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Abstract: This study investigates the effectiveness of gradient boosting decision trees techniques
in estimating mangrove above-ground biomass (AGB) at the Can Gio biosphere reserve (Vietnam).
For this purpose, we employed a novel gradient-boosting regression technique called the extreme
gradient boosting regression (XGBR) algorithm implemented and verified a mangrove AGB model
using data from a field survey of 121 sampling plots conducted during the dry season. The dataset
fuses the data of the Sentinel-2 multispectral instrument (MSI) and the dual polarimetric (HH, HV)
data of ALOS-2 PALSAR-2. The performance standards of the proposed model (root-mean-square
error (RMSE) and coefficient of determination (R2)) were compared with those of other machine
learning techniques, namely gradient boosting regression (GBR), support vector regression (SVR),
Gaussian process regression (GPR), and random forests regression (RFR). The XGBR model obtained a
promising result with R2 = 0.805, RMSE = 28.13 Mg ha−1, and the model yielded the highest predictive
performance among the five machine learning models. In the XGBR model, the estimated mangrove
AGB ranged from 11 to 293 Mg ha−1 (average = 106.93 Mg ha−1). This work demonstrates that XGBR
with the combined Sentinel-2 and ALOS-2 PALSAR-2 data can accurately estimate the mangrove
AGB in the Can Gio biosphere reserve. The general applicability of the XGBR model combined with
multiple sourced optical and SAR data should be further tested and compared in a large-scale study
of forest AGBs in different geographical and climatic ecosystems.

Keywords: Sentinel-2; ALOS-2 PALSAR-2; mangrove; above-ground biomass; extreme gradient
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1. Introduction

Mangrove forests are among the most important components of natural ecosystems. They perform
a wide range of crucial functions, such as mitigating the effects of tropical typhoons and tsunami,
reducing coastal erosion, and storing huge amounts of blue carbon [1,2]. Despite their functions and
benefits, mangrove forests have been reduced and degraded worldwide, more seriously in South
East Asia, where the decimation rate reached its highest level in the last 50 years [3,4]. The driving
factors of mangrove deforestation and degradation are conversion to shrimp aquaculture, agriculture
(particularly rice and oil palm in West Africa and Southeast Asia), urban development, poor governance,
and overexploitation [3,5]. Unfortunately, the loss of mangrove carbon on large spatial scales is little
understood. Without this knowledge, we cannot mitigate the global loss of mangrove habitats [6].

Land-cover change is thought to alter the above-ground biomass (AGB) in the tropical areas [7–9].
By mapping the spatial distribution of mangrove AGB and the carbon stocks associated with external
factors, we could detect the changes in mangrove ecosystems, better understand the drivers of
these changes, and reduce the uncertainty in estimating the loss of mangrove ecosystem services. A
precise estimation of mangrove AGB is required for sustainably preserving and protecting mangrove
ecosystems from loss and degradation under climate change and accelerated global warming. However,
the complex structure of mangrove ecosystems hindered quantitative estimates of mangrove AGB.
Especially, the biosphere reserves of mangroves are characterized by multiple species, very high
diversity, and large spatial distributions. During the last 30 years, AGB retrieval of mangroves has
been investigated worldwide [10–14]. Mangrove AGB can be accurately estimated from field-based
measurements or forest inventory data. However, these approaches are disadvantaged by high cost
and site-selection biases [15]. Cost-effective and accurate retrieval techniques for mangrove AGB
in tropical and semi-tropical areas would provide baseline data for the monitoring, reporting, and
verification schemes adopted in climate-change mitigation strategies, such as Blue Carbon projects
and the United Nations’ Reducing Emissions from Deforestation and Forest Degradation (REDD+)
program in the tropics [16].

In recent years, mangrove AGBs have been increasingly mapped using earth observation (EO)
data collected by optical sensors [17–19], synthetic aperture radar (SAR) data [13,20,21], airborne
LiDAR [22,23], and LiDAR data acquired form unmanned aerial vehicles (UAV) [24,25]. A few attempts
combined the data of multispectral and SAR sensors for mangrove AGB retrieval in tropical regions.
Fused data are particularly useful in biosphere reserves comprising multiple mangrove species and
rich biodiversity. In such systems, the spatial distribution of the mangrove AGB is difficult to estimate
with sufficient accuracy. By accurately estimating the mangrove AGB in biosphere reserves, we could
effectively monitor their mangrove ecosystems and implement sustainable mangrove conservation
and management.

Models for estimating AGB range from simple to multi-linear regression approaches [13,21,24]
to sophisticated machine learning (ML) methods [17,18,26]. For mapping and estimating forest
AGBs, non-parametric approaches using various ML algorithms have proven more effective than
parametric methods using linear models. Meanwhile, numerous EO datasets have been compiled from
optical, SAR, and LiDAR data. These data are commonly retrieved from non-parametric regression
techniques such as the random forest regression (RFR) algorithm [17,25,27], artificial neuron networks
(ANN) [26], and support vector regression (SVR) [28,29]. Recently, gradient boosting decision trees
(GBDT) effectively solved regression problems such as evaporation prediction [30] and oil price
estimation [31]. The extreme gradient boosting regression (XGBR) algorithm is a particularly potent
tool in environmental problems in environmental problems such as urban heat islands [32], algal
blooming [33], and energy-supply security issues [34]. However, to our knowledge, the usefulness of
the XGBR algorithm in forest AGB estimation, particularly in tropical mangrove habitats, has not been
quantified. Especially, the current literature seems to lack a quantitative comparison of state-of-the-art
ML techniques for estimating AGBs in different forest ecosystems.
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To overcome these challenges, we estimated the mangrove AGB in the Can Gio biosphere reserve
(South Vietnam) using an ML model and the fused data of the Sentinel-2 (S2) MSI and ALOS-2
PALSAR-2 sensors. We selected Sentinel-2 MSI because the multispectral bands of S-2 reflect the
forest stand structures such as stem volume, whereas the longer wavelengths of the dual polarimetric
(HH, HV) mode of the ALOS-2 PALSAR-2 sensor can penetrate mangrove forest canopies. The fused
S2 MSI and ALOS-2 PALSAR-2 data were processed by a nonlinear regression model in the XGBR
algorithm, providing the first estimation of mangrove AGB in the Can Gio biosphere reserve (CGBRS).
Additionally, the performance of the XGBR model was compared with those of other GBDT techniques
and several well-known ML algorithms (SVR, GPR, and RFR) on mangrove AGB estimation in the
same study area. Incorporating the S-2 MSI and ALOS-2 PALSAR-2 data into the proposed model was
found to improve the mangrove AGB estimation in a Vietnamese biosphere reserve and is potentially
applicable to mangrove conservation in other biosphere reserves.

2. Materials and Methods

2.1. Study Area

The present study was conducted in Can Gio, a coastal district located approximately 50 km
south of Ho Chi Minh City (formerly Sai Gon) along the Southern coast of Vietnam. The geographical
coordinates are 10◦22′–10◦40′ latitude and 106◦46′–107◦01′ longitude. The climate is tropical monsoon
and has two typical seasons. The dry season begins in April and ends in November of the following year,
whereas the rainy season occurs between May and October. The average temperature is approximately
26 ◦C, the annual rainfall is roughly 1300–1400 mm, and the relative humidity is approximately 80% [35].
This district is well-known for its mangrove reforestation and rehabilitation programs, not only in
Vietnam but also throughout Southeast Asia [36]. The wetland ecosystem of Can Gio is diverse and
includes the mangrove areas distributed in zone IV, which contains the largest mangrove forest among
the four mangroves zones (See Figure 1) in Vietnam [37].
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The Can Gio mangrove forests were declared as a biosphere reserve by the United Nations
Educational, Scientific, and Cultural Organization (UNESCO) in 2000 [38]. The dominant species are
Rhizophora apiculate, Sonneratia alba, Avicennia alba, Rhizophora mucronata, and others. Approximately 33
species belonging to 15 families have been identified in the CGBRS [36].

2.2. Field Survey Data Collection

With permission from the local authorities, the 2018 field survey of the CGBSR was conducted
during the dry season, when the coastal tides impacting the mangrove forest were lowest. A total of
121 plots were sampled by the stratified random sampling approach. Each plot sampling was initially
assisted by a local counterpart to guarantee the whole range of AGB values over the reserve. During
the surveying, the experimenters measured the diameter at breast height (DBH), tree height (H), and
tree density. All living mangrove forest stands with DBH > 5 cm in a strata plot size of 25 × 20 m
(0.05 ha) were measured. The location (accuracy ± 2 m) of each sampling plot was measured by the
Garmin eTrex global positioning system (GPS) (Figure 2).
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Figure 2. Aboveground biomass measurements in the study area. (a & b) Biophysical parameters
measurement (Photographs were taken by L.V. Nguyen during the 2018 dry season).

The mangrove AGB of each species was estimated by a specific allometric equation (see Table 1).

Table 1. Allometric equations for estimating the mangrove species in the study site.

Species Allometric Equation Reference

Rhizophora apiculata AGB = 0.235 × DBH2.42 (R2 = 0.98) [39]

Avicennia alba AGB = 0.140 × DBH2.40 (R2 = 0.97) [40]

Bruguiera gymnorrhiza AGB = 0.186 × DBH2.31 (R2 = 0.99) [41]

Bruguiera parviflora AGB = 0.168 × DBH2.42 (R2 = 0.99) [41]

Sonneratia caseolaris AGB = 0.199 × ϕ × 0.90 * DBH2.22 (R2 = 0.99) [40]

Lumnitzera racemosa AGB = 0.740 × DBH2.32 (R2 = 0.99) [42]

Ceriops zippeliana AGB = 0.208 × DBH2.36 (R2 = 0.96) [43]

Xylocarpus granatum AGB = 0.082 × DBH2.59 (R2 = 0.99) [41]

Note: AGB is the above-ground biomass (kg) of a mangrove tree, DBH is the diameter (cm) at breast height (1.3 m),
ϕ is the wood density (tons dry matter per m3 fresh volume).
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2.3. Remote Sensing Data Acquisition and Image Processing

2.3.1. Data Acquisition

The mangrove AGB in the CGBRS was estimated by fusing the ALOS-2 PALSAR-2 L-band dual
polarimetric data level 2.1 obtained in high-sensitivity mode with Sentinel-2 (S-2) MSI images. Table 2
presents the S-2 and the ALOS-2 PALSAR-2 data at the study site, acquired on 23 and 24 March during
the 2018 dry seasons, respectively.

Table 2. Acquired earth observation data for this study.

Earth Observation
Sensor Scene ID Acquisition Data Processing Level Spectral

Band/Polarizations

ALOS-2 PALSAR-2
ALOS2206940200

23 March 2018 2.1 L band (HH, HV)
ALOS2206940190

Sentinel-2 MSI
S2A_MSI_T48PXS

24 March 2018 1C 11 Multispectral bands
S2A_MSI_T48PYS

To pre-process the satellite remotely sensed data, we resampled both multispectral bands of
Sentinel-2 and the dual polarization model of ALOS-2 PALSAR-2 data at a ground sampling distance
(GSD) of 10 m. The satellite images were processed as described in Section 2.3.2. To validate the
model’s performance and optimize the hyperparameters for AGB retrieval in the CGBRS, the model
was combined with the measured field data. Figure 3 is a flowchart of the satellite-image processing
and the generation of mangrove AGB estimation models using the ML techniques in the current study.
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2.3.2. Satellite Image Processing

Two scenes of the ALOS-2 PALSAR-2 Level 2.1 data acquired on 23 March 2018 during the dry
season were download from https://auig2.jaxa.jp/ips/home, the website of the Aerospace Exploration
Agency (JAXA). The DN (Digital Number) of the ALOS-2 PALSAR-2 imagery was converted to
normalized radar sigma-zero using Equation (1):

σ0 [dB] = 10. log10 (DN)2 + CF (1)

where σ0 is backscatter coefficients, and CF is the calibration factor. For HH and HV polarizations,
CF = −83 dB [44]. Equation (1) converts the DN of each pixel to sigma naught (σ0) in decibel (dB).

Two scenes of the Sentinel-2 (S-2) Level-1C sensors acquired on 24 March 2018 during the dry
season were retrieved from Copernicus Open Access Hub of the European Space Agency (ESA). The
radiometric and geometric corrections of the S-2 data were made to the UTM/WGS84, Zone 48 North
projection at top-of-atmosphere (TOA) reflectance [45]. The S-2 MSI Level-1C data were processed
to Level-2A at the bottom-of-atmospheric (BOA) reflectance using the Sen2Cor algorithm of ESA
(http://step.esa.int/main/third-party-plugins-2/sen2cor/). The S-2 and ALOS-2 PALSAR-2 images were
processed by the SNAP toolbox, and the modeling process was performed in Python 3.7 environment
using the Scikit-learn library [46].

2.3.3. Transformation of Multispectral and SAR Data

As a commonly employed method in previous mangrove AGB retrievals [13,47,48], image
transformation was applied to the multispectral and SAR data of the present study. The image
transformation of SAR data involves a combination of multi-polarizations such as HV/HH, HH/HV,
and HH-HV, as suggested in [26]. Meanwhile, multispectral data are transformed using the vegetation
indices, as each index is sensitive to mangrove structure and biomass. Table 3 shows the seven vegetation
indices chosen for mangrove AGB retrieval at the CGBRS after referring to related studies [49–51]. The
23 predictor variables included five variables of ALOS-2 PALSAR-2 data (HV, HH, HV/HH, HH/HV,
and HH-HV), 11 multispectral bands of S-2, and seven vegetation indices. Using the predictor variables,
we computed the explanatory variables in the prediction model of mangrove AGB retrieval (Table 3).
Figure 4 illustrates the image composites of different sensors and vegetation indices, along with the
SAR transformation, in the study area.

Table 3. List of vegetation indices used in the current study.

Vegetation Index Acronyms Formula References

Ratio Vegetation Index RVI Band8
Band4 [28]

Normalized Difference Vegetation Index NDVI Band8−Band4
Band8+Band4 [29]

Soil Adjusted Vegetation Index SAVI (1 + L)
(

Band8−Band4
Band8+2.4Band4+L

)
L = 0.5

in most conditions
[31]

Normalized Difference Index using
bands 4 and 5 of Sentinel-2 NDI45 Band5−Band4

Band5+Band4 [32]

Difference Vegetation Index DVI Band 8–Band 4 [33]

Green Difference Vegetation Index GNDVI Band8−Band3
Band8+Band3 [34]

Inverted Red-Edge Chlorophyll Index IRECl Band7−Band4
Band5/Band6 [35]

https://auig2.jaxa.jp/ips/home
http://step.esa.int/main/third-party-plugins-2/sen2cor/
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2.4. Selection of Machine Learning Model

To identify the best model for AGB retrieval in CGBSR, we compared the performances of several
ML techniques (XGBR, GBR, GPR, RFR, and SVR). The SVR model best predicted the mangrove AGB
in a coastal area of North Vietnam [9], whereas the RFR model delivered the best monitoring results
of mangrove biomass changes in South Vietnam [10]. Therefore, SVR and RFR were selected for the
present study. The other ML algorithms were chosen because they are commonly used for solving
regression problems in various fields [40–42].
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2.4.1. Gradient Boosting Decision Trees Algorithms

a. Gradient Boosting Regression (GBR)

GBR is an ensemble-based decision tree method that boosts the performance of weak learners to
those of stronger ones. Each regression tree of the GBR learns the residual of each tree conclusion. The
main purpose is to reduce the previous residuals and thereby decrease the model residual along the
gradient direction. The results of all regression trees are integrated to give the final result [52,53]. The
GBR model can handle mixed data types and is robust to outliers [54]. As GBR has not been widely
applied to mangrove biomass estimation, it was considered for testing in the present study.

The parameters to be determined are the learning rate, number of trees, minimum number of
samples required at a leaf node, maximum depth, and the number of features for the best split. The
hyperparameters of the GBR model were optimized by five-fold cross-validation (CV) techniques.

b. Extreme Gradient Boosting Regression (XGBR)

The Extreme Gradient Boosting (XGB) algorithm, proposed by Chen and Guestrin [55], is a novel
GBR technique that develops strong learners by an additive training process. To resolve the drawbacks
of weakly supervised learning, the additive learning is divided into two phases: A learning phase
fitted to the entire input data, followed by adjustment to the residuals. The fitting process is repeated
many times until the stopping criteria are achieved. This algorithm is based on “boosting decision
trees”, which handle both classification and regression tasks in weakly supervised machine learning
by the additive training strategies. The XGBR technique alleviates the undesired over-fitting problem.

The XGBR algorithm optimizes the loss function not by the first-order derivative (as in GBR) but
by an efficient second-order expression. To avoid the over-fitting problem, the objective function treats
the model complexity as a regularization term, and the regular term is added to the cost functions [55].
The XGBR model is quite generalizable and avoids both over-fitting and under-fitting. It also supports
parallel computing to reduce computational time.

The parameters of XGBR are those of the GBR algorithm, and an additional parameter gamma
(γ) representing the minimum loss of further partitioning a leaf node of the tree. The larger the γ,
the more conservative is the algorithm. The XGBR model was also optimized by five-fold CV in the
Python environment.

2.4.2. Support Vector Regression (SVR)

SVM is a supervised learning technique based on the statistical learning theory developed by
Vapnik [56]. This method is widely used for classification and regression tasks in computer vision,
pattern recognition, and environmental problems. SVR is an SVM method that solves specific regression
problems. A nonlinear kernel function in SVR transforms the dataset into a higher dimensional feature
space, where the data can be treated by simple linear regression. In this study, the selected kernel
function was the radial basis function (RBF), the most widely adopted kernel for optimizing forest
AGBs in prior studies [29,50].

The SVR model is generally configured by three hyperparameters: Epsilon (ε), the regulation
parameter (C), and the kernel width (γ) of the RBF. In the present study, these parameters were
optimized through five-fold CV.

2.4.3. Random Forests (RF)

RF [57] is the most common bagging model applied to both classification and regression problems.
For training, RFR creates multiple uncorrelated trees from a randomly selected subset of 2/3 of the total
samples (in-bag). The remaining 1/3 of the total samples (out-of-bag, OOB) are used for estimating
the OOB error and validating the method. A tree is grown from in-bag samples with m features for
optimizing the split at each node. In the absence of pruning, the tree reaches its largest possible extent.
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The RFR model produces (1) an OOB error and (2) the relative importance of each variable. From these
outputs, it assesses the prediction accuracy and the contribution of each variable.

RFR is a high-performance non-parametric method that processes nonlinear data without
overestimation during the training and testing phases. Accordingly, it has been widely employed in
remote sensing [58,59]. The RFR requires the number of trees and the number of features m for the
split. In this study, both RFR parameters were optimized by five-fold CV in the Python environment.

2.4.4. Gaussian Processes (GP)

Based on the non-parametric Bayesian theory, GPs are applicable to both classification and
nonlinear regression problems. The GPR model learns the fit function from a small dataset using
various kernels, finding the probability distribution that best describes the data. The input data are
assumed to follow a multivariate Gaussian distribution, and the noise is independent of the data
measurements [60]. The mean vector and covariance matrix are estimated from the training data by
mean and covariance functions, respectively, creating a detailed posterior distribution from which
the confidence interval and uncertainty of the prediction results can be interpreted. The mean value
of a GP represents the best estimation from the model, and the variance (σ2) helps to measure the
confidence level. GPs are well-known as good predictors of biophysical parameters [61].

2.5. Model Evaluation

2.5.1. Input Data for Model Running

To create the input data for training models, the 121 sampling plots were divided into training set
(80%) and testing dataset (20%) using the well-known Scikit-learn [46] library in Python programming
environment. Because the measured plot size (500 m2) greatly exceeded the image pixel size (10 m), all
satellite data were smoothed through a median filter with a window size of 5 × 5 pixels in the SciPy
library [62].

2.5.2. Hyperparameters Tuning in XGBR, GBR, RFR, SVR, and GPR

Hyperparameter tuning is often required when optimizing machine learning techniques. In this
work, the parameters of each ML model were optimized by grid searching and five-fold CV. The results
are listed in Table 4.

Table 4. Optimized hyperparameters of the ML applied in this study.

Algorithm Learning_Rate/Epsilon Min_Samples_Leaf
Min_Child_Weight Gamma Max_Depth/Max

Features
n_Estimators or C

Value

RFR NA 2 NA 5, 15 50

SVR 0.01 NA 1000 NA 1000

GBR 0.2 5 NA 7, 3 100

XGBR 0.2 3 1 3 100

In the GPR, we combined the RBF with a length scale of 100 and WhiteKernel with a noise level of
1.0. The hyperparameters and kernels were maintained during the training and testing phases.

2.5.3. Feature Importance

The variables in RFR and gradient boosting machine algorithms, such as XGBR and GBR are often
ranked by the variable-importance approach [55,63,64]. Relative variable importance is computed
as follows. The first step searches for a candidate subset of variables (in this case, by the grid
search approach). Initially, the grid search includes all variables derived from the S-2, VIs, and
ALOS-2 PALSAR-2 datasets. The datasets are input to the XGBR model, which ranks the variables in
descending order of their importance based on the root mean squared error (RMSE) and the coefficient
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of determination (R2). Next, a certain number of the least important variables are removed, and the
surviving variables form a variable subset. In this paper, the search/selection iterations were terminated
when the R2 of the prediction model of the subset did not improve the performance in the test set. The
final step validates the selected variable subset and determines the relative variable importance (in this
case, by the five-fold CV approach).

The modeling and generated variable importance of the XGBR model were implemented in the
Python environment.

2.5.4. Model Evaluation

The model performances of the various ML techniques were evaluated and compared by the RMSE
(Equation (2)) and R2 (Equation (3)), which are widely employed in estimates of forest AGB biomass.
Both standards evaluate the errors in a regression model from the differences between the measured
data (the mangrove forest measurements) and the estimated AGB data [50]. A well-performing model
will achieve a high R2 and a low [24,47].

RMSE =

√√ n∑
1

(yei − ymi)2
n

(2)

R2 =

∑n
i=1 (yei − ye)(ymi − ym)√∑n
i=1 (yei − ye)2(ymi − ym)2

(3)

In the above expressions, yei is the mangrove AGB predicted by the ML model, ymi is the measured
mangrove AGB, n is the total number of sampling plots, and ye and ym are the mean values of the
predicted and measured mangrove AGBs, respectively.

3. Results

3.1. Mangrove Tree Characteristics in CGBRS

Table 5 gives the characteristics of the mangrove trees in the 121 sampling plots. The AGBs ranged
from 7.26 to 305.41 Mg ha−1, with a mean of 97.54 Mg ha−1. The mangrove heights varied from 6.47 to
17.35 m, and their DBHs ranged from 6.69 to 22.19 cm. The mangrove tree densities ranged from 170 to
1680 trees ha−1 (Table 5).

Table 5. Characteristics of the mangrove trees in CGBRS.

Attribute Min Max Mean Standard
Deviation (SD)

DBH (cm) 6.69 22.19 13.24 3.5

H (m) 6.47 17.35 11.87 2.5

Tree density (tree ha−1) 170 1680 694 26.45

AGB (Mg ha−1) 7.26 305.41 97.54 5.88

3.2. Modeling Results, Assessment, and Comparison

Table 6 and Figure 5 compare the performances of the five regression methods with all input
variables derived from S-2 MSI, VIs, and ALOS-2 PALSAR-2 images for mangrove AGB estimation
in the study area. The XGBR model incorporating the S-2 (11 MS bands), ALOS- 2 PALSAR-2 (5
bands), and VIs (7 bands) data achieved the highest performance (Table 6), with an R2 of 0.805 and an
RMSE of 28.13 Mg ha−1 in the testing dataset (23 predictor variables based on the fused S-2, the VIs
and the ALOS-2 PALSAR-2 data), implying a good fit between the model estimates and field-based
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measurements. The next-highest performers were the GBR and RFR models. In contrast, the SVR and
GPR models were unsuitable for retrieving the mangrove AGB at the study site (Table 6).

Table 6. Performance comparison of ML techniques on mangrove AGB estimation.

No Machine Learning Model R2 Training (80%) R2 Testing (20%) RMSE (Mg ha−1)

1 Extreme Boosting regression
(XGBR) 0.992 0.805 28.13

2 Gradient Boosting regression
(GBR) 0.998 0.632 39.54

3 Random Forests regression
(RFR) 0.721 0.468 48.44

4 Support Vector regression
(SVR) 0.480 0.421 48.49

5 Gaussian Processes regression
(GPR) 0.509 0.378 50.23
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Table 7 lists the performances of the XGBR method in five scenarios (SCs) of mangrove AGB
prediction, using different combinations of the S-2, ALOS-2 PALSAR-2, and VIs data.

Table 7. Performance of the XGBR model using different numbers of variables. (Bold values highlight
the best-performing model).

Scenario (SC) Number of Variables R2 Testing Set RMSE (Mg ha−1)

SC1 11 variables from MS bands of S2 data 0.600 36.54

SC2 5 variables from ALOS-2 PALSAR-2 data 0.492 39.48

SC3 18 variables from MS bands and VIs from S2 0.739 34.86

SC4 23 variables (11 MS bands + 7 vegetation indices + 5
bands from ALOS-2 PALSAR-2) 0.805 28.13

SC5 16 variables (11 MS bands + 5 bands from ALOS-2
PALSAR-2) 0.656 43.25

As clarified in Table 7, the XGBR model yielded a promising result in SC3 using the combined
S-2 and VIs, but the model achieved a poor result in SC2 using the ALOS-2 PALSAR-2 alone. The
performance in SC1 using the S-2 dataset alone was moderate. We concluded that fusing all data in
SC4 boosted the prediction performance of XGBR for estimating the mangrove AGB in the study area.
The visual results of the testing phase (Figure 5) reconfirm the high performance of mangrove AGB
estimation by XGBR with the 23 variables of the fused data. Particularly, the green scatter points cluster
around the blue line and the RMSE is small.

3.3. Variable Importance

Among the multispectral bands of S-2 MSI, the Red (665 nm), Vegetation Red Edge (704 nm),
and the narrow NIR (864 nm) spectra were most sensitive to the mangrove AGB of the present study,
followed by the SWIR spectrum (MS band 11 at 1610 nm). Interestingly, among the seven VIs indices,
the Inverted Red-Edge Chlorophyll Index (IRECl) and the Normalized Difference Index (NDI45) (bands
4 and 5 of S-2) were likely sensitive to the mangrove AGB in the study area. The band ratios derived
from the incorporated HH and HH polarizations in the ALOS-2 PALSAR-2 data were also important
for retrieving mangrove AGB in the biosphere reserve (see Figure 6). The backscatter coefficients of the
crossed-polarimetric HV in ALOS-2 PALSAR-2 are likely more important than those of the HH for
estimating the mangrove AGB in the study region (Figure 6).
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3.4. Generation and Analysis of the AGB Map

The prediction performance of the XGBR model in mangrove AGB retrieval was improved by
integrating the Sentinel-2 multispectral bands, vegetation indices, and ALOS-2 PALSAR-2 datasets.
Thus, the XGBR model was selected for retrieving mangrove AGB in a biosphere reserve. The final
results were computed to a raster in GeoTiff format for visualizing in QGIS. The AGB map was
interpreted by seven classes (Figure 7), obtaining mangrove AGBs from 11 to 293 Mg ha−1 (average =

106.93 Mg ha−1). As can be seen from Figure 7, the biomass is highest in the core zone of the biosphere
reserve and lower in the transition and buffer zones. These results are consistent with prior mangrove
AGB estimates [17] and [65], in which the high biomass was mainly distributed in the core zone of the
biosphere reserve, and the lower biomass was observed in the remaining zones.
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4. Discussion

The modeling results of mangrove AGB retrieval in the CGBSR obtained by the five ML models
(XGBR, GBR, GPR, SVR, and RFR) are given in Table 6. Clearly, the XGBR model yielded the highest
performance, with an R2 and RMSE of 0.805 and 28.13 Mg ha−1, respectively. The worst performing
model was GPR, with an R2 and RMSE of 0.378 and 50.23 Mg ha−1, respectively. Both the XGBR model



Remote Sens. 2020, 12, 777 14 of 20

(R2 = 0.805) and GBR model (R2 = 0.632) were good predictors of mangrove AGB, indicating that the
GBDT regression models were applicable to the study area, where the mangrove biomass is higher than
in other mangrove regions of Vietnam. As shown in Table 7, the combined S-2 and ALOS-2 PALSAR
data significantly improved the performance of estimating the mangrove AGB in the study area. These
results are consistent with a recent previous study [50]. Overall, the XGBR model outperformed the
existing algorithms in retrieving the mangrove AGB in a Vietnamese biosphere reserve.

Previous studies reported that long-wavelength PolSAR data, such as the L and the P bands, are
well correlated with mangrove forest structures. Among these data, crossed-polarized HV appears to
be most correlated with biophysical attributes [13,66,67]. The variable-importance analysis revealed
that crossed-polarization HV is more sensitive to mangrove AGB in the study area than HH polarization
(Figure 6), consistent with previous results [26,29]. However, mangrove forests in a biosphere reserve
exhibit unique stand structures and species compositions that may saturate multispectral and SAR
sensors. Data saturation of multispectral sensors such as Landsat TM, ETM+ or OLI, and the S-2
sensor degrades the prediction accuracy of mangrove AGBs in dense forest canopies. The saturation
range of multispectral data reaches 100–150 Mg ha−1 in complex tropical forests, much higher than in
mixed and pine forest ecosystems (with a saturation range of >150 to <160 Mg ha−1) [68,69]. In several
recent investigations, the saturation levels of the mangrove AGBs retrieved from SAR data ranged
from above 100 Mg ha−1 [20] to below 150 Mg ha−1 [21,26]. This large range probably manifests from
the root systems of different mangrove species in intertidal tropical and sub-tropical regions [13]. The
sigma backscatter coefficients of the dual polarimetric data of ALOS-2 PALSAR-2 increased when the
mangrove AGB fell below 100 Mg ha−1 and then saturated at a higher AGB because the high mangrove
cover density extinguished the radar signals [70,71].

Biosphere reserves often consist of various mangrove species. The species types (i.e., R. appiculata,
B. gymnorrhiza, and S. caseolaris) are densely grown and characterized by high DBH and tall height.
Some species, such as A. germinans and C. decandra, form small but high-density mangrove patches
in which high and low biomasses are easily underestimated and overestimated, respectively, by
machine learning algorithms. In the current study, the XGBR model possibly over-estimated the low
mangrove AGBs (below 50 Mg ha−1) and under-estimated the high values (over 250 Mg ha−1). Despite
these limitations, the combined ALOS-2 PALSAR-2 and S-2 data sensitively detected mangrove AGBs
exceeding 200 Mg ha−1 in the CGBRS (See Figure 5). Our findings agree with the conclusions of prior
research on biosphere reserves [17,65]. Given the species complexity in mangrove biosphere reserves,
we recommend the inclusion of species classification or richness indices for improved mangrove AGB
estimation in future work [19,21].

In the variable-importance results, the mangrove AGB in the study area was largely retrieved from
the Red band and the Vegetation Red Edge band. A similar result was reported elsewhere [18,72]. The
vegetation red edge, narrow NIR, and SWIR reflectance are likely to be more strongly correlated with
forest biomass and carbon stock volume than visible reflectance [17]. Accordingly, the new vegetation
index ND145, which is computed from the Sentinel-2 data bands, is a probable sensitive indicator
of mangrove AGB. Band 8A in the narrow NIR and band 11 in the SWIR (1613 nm) also played a
crucial role in the AGB retrieval. Interestingly, the IRECl derived from S-2 was strongly correlated with
mangrove AGB in the biosphere reserve. More in-depth studies would elucidate the effectiveness of
image transformations involving new vegetation indices derived from the Narrow NIR bands, SWIR
of S-2 data, and other image transformations computed from the fully polarized data (HH, HV, VH,
and VV) of the Gaofeng-3 and the ALOS-2 PALSAR-2 sensors in biosphere reserves.

To accurately estimate mangrove AGBs, researchers attempted multi-linear regression, which
performed poorly with R2 ranging from 0.43–0.65 [13,21,73], and various ML algorithms such as GPR,
MLPNN, SVR, and RFR [17,18,29]. ML approaches have proven more successful in mangrove AGB
than multi-linear regression and other parametric methods [18,47], but the R2 has rarely exceeded
0.70. Therefore, novel approaches for mangrove AGB estimation are urgently needed. In this research,
the performance of the XGBR model was boosted by incorporating data from the ALOS-2 PALSAR-2,
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S-2 sensors. The result (R2 = 0.805 for the AGB of a mangrove biosphere reserve in the tropics)
demonstrates the promise of this approach. Despite the good fit between the XGBR-predicted and
measured-mean mangrove AGBs, the range of the predicted mangrove AGBs did not reach the extrema
of the actual distribution range, which was maximized at 305.41 Mg ha−1 and minimized at 26 Mg ha−1

(Table 5). The predicted results may have been degraded by the saturation levels of the S2 MSI sensor
and the dual polarimetric L-band ALOS-2 PALSAR-2 when retrieving mangrove AGB in intertidal
areas. Although the AGB was well predicted by the XGBR model, the R2 values in the training and
testing phases were significantly different (Table 6). This difference is likely attributable to the mixed
mangrove species planted in the CGBRS and the number of plots. To archive a more accurate forest
AGB map, we should exploit the advantages of various novel GBDT algorithms with multi-sensor data
integration [74]. In more intensive works, novel boosting decision tree techniques should exploit the
full capability of multi-source EO data in different mangrove communities occupying tropical intertidal
areas at different geographical locations, particularly those of biosphere reserves. Such developments
are needed for rapid mangrove AGB monitoring in the future.

5. Conclusions

We report the first attempt to incorporate Sentinel-2 and ALOS-2 PALSAR-2 data into the extreme
gradient boosting regression (XGBR) model and thereby estimate the mangrove AGB in Vietnam’s
Can Gio biosphere reserve. The XGBR model outperformed four other machine learning models in
mangrove AGB retrieval in the study area. When provided with the Sentinel-2 and ALOS-2 PALSAR-2
data, XGBR estimated the mangrove AGB with satisfactory accuracy (R2 = 0.805, RMSE = 28.13 Mg
ha−1). Interestingly, we found that new vegetation indices derived from the Sentinel-2 data, such
as the Normalized Difference Index (NDI45) and the Inverted Red-Edge Chlorophyll Index (IRECl),
sensitively detected mangrove AGB in the biosphere reserve. In future investigations, the proposed
approach should be tested in other tropical forest ecosystems.
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List of abbreviations in this study
No Abbreviation Full Name
1 AGB Above-Ground Biomass
2 ALOS The Advanced Land Observing Satellite
3 ANN Artificial Neuron Networks
4 PALSAR Phased Array type L-band Synthetic Aperture Radar
5 TOA Top Of Atmosphere
6 BOA Bottom Of Atmospheric
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7 CGBRS Can Gio Biosphere Reserve in South Vietnam
8 CV Cross-validation
9 DBH Diameter at breast height
10 EO Earth Observation
11 ESA European Space Agency
12 GBDT Gradient Boosting Decision Trees
13 GBR Gradient Boosting Regression
14 GeoTiff Tagged Image File Format for GIS applications
15 GP Gaussian Processes
16 GPR Gaussian Process Regression
17 GPS Global Positioning System
18 JAXA Japan Aerospace Exploration Agency
19 LiDAR Light Detection and Ranging
20 ML Machine Learning
21 MRV Monitoring, Reporting, and Verification
22 MSI Multispectral Instrument
23 NA Not Available
24 QGIS Quantum Geographic Information System
25 RBF Radial Basis Function
26 REDD+ Reducing Emissions from Deforestation and Forest Degradation
27 RFR Random Forest Regression
28 RMSE Root Mean Square Error
29 S2 Sentinel-2
30 SAR Synthetic Aperture Radar
31 SC Scenarios
32 SNAP Sentinel Application Platform
33 SVM Support Vector Machine
34 SVR Support Vector Regression
35 SWIR Short-Wave InfraRed
36 VIs Vegetation indices
37 XGB Extreme Gradient Boosting
38 XGBR Extreme Gradient Boosting Regression
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58. Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions.

ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [CrossRef]
59. Pham, T.D.; Xia, J.; Baier, G.; Le, N.N.; Yokoya, N. Mangrove Species Mapping Using Sentinel-1 and Sentinel-2

Data in North Vietnam. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote
Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 6102–6105.

60. Perez-Cruz, F.; Vaerenbergh, S.V.; Murillo-Fuentes, J.J.; Lazaro-Gredilla, M.; Santamaria, I. Gaussian Processes
for Nonlinear Signal Processing: An Overview of Recent Advances. IEEE Signal. Process. Mag. 2013, 30,
40–50. [CrossRef]

61. Rasmussen, C.E.; Williams, C.K. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA,
2006; Volume 1.

62. Jones, E.; Oliphant, T.; Peterson, P. SciPy: Open Source Scientific Tools for Python. 2001. Available
online: https://www.scienceopen.com/document?vid=ab12905a-8a5b-43d8-a2bb-defc771410b9 (accessed on
4 August 2019).

63. Grömping, U. Variable Importance Assessment in Regression: Linear Regression versus Random Forest. Am.
Stat. 2009, 63, 308–319. [CrossRef]

64. Li, Y.; Li, C.; Li, M.; Liu, Z. Influence of Variable Selection and Forest Type on Forest Aboveground Biomass
Estimation Using Machine Learning Algorithms. Forests 2019, 10, 1073. [CrossRef]

65. Nguyen Viet, L.; To Trong, T.; Luong Anh, K.; Nguyen Thanh, H. Biomass estimation and mapping of can
GIO mangrove biosphere reserve in south of viet nam using ALOS-2 PALSAR-2 data. Appl. Ecol. Environ.
Res. 2019, 17, 15–31.

66. Lucas, R.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.;
Bray, S.; et al. An Evaluation of the ALOS PALSAR L-Band Backscatter-Above Ground Biomass Relationship
Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2010, 3, 576–593. [CrossRef]

67. Schlund, M.; Davidson, M. Aboveground Forest Biomass Estimation Combining L- and P-Band SAR
Acquisitions. Remote Sens. 2018, 10, 1151. [CrossRef]

68. Foody, G.M.; Boyd, D.S.; Cutler, M.E.J. Predictive relations of tropical forest biomass from Landsat TM data
and their transferability between regions. Remote Sens. Environ. 2003, 85, 463–474. [CrossRef]

69. Cutler, M.E.J.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating tropical forest biomass with a combination
of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J.
Photogramm. Remote Sens. 2012, 70, 66–77. [CrossRef]

70. Proisy, C.; Couteron, P.; Fromard, F. Predicting and mapping mangrove biomass from canopy grain analysis
using Fourier-based textural ordination of IKONOS images. Remote Sens. Environ. 2007, 109, 379–392.
[CrossRef]

71. Joshi, N.; Mitchard, E.T.A.; Brolly, M.; Schumacher, J.; Fernández-Landa, A.; Johannsen, V.K.; Marchamalo, M.;
Fensholt, R. Understanding ‘saturation’ of radar signals over forests. Sci. Rep. 2017, 7, 3505. [CrossRef]
[PubMed]

72. Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the relationships between growing stock volume
and Sentinel-2 imagery in a Mediterranean forest ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [CrossRef]

http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/S0167-9473(01)00065-2
http://dx.doi.org/10.1016/j.rse.2019.02.022
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.011
http://dx.doi.org/10.1109/MSP.2013.2250352
https://www.scienceopen.com/document?vid=ab12905a-8a5b-43d8-a2bb-defc771410b9
http://dx.doi.org/10.1198/tast.2009.08199
http://dx.doi.org/10.3390/f10121073
http://dx.doi.org/10.1109/JSTARS.2010.2086436
http://dx.doi.org/10.3390/rs10071151
http://dx.doi.org/10.1016/S0034-4257(03)00039-7
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.011
http://dx.doi.org/10.1016/j.rse.2007.01.009
http://dx.doi.org/10.1038/s41598-017-03469-3
http://www.ncbi.nlm.nih.gov/pubmed/28615620
http://dx.doi.org/10.1080/2150704X.2017.1295479


Remote Sens. 2020, 12, 777 20 of 20

73. Wicaksono, P.; Danoedoro, P.; Hartono; Nehren, U. Mangrove biomass carbon stock mapping of the
Karimunjawa Islands using multispectral remote sensing. Int. J. Remote Sens. 2016, 37, 26–52. [CrossRef]

74. Pham, T.D.; Yokoya, N.; Bui, D.T.; Yoshino, K.; Friess, D.A. Remote Sensing Approaches for Monitoring
Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens. 2019, 11, 230.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01431161.2015.1117679
http://dx.doi.org/10.3390/rs11030230
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Field Survey Data Collection 
	Remote Sensing Data Acquisition and Image Processing 
	Data Acquisition 
	Satellite Image Processing 
	Transformation of Multispectral and SAR Data 

	Selection of Machine Learning Model 
	Gradient Boosting Decision Trees Algorithms 
	Support Vector Regression (SVR) 
	Random Forests (RF) 
	Gaussian Processes (GP) 

	Model Evaluation 
	Input Data for Model Running 
	Hyperparameters Tuning in XGBR, GBR, RFR, SVR, and GPR 
	Feature Importance 
	Model Evaluation 


	Results 
	Mangrove Tree Characteristics in CGBRS 
	Modeling Results, Assessment, and Comparison 
	Variable Importance 
	Generation and Analysis of the AGB Map 

	Discussion 
	Conclusions 
	References

