 1.0 ha, (C) 1.0 to < 10.0 ha, (D) 10.0 to < 100.0 ha, (E) ≥ 100.0 ha.
Note the differences in the Y-values between plots.
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4. Discussion

Dynamics of LULC Change in the Midwestern US

The progression of LULC change across the Midwestern US has resulted in significant advances
in agricultural production, industrialization, and urban growth. Analyzed through the lens of an
entire Landsat footprint (or, here, three such footprints), the last 25 years have seen a decrease in
forested and agricultural (crop) lands and an increase in developed lands, especially in the urbanizing
exurbs of Chicago and St. Louis. This finding follows similar results from LULC change analyses
at the conterminous US-scale [62], as well as more regional analyses (e.g., [63,64]). For instance,
Maimaitijiang et al. [54] analyzed LULC change in the St. Louis metropolitan area (not a full Landsat
footprint) between 1972–2010 at five time-steps (i.e., 1972, 1982, 1990, 2000, and 2010) and reported
increases in developed lands and decreases in croplands and grasslands (similar to our study). However,
using time-series analyses through CCDC, we found a substantive uptick in agricultural lands around
2010, when their study period ended and near the onset of a near doubling in the per-bushel price of
corn [65]. The authors also found decreases in the forested lands and increases in water extent in the
greater St. Louis region through 2010 [54], and the change continued apace through to the end of our
study in 2017.

Novel to our study of three Landsat footprints covering nearly 100,000 km2 is the finding that
development is particularly prevalent in the buffered areas surrounding existing small waterbodies—the
wetlands, ponds, and lakes providing numerous ecosystem services [19,23,66–68]. Across all three
Landsat images, the smallest water bodies (i.e., those < 1.0 ha) experienced the greatest change in the
lands buffering them from terrestrial inputs. Furthermore, these changes in the buffers surrounding
water bodies occurred at rates substantially faster than the prevailing footprint-wide Landsat changes.
Specifically, buffered areas in the Chicago and Peoria footprints converted to developed lands at two to
four times the footprint-wide rate, and forested and grasslands decreased between seven to nine times
faster (for forested) and three to four times faster (for grasslands) in buffers than occurred across the
footprint. Lands buffering water bodies in the St. Louis footprint analysis changed, though at rates
similar to the footprint-wide change, with no discernable differences between development (increasing
0.69% in the footprint-wide analysis and 0.72% in the buffers) and relatively minor changes in the
forested land conversion in the buffers (~2x the footprint-wide change). Nevertheless, the smaller
water bodies in St. Louis (i.e., those <10.0 ha) experienced a higher developed land conversion rate
(0.86%-0.92% over 25 years) than the footprint-wide analyses (0.72% over 25 years).

Conversion of the lands buffering water bodies may have profound effects on the waters
themselves [29,32,69,70]. For instance, Christensen et al. [71] reported that lands buffering stream
networks in agricultural landscapes removed 52% of the edge-of-field nitrogen, a major determinant of
aquatic resource eutrophication (e.g., [72]). The buffering areas can filter out pollutants and sediments
that affect water quality and aquatic biota, as well as modify temperatures in aquatic systems through
shading mechanisms. Supporting the maintenance of aquatic buffers, Wahl et al. [73] found the greatest
abundance of pollution-sensitive insect orders Ephemeroptera, Plecoptera, and Trichoptera (“EPT”) in
aquatic networks with forested buffers and the lowest in agriculturally cultivated or urban-developed
catchments (i.e., those without buffers). Biogeochemical cycling rates within water bodies respond
to the differences in loading rates, which can vary depending on the surrounding land uses [70].
Furthermore, the conversion of lands buffering water bodies can increase sedimentation rates and
decrease hydroperiods, which can threaten migratory waterfowl and other organisms [26,74–77].

However, while the conversion and development of lands buffering water bodies occurred at
elevated rates vis-à-vis the Landsat footprint (in Chicago and Peoria footprints in particular), this study
found a substantial expansion of existing waters into the buffering lands across all three footprints
analyzed (i.e., buffer expansion rates ranging from 14–35x footprint-wide rates). The smallest waters in
Peoria (<0.1 ha) had the greatest expansion, whereas the largest waters in St. Louis (>100 ha) expanded
at the highest rates (followed by the smallest waters) in 25 years.
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The reasoning behind these surface water expansions remains elusive. Whereas increasing
precipitation rates across the Midwestern US [38,78] ascribed to global climate change likely has
some effect, the spatio-temporal impacts of precipitation modifications vary across the study areas.
For instance, Dai et al. [78] noted increases in Midwestern early growing-season precipitation but
cautioned that few trends were statistically significant across their study locations. Furthermore,
they found decreases in late growing-season precipitation within Missouri, Illinois, and six other
Midwestern states [78]. In a time-series analysis of water body area across the conterminous US,
Zou et al. [79] reported waters in the Midwestern US to be increasing in extent and correlated with
climate variables (e.g., annual precipitation), though they note that surface-area changes were also
associated with dam construction and affected by water withdrawals.

Surface water expansion may also result from the combination of precipitation non-stationarity
coupled with anthropogenic alterations to the landscape drainage network. McCauley et al. [32]
found that consolidation drainage (wherein many smaller water bodies are connected and drained
into fewer larger ones) has increased water surface areas of the Upper Midwestern Prairie Pothole
Region (PPR) by 86%; waters in “extensively drained landscapes” were 197% larger than historical
records (1937–1969). Similarly, Vanderhoof and Alexander [80] analyzed lake expansion in the Upper
Midwestern PPR, reporting substantial lake expansion between 1990–2011. Three large lakes in their
study area increased between 237%–578%, subsuming over 7000 surrounding wetlands in the process.

Our analyses determined change is more pervasive in the areas buffering waters across the
Midwest than a footprint-wide, regional change analysis would suggest. However, our CCDC analyses
were predicated on using the available Landsat archive for the study. These data are remarkable for
long-term change analyses, though a caveat is that the analyses were conducted with medium-resolution
data (e.g., 30 m pixel size). Our class descriptors incorporated NLCD products using Landsat data,
and we binned these data for our purposes. Though our overall accuracy ranged from 81%–89%,
certain classes were more poorly discerned than others. For instance, grasslands were often confused
(e.g., with developed and/or crops), leading to some uncertainty in the results regarding changes
associated with grasslands. While ideally our overall correspondence in our confusion matrices would
have been >80% for all classes, our analyses trended within ranges shown for the NLCD products
(e.g., NLCD 2001 regional producer’s accuracies for Level I Water of ~60%, or Level I Grassland of
~25%; see, e.g., [81]). The inclusion of ancillary datasets, such as greenness or wetness indices, may
improve subsequent classification accuracy in future studies. Furthermore, the increasing availability
of high-resolution satellite data and cloud-based computing (Google Earth Engine; see, e.g., [79,82,83])
augurs well for the improved granularity of class and change in the future. For instance, we combined
the various developed land cover classes, but future analyses may choose to separate them to more
finely discern change or create additional classes to suit emerging needs (e.g., focusing on wetland or
forest LULC changes over time, [83]).

Multiple factors affect surface water dynamics, from climate-change induced non-stationarity
(e.g., [84]), decadal precipitation cycling, artificial barriers such as roads and berms, and artificial
drainage. The influence of these effects, including the magnitude and frequency of storm events as
well as the influence of water-retention on surface-water extent and landscape inundation dynamics
(e.g., [85,86]), warrant additional investigation.

5. Conclusions

The Midwestern US states included in this study have had substantial water body losses since
the European settlement. For example, Dahl [39] calculated pre-European settlement wetland losses
of −85% for Illinois and −87% for Missouri. However, water body expansion, as evidenced by the
increase in water in the buffers across all three Landsat footprints over 25 years, suggests that the
prevailing precipitation patterning may be sufficient at the macroscale to maintain a series of inundated
water bodies (e.g., for migratory waterfowl). However, this assumption requires the development
of local to regional water budgets to more robustly discern the long-term implications of LULC
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change on inundation patterning and the maintenance of aquatic landscapes (e.g., [67,76]). While the
Midwestern US is experiencing increases in surface water extent, our novel analyses have shown that
developed lands are encroaching upon existing water bodies. These landscape shifts are very likely
modifying the vegetation structure, hydrology, water quality and biotic integrity of the existing water
resources. As noted, development or cultivation in areas buffering aquatic resources can result in
increased nutrient loading rates [29], changes in hydrology and inundation extent [87], and increased
sedimentation [13–15]. The waters analyzed in this study cumulatively perform myriad functions
affecting watershed-scale phenomena, such as nutrient retention and processing [88,89]) and river
storm-flow attenuation and baseflow maintenance [22,90,91]. Pervasive change to the areas buffering
the water bodies within the three study footprints suggests that even when water bodies are not lost
to development or cultivation, their functioning (e.g., nutrient processing or hydrologic attenuation)
may be modified, thereby affecting down-gradient, watershed-scale rates, storages, and flows of water,
solutes, and particulate matter [19,26].
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