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Abstract: Satellite-based remote sensing technologies are utilized extensively to investigate
urban thermal environment under rapid urban expansion. Current Moderate Resolution Imaging
Spectroradiometer (MODIS) data are, however, unable to adequately represent the spatially detailed
information because of its relatively coarser spatial resolution, while Landsat data cannot explore the
temporally continued analysis due to the lower temporal resolution. Combining MODIS and Landsat
data, “Landsat-like” data were generated by using the Flexible Spatiotemporal Data Fusion method
(FSDAF) to measure land surface temperature (LST) variations, and Landsat-like data including
Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built Index (NDBI) were
generated to analyze LST dynamic driving forces. Results show that (1) the estimated “Landsat-like”
data are capable of measuring the LST variations; (2) with the urban expansion from 2013 to 2016,
LST increases ranging from 1.80 ◦C to 3.92 ◦C were detected in areas where the impervious surface
area (ISA) increased, while LST decreases ranging from −3.52 ◦C to −0.70 ◦C were detected in areas
where ISA decreased; (3) LST has a significant negative correlation with the NDVI and a strong
positive correlation with NDBI in summer. Our findings can provide information useful for mitigating
undesirable thermal conditions and for long-term urban thermal environmental management.

Keywords: land surface temperature (LST); spatiotemporal fusion; MODIS; urbanization; driving
forces

1. Introduction

Worldwide urban expansions are developing at various spatiotemporal scales under the rapid
population and economy growth [1–4]. The World Urbanization Prospects 2014 Revision report stated
that 54% of the world’s population lived in urban regions in 2014 and the number would be projected
to grow to 66% in 2050 [5]. Inevitably, urban expansion caused land use and land cover change and
brought about many environment or ecological system problems [6]. Especially, the coupling of rapid
urban expansion and climate warming has increased the heat stress in many mega cities [7]. A great
deal of natural vegetation and farmland was replaced by man-made impervious surface area, leading
to dramatic change of land surface temperature (LST) and local climate [8–10]. LST is an indicator
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showing the biosphere–land–ocean–atmosphere interactions and surface energy balance, and it can
reflect the thermal response to urban canopy, building height, surface coverage, anthropogenic heat,
and energy consumption [11–13].

Traditionally, near-surface air temperatures as a proxy of in-situ LST can be accurately measured by
using in-situ thermometers but are limited in station-based observation [14,15]. With the development
of earth observation technologies, a range of remotely sensed datasets have been used to characterize
LST and to investigate thermal variations across urban environments [16–18]. Satellite thermal infrared
(TIR) LST, theoretically based on the radiative transfer equation, has been widely studied focusing on
single-channel, split-window, and multi-channel algorithms for solving emissivity and atmospheric
effects [19–21]. For example, Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS)
data are intensively used on different spatiotemporal scale LST studies [22–31] (Table 1). Landsat data
with a higher spatial resolution of 60 m or 100 m in the thermal band are more suitable for detailed
investigation of LST, however, Landsat data has lower temporal resolution (16 days) [32–36]. MODIS
data, with higher temporal resolution (twice a day), are most popular in continuous studies satisfying
a high temporal resolution time scale [37,38]. The low spatial resolution of MODIS scans can only be
used to coarse-scale research. It is insufficient for producing detailed descriptions of LST variation or
for analyzing thermal driving forces [39]. Similarly, the temporally sparse resolution of Landsat data
cannot produce the short-interval datasets necessary to investigate LST dynamics [40].

Both MODIS and Landsat data have their strengths and limitations. To obtain simultaneously
the higher spatiotemporal resolution data, data fusion methods have been used to deal with these
spatiotemporal resolution problems by generating the fusion LST data of Landsat and MODIS, satisfying
the need of long-term and fine-scale regional thermal environment research [41–44]. For example,
by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Shen et al. [45]
obtained “Landsat-like” LST datasets from 1988 to 2013 and analyzed the thermal mechanism of the
Wuhan city urban heat island. Huang et al. [46] proposed a spatiotemporal fusion model based on a
bilateral filter method (STBFM) and testified its higher precision compared with the STARFM method.
Weng et al. [47] developed a new fusion algorithm to predict daily LST. Wu et al. [48] put forward
the spatiotemporal integrated temperature fusion model (STITFM) to integrate data from multiple
sensors with flexibility. Besides the above three methods (STARFM, STBFM, and STITFM), a Flexible
Spatiotemporal Data Fusion method (FSDAF) [49], which has a strong advantage in generating high
spatiotemporal resolution data due to high calculation efficiency and minimum data requirements,
was adopted by Zhang et al. [50] to generate monthly time series LST data.

Although there is different research focusing on the new data fusion algorithms to generate
higher spatial and temporal resolution land surface factors, there are still few documents to indicate
simultaneously the LST dynamics and the driving forces by combining the Landsat-like data Normalized
Difference Vegetation Index (NDVI) and Normalized Difference Vegetation Index (NDBI). Zhengzhou
is a provincial city in the Central plains of China. It has the highest urban population density in
mainland of China and is a major economic center in the middle of China. It is currently undergoing
a great-leap-forward development [51]. Moreover, the urban built-up area has increased rapidly, by
65.83% over the last decade. There is, therefore, an urgent requirement to quantitatively evaluate urban
thermal environmental change and explore the principal driving mechanisms. The purpose of this
study includes: (i) measuring urban land surface temperature dynamics under fast urban expansion by
using Landsat-like LST, and (ii) analyzing LST driving forces combining Landsat-like NDVI and NDBI
and other factors.
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Table 1. The comparison of LST data.

LST Data Source Spatial Resolution/
Temporal Resolution Time Scale Strength and Limitation Reference

Landsat
60 m (TM and ETM+)

or 100 m (OLI-TIRS)/16 d
monthly High spatial resolution,

low frequency

Chen X, et al. [22]
Sheng L, et al. [23]

annual Xiong Y, et al. [24]
Wang S, et al. [25]

MODIS 1000 m/1 d
daily High frequency, low

spatial resolution

Li X, et al. [26]
Sun L, et al. [27]

monthly Jose L, et al. [28]
Williamson S, et al. [29]

annual Haynes M, et al. [30]
Eleftheriou D, et al. [31]

Fusion data of Landsat
and MODIS

60 m (TM and ETM+) or 100 m
(OLI-TIRS)/1 d

daily High spatial resolution,
high frequency

Huang B, et al. [46]
Weng Q, et al. [47]

monthly Zhang L, et al. [50]

LST: land surface temperature; MODIS: Moderate Resolution Imaging Spectroradiometer; TM: Thematic Mapper; ETM+: Enhanced Thematic Mapper Plus; OLI-TRIS: Operational Land
Imager/Thermal Infrared.
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2. Materials and Methods

2.1. Materials

The study area shown in Figure 1 is the Zhengzhou, located from 113◦26′ to 113◦51′ E, and 34◦35′

to 34◦57′ N. It comprises five municipal zones: Erqi (EQ), Zhongyuan (ZY), Huiji (HJ), Jinshui (JS),
and Guancheng (GC). The built-up area of this conurbation expanded significantly, from 328.01 km2

in 2011 to 443.04 km2 in 2016 according to the dataset of National Bureau of Statistics of the People’s
Republic of China.Remote Sens. 2020, 12, 801 4 of 20 
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Figure 1. Map of the study area showing five municipal zones and meteorological station.

Data used in this paper mainly include two parts (Table S1): (1) four periods of data representing
summer (28 June 2013 and 20 June 2016) and winter (22 January 2014 and 22 January 2017), and (2)
whole years of data including daily and monthly MODIS data (from March 2013 to February 2014).
Landsat Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager/Thermal Infrared
Sensor (OLI-TRIS) (https://earthexplorer.usgs.gov) have a resolution of 60/100 m. MODIS data include
Daily MODIS LST (MOD11A1), 8-day maximum synthetic MODIS LST (MOD11A2), and 16-Day
Vegetation Indices MODIS NDVI (MOD13Q1) from the NASA website (https://modis.gsfc.nasa.gov).
Meteorological data (including air pressure, temperature, and relative humidity) were obtained from
the Chinese National Meteorological Information Center (http://data.cma.cn). Vector map dataset and
Digital Surface Model (DSM) with 30 m resolution were obtained from the Geographical Information
Monitoring Cloud Platform (http://www.dsac.cn).

2.2. Methods

2.2.1. Data Preprocessing and Image Classification

The preprocessing of ETM+/OLI-TRIS images (Level 1) includes radiometric calibration and
atmospheric correction by using the ENVI5.1 software package. First, the thermal infrared band was
corrected with “Thermal Atmospheric Correction” tool in ENVI5.1, and then it was resampled to 30 m
by using the bilinear method. Next, for optical bands, atmospheric correction was performed by using
the FLASSH function. Finally, the digital number (DN) of the thermal band was validated into the
radiance, while the DN of the optical band was validated into reflectance. Furthermore, for solving the
problem of missing pixels in Landsat ETM + SLC-off images taken since 2003, the nearest-neighborhood
interpolation method was used to predict missing pixel values. In addition, a 120 m*120 m fishnet

https://earthexplorer.usgs.gov
https://modis.gsfc.nasa.gov
http://data.cma.cn
http://www.dsac.cn
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(n = 8971) was generated to calculate the mean impervious surface area (ISA) ratio. The interval of ISA
ratio was equally divided into 100 segments from zero to one, and corresponding mean LST in each
interval was calculated.

The support vector machine (SVM) supervised classification method was used for image classification.
As a machine learning method based on the statistical learning theory, it has a strong precision level [52–54].
The land use includes four types, impervious surface area (ISA), vegetation, water, and bare soil.
Furthermore, we used the random sampling method to select more than 100 samples to assess the
accuracy of the classification results.

2.2.2. Calculation of NDVI, NDBI, and LST

NDVI (Normalized Difference Vegetation Index) and NDBI (Normalized Difference Built-Up
Index), as two typical land surface factors, can be calculated as follows:

NDVI =
RNIR −RRED

RNIR + RRED
(1)

NDBI =
RMIR −RNIR

RMIR + RNIR
(2)

where RNIR is the reflectance in the near infrared band, which is corresponding to Landsat ETM+ band4
(0.775–0.900 µm) and Landsat OLI-TIRS band5 (0.845–0.885 µm). RRED represents the reflectance in
visible red band corresponding to ETM+ band 3 (0.630–0.690 µm) and OLI-TIRS band4 (0.630–0.680 µm),
and RMIR represents the reflectance of middle infrared band corresponding to ETM+ band 5
(1.550–1.750 µm) and OLI-TIRS band6 (1.560–1.651 µm).

Landsat LST calculation is based on the radiative transfer equation:

B(FS) =
[
Lλ − L↑ − τ(1− ε)L↓

]
/τε (3)

where B(FS) represents the surface radiance; Lλ is the spectral radiance at the sensor’s aperture in
W·m−2

·sr−1
·µm−1; FS stands for real land surface temperature (K); τ is the atmospheric transmittance;

and L↑ and L↓ are the upward and downward atmospheric thermal radiance, respectively. The three
parameters were estimated using image meta information and meteorological data as well as the
atmospheric correction parameter calculator [55,56] provided by NASA Website; ε is the land surface
spectral emissivity, which is critical for accurate calculation of LST.

In this study, ε was calculated based on NDVI threshold method to differentiate types of land
use/land cover (LULC). When NDVI < 0, the LULC was mainly water, but when 0 ≤ NDVI < 0.15,
LULC was dominated by urban impervious areas and bare soil [57]. When NDVI ≥ 0.727, it was
regarded as full of the vegetation coverage area [57]. However, when 0.15 ≤ NDVI < 0.727, LULC
became a mixed object type [58]. Therefore, ε was calculated with Equation (4):

ε =


0.9925, NDVI < 0

0.923, 0 ≤ NDVI < 0.15
1.0094 + 0.047 ln(NDVI), 0.15 ≤ NDVI ≤ 0.727

0.986, NDVI > 0.727

(4)

Finally, CS (◦C) corresponding to the real LST was obtained with the Planck formula:

CS =
K2

ln
[

K1
B(FS)

+ 1
] − 273.15 (5)

The values of K1 and K2 are associated with the effective wavelength of the thermal band of each
sensor [59]. For the ETM+ image, K1 is 666.09 W/(m2*µm*sr) and K2 is 1282.71 K, but for the OLI-TIRS
image, K1 is 774.89 W/(m2*µm*sr) and K2 is 1321.08 K.
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2.2.3. The Flexible Spatiotemporal Data Fusion Method

By combining the advantages of various spatiotemporal data fusion models, the Flexible
Spatiotemporal Data Fusion Method (FSDAF) [49] ensures the minimum input requirement of
data sources while capturing the features of both gradual and abrupt changes. The MODIS LST data
(1000 m resolution) were resampled to 30 m resolution based on the nearest-neighbor algorithm method.
Additionally, all input images needed to be cropped into the same area with the predetermined number
of rows and columns before performing the spatiotemporal fusion method. The input data included
two parts: (1) a pair of Landsat LST and MODIS LST data at T1, which were used to estimate the
spatial differences between fine-resolution pixels and coarse-resolution pixels; (2) one MODIS LST
at T2, which was used as the spatial feature reference and applied to calculate the time differences
between T1 and T2 for predicting fine-resolution LST at T2. The implementation process was divided
into six steps: (1) classify Landsat LST at time T1; (2) estimate the temporal changes taking place for
each class of coarse-resolution MODIS LST from T1 to T2; (3) predict the fine-resolution LST at T2 based
on predicted temporal changes and calculate pixel residuals of MODIS LST; (4) use the thin plate spline
(TPS) interpolation function to predict the high-spatial-resolution LST based on the MODIS LST at T2;
(5) allocate the residuals to predicted high-spatial-resolution LST with the TPS interpolation function;
and (6) generate final fine resolution “Landsat-like” LST at T2 based on the weights of pixels in the
moving windows, which are assigned by nearest-neighborhood information. The calculation process
is as shown in (6)–(12):

∆Rhigh
(
xi j, yi j, b

)
= εhigh

(
xi j, yi j, b

)
+ ∆Rhigh(a, b) (6)

R̃high2

(
xi j, yi j, b

)
= Rhigh1

(
xi j, yi j, b

)
+

n∑
k=1

[ωk × ∆R(xk, yk, b)] (7)

where R̃high2

(
xi j, yi j, b

)
represents the DN values of fine spatial resolution pixels; Rhigh1

(
xi j, yi j, b

)
is

Landsat pixel values; ∆R(xk, yk, b) is the change of spatial resolution from T1 to T2; ωk is the weight;
∆Rhigh(a, b) represents the change of class a of high spatial resolution data on band b (represents LST,

NDVI, and NDBI data) from T1 to T2; ∂high
(
xi j, yi j, b

)
is the residual, which is allocated to the high

spatial resolution pixel j from MODIS LST pixel i.
The calculation of weight was carried out with reference to previous studies [41], and the TPS

function that guides the residual distribution was conducted as shown in Equations (8)–(12):

∂high
(
xi j, yi j, b

)
= m∂

(
xi j, yi j, b

)
×W

(
xi j, yi j, b

)
(8)

∂
(
xi j, yi j, b

)
= ∆Rlow

(
xi j, yi j, b

)
−

1
m

 m∑
j=1

Rhigh2
TP

(
xi j, yi j, b

)
−

m∑
j=1

Rhigh1

(
xi j, yi j, b

) (9)

CW
(
xi j, yi j, b

)
= Eh0

(
xi j, yi j, b

)
+ ∂

(
xi j, yi j, b

)[
1−HI

(
xi j, yi j

)]
(10)

Eh0

(
xi j, yi j, b

)
= Rhigh2

SP
(
xi j, yi j, b

)
−Rhigh2

TP
(
xi j, yi j, b

)
(11)

Rhigh2
SP

(
xi j, yi j, b

)
= fTPS−b

(
xi j, yi j

)
(12)

where m is the number of sub-pixels in MODIS LST; ∂
(
xi j, yi j, b

)
represents the residual values

between Landsat LST pixels and the fine-resolution LST pixels predicted based on the temporal
changes; ∆Rlow

(
xi j, yi j, b

)
represents the pixel value changes of band b in MODIS LST from T1

to T2; Rhigh2
TP

(
xi j, yi j, b

)
and Rhigh2

SP
(
xi j, yi j, b

)
are high-spatial-resolution LST pixel values at T2

based on temporal changes and optimized TPS interpolation function parameters, respectively, and
Eh0

(
xi j, yi j, b

)
is the difference between two types of LST pixels; CW

(
xi j, yi j, b

)
represents the weights of
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guiding residual allocation; W
(
xi j, yi j, b

)
is the normalized weight of CW

(
xi j, yi j, b

)
; HI is homogeneous

coefficient; and fTPS−b
(
xi j, yi j

)
is the TPS function corresponding to band b.

To better understand the procedures of how to generate the Landsat-like LST by using FSDAF, a
workflow is shown in Figure 2.
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Figure 2. Flowchart of the Landsat-like LST generation procedure.

By using the ENVI IDL8.5 software package, the FSDAF model could be operated after many
parameter settings were defined, including 30 pixels × 30 pixels window size, four classes of LST
classification, and a similar pixel search threshold of 30. Table 2 shows the input and the output of the
FSDAF method for predicting fine-resolution LST data. A pair of inputs (one MODIS LST and one
Landsat LST) in T1 and another single input [MODIS LST data (as a reference of spatial feature)] in T2
were used in the FSDAF method to generate the output “Landsat-like” LST data in T2. To assure better
fusion effects, the pair of input data should generally be cloud-free and close to the acquisition date of
the single input data.

Table 2. The input and the output of the Flexible Spatiotemporal Data Fusion (FSDAF) method.

Data
T1: The Pair of Inputs T2: Single Input T2: Output

MODIS LST Landsat LST MODIS LST Landsat-Like LST

Verification
4 June 2013 4 June 2013 28 June 2013 28 June 2013

13 December 2013 13 December 2013 22 January 2014 22 January 2014

Prediction 15 February 2017 15 February 2017 21 January 2017 21 January 2017

As for generating monthly-series “Landsat-like” LST data, there were two steps: (1) a pair of
daily LST data (Landsat LST and MODIS LST <MOD11A1>) and 8-day MODIS LST (MOD11A2)
were selected as inputs in the FSDAF model, and the output—8-day “Landsat-like” LST—could be
predicted; and (2) four predicted 8-day “Landsat-like” LSTs in a month were integrated with maximum
synthetic method to obtain monthly “Landsat-like” LST. If there was no Landsat image available in one
month, the Landsat image of the previous or the next month was chosen, as well as the corresponding
MOD11A1 in that date. If there were two Landsat images available in one month, four predicted 8-day
“Landsat-like” LST were calculated according to the first and the second half month, respectively. In the
study, for further discussing the FSDAF model significance on a serial analysis while data missing or
cloud contaminating, the integrated monthly LST dynamics in a whole year were performed.
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3. Results

3.1. Land-like LST Accuracy Assessment

The accuracy of Landsat-like LST was assessed by comparing it with MODIS LST and Landsat
LST in three periods by using random points (n = 3000). On 28 June 2013 and 22 January 2014,
Landsat-like LST data were generated for verification with Landsat LST on the same date (Figure 3).
Because of the cloud coverage on 22 January 2017, by using MODIS LST on 21 January 2017, the
predicated Landsat-like LST was generated and assessed (Figure 4). The root-mean-square errors
(RMSEs) between the Landsat-like LST and the ETM+LST data were 2.46 ◦C and 1.73 ◦C, and the RMSEs
were slightly smaller between Landsat-like LST and MODIS LST data, corresponding to 2.30 ◦C and
1.30 ◦C, respectively. In addition, the regression coefficients between Landsat-like LST and MODIS LST
(0.96 and 1.01) were closer to one than those between Landsat-like LST and ETM+ LST (0.68 and 0.81)
because the generation of Landsat-like LST was based on the MODIS LST. Figure 3 shows the predicted
Landsat-like LST was highly similar to MODIS LST with a 0.976 regression coefficient (R2 = 0.753).
Spatially, all 30 m resolution Landsat-like LST had approximately the same “cold-hot” texture details
distribution with Landsat LST and MODIS LST.
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As shown in Table 3, for various LULC types, the RMSEs between the Landsat-like LST and the
Landsat LST data were also mostly higher than those between the Landsat-like LST and the MODIS
LST data except for the RMSE of water on 28 June 2013. The RMSEs in summer were higher than those
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in winter. The applicability of the FSDAF method in generating high spatial-temporal-resolution LST
is greatly affected by different LULC effects [48,60].

Table 3. The root-mean-square error RMSE (◦C) of different land use/land cover (LULC) between
Landsat/MODIS LST and “Landsat-like” LST.

LULC Type 28 June 2013 22 January 2014

Landsat LST MODIS LST Landsat LST MODIS LST

ISA 2.25 1.73 1.74 1.33
Vegetation 2.70 2.42 1.69 1.21
Bare Soil 2.22 1.69 1.70 1.27

Water 2.76 2.87 1.65 1.28

ISA: impervious surface area.

3.2. LST Variations under Urban Expansion

Urban expansions and land use/land cover (LULC) changes over the period are illustrated in
Figures 5 and 6. There were significant seasonal changes and spatial variations in LULC. Urban
expansion presented the continual increase of impervious surface area (ISA) in four periods with
389.85, 413.75, 484.56, and 502.69 km2, respectively. The ratio of ISA increased from 37.91% to 40.23%,
47.12%, and 48.88%. The total area of vegetation and bare soil decreased during urban expansion, with
an obvious seasonal variation. The overall classification accuracies of the four periods were 89.25%,
88.33%, 91.27% and 94.69%, and the Kappa coefficients were 0.86, 0.88, 0.90, and 0.94 (Table S2).
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Figure 6. Land use/land cover changes in four periods.

In summer, the relatively higher LST (more than 50 ◦C) regions were mainly concentrated in
the center of the study area, where the highest LST on 20 June 2016 was up to 61.89 ◦C, while the
air temperature was 30.4 ◦C that day. In winter, the LST of the central urban area was significantly
lower than that of the surrounding suburbs (Figure 7), and the lowest LST was −3.92 ◦C on 22 January
2014, while the air temperature was 2.5 ◦C. It is clear that the LST of most regions in summer of 2016
was higher than that of 2013, while for winter, the differences were not significant. Although the
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heterogeneity of the land surface causes the varieties of LST spatially, LSTs are mainly dominated by
the distribution of LULC. In summer, the lower LST regions were mainly distributed in the southwest
and the north covered by water bodies and grass, while in winter, the higher LST characteristics were
more prominent in the surrounding suburbs, while the lower LST zones mostly appeared in the central
urban area. Comparing the spatial distribution changes in LST between 2013 and 2016, we found
the higher LST regions in summer increased significantly, showing a trend of expansion towards the
southwest, while the LST also increased slightly in the west and the southeast of the study area.
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Figure 7. LST distribution in four periods.

To reveal the LST spatial variations, the mean value in five different municipal zones of Zhengzhou
was analyzed (Figure 8a). From 2013 to 2016, the mean LST in summer changed the most by increasing
2.25 ◦C in the EQ region compared with changes in other regions (JS −0.05 ◦C, GC 0.44 ◦C, ZY 0.68 ◦C,
HJ 0.48 ◦C), while in winter, the mean LST decreased in all zones. ISA ratio continued to increase over
time in each municipal zone and showed the urban expansion mainly depending on the built area
increase (Figure 8b). The mean values of NDVI and NDBI also changed (Figure 8c,d). In the EQ region
with a big park and green land, the mean NDVI was the highest, while the NDBI was the smallest
in summer. The NDBI in winter seasons was larger than that in summer because of the withering
vegetation in grassland and few crops covering some farmlands. By comparing the changes in two
periods, both the maximum increase of NDBI and the maximum decrease of NDVI in summer were
identified in EQ region. The spatial distributions of LST and three indices (including ISA ratio, mean
NDVI, mean NDBI) indicate an obvious consistent or opposite trend change for each municipal zone
in summer.
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Figure 9 shows the mean LST in different LULC types by using random points (n = 3000). The LST
orders of different LULC in four periods were listed as follows: bare soil > ISA > vegetation > water
(28 June 2013), ISA > bare soil > vegetation > water (20 June 2016), and bare soil > vegetation > ISA >

water (28 June 2013 and 21 January 2017). In summer, ISA (including industrial lands, residential areas,
and commercial regions) and bare soil had relatively higher LST than vegetation and water because of
the lower specific heat capacities.
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Urban expansion includes not only the total area increase but also internal urban land increase.
Figure 10 shows spatially the ISA changes and the corresponding LST differences between two summers
of 2013 and 2016. The ISA increase regions existed in various municipal zones, especially in the
southwest of JS, the northwest of GC, the northeast of EQ, and the southeast of ZY (Figure 10a). The LST
increase regions mostly occurred in the area where the LST decreased (Figure 10b).Remote Sens. 2020, 12, 801 11 of 20 
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Figure 10. ISA changes and corresponding LST difference between 28 June 2013 and 20 June 2016.
(a) The ISA regional changes generated by using the NDBI threshold method; and (b) the spatial
distribution of LST difference.

As shown in Figure 11a, the mean LST differences of two periods were calculated for parts where
ISA changed or not in each zone. For ISA increase type, LST increased with the range 1.9 to 3.5 ◦C,
showing a “warming effect” of the building land. LST decreased with the range −3.8 to −0.5 ◦C
where ISA decreased. The mean LST difference presented a small increase and ranged from −0.15 ◦C
to 1.98 ◦C where ISA had no change. By comparing two term changes in EQ zone, the largest LST
increased 3.5 ◦C for the parts where ISA increased. LST increased where other types of LULC were
converted to ISA; on the contrary, LST decreased where ISA regions were converted to non-ISA regions.
As shown in Figure 11b,c, including ISA increased region and ISA decreased region, a strong nonlinear
quadratic polynomial correlation between ISA ratio change and LST change existed (R2s were 0.698
and 0.652, respectively, p < 0.001). As for the ISA increased areas, LST showed 0.27 ◦C growth as ISA
ratio increased by 0.1. However, for ISA decreased regions, LST showed two different trends. LST
increased by 0.25 ◦C as ISA ratio increased by 0.1 in the range from −1 to −0.3, while LST decreased by
0.22 ◦C as ISA ratio increased by 0.1 in the range from −0.3 to 0.
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3.3. Driving Factors on LST

NDVI and NDBI are two important factors reflecting the LULC change. Figure 12 shows correlations
of NDVI-LST and NDBI-LST to reveal the driving forces (mainly focusing on vegetation and ISA) on
LST. LST had a negative linear relationship with NDVI (R2 = 0.425 and R2 = 0.549, p < 0.001), whereas
there was a less obvious linear relationship in winter. NDBI had a positive relationship with LST that
was relatively stronger in summer (R2 = 0.601 and 0.609) and weaker in winter (R2 = 0.308 and 0.214).
The NDBI had a closer relationship with LST than NDVI, further illustrating that the building land
increase had a more significant impact on LST than vegetation coverage during urban expansion.Remote Sens. 2020, 12, 801 12 of 20 
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3.4. Integrated Monthly LST Dynamics Based on Landsat-like Data

For generating monthly “Landsat-like” LST using MODIS 11A2 products and Landsat LST, four
8-day “Landsat-like” LST data in each month were generated to integrate the monthly LST with
maximum value composite method. For example, the first two predicated LST (Figure 13a1,a2) and last
two “Landsat-like” LST (Figure 13a3,a4) of June were generated by using the Land satellite images of
12 June 2013 and 28 June 2013 individually, while predicated LST (Figure 13b1–b4) were all generated
by using the Landsat LST image on 13 December 2013.

As shown in Figure 14, with the available Landsat images of each month (Table 4), the integrated
monthly “Landsat-like” LST of 2013 were generated. The continuous high resolution monthly LST
data can provide sufficient information to illustrate the serial LST dynamics in the regional thermal
environment over the long-term and with high precision. The monthly LST values of different percentiles
in 2013 were calculated, and the distribution trend is shown as Figure 15. From January to December,
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distinct seasonal variations showed the highest LST (36.45 ◦C) in summer and the lowest LST (9.29 ◦C)
in winter.
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Table 4. The number of available Landsat images in each month of 2013.

The Number of Available Landsat Images Month

0 April, July, and September of 2013, February of 2014
1 November and December of 2013, January of 2014
2 March, May, June, August, and October of 2013
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The relationship of NDVI-LST and NDBI-LST is illustrated in Figure S1. The correlation coefficient
R2s of NDVI-LST and NDBI-LST in summer were above 0.4 (June, July, and August of 2013), while R2

was rather weak in winter (Figure 16). From the monthly series of correlation analysis, the positive
correlation of NDBI-LST was more stable and stronger than the negative relationship of NDVI-LST.
At the same time, the surface parameter NDVI had the largest driving force on LST. The seasonal
difference in the correlation of NDVI-LST was significant, especially among summer and the other
seasons, while the correlation of NDBI-LST only presented the lowest in winter and remained stably
strong during the year of 2013.
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As shown in Figure 17, air temperature exhibited a similar monthly trend to LST (R2 = 0.878).
In August, the highest monthly air temperature was 30 ◦C, while the highest monthly LST was up to an
average 37.44 ◦C for the whole city. However, the highest pixel LST was more than 50 ◦C, which was
almost 13 ◦C higher than the air temperature in August. A moderate negative correlation (R2 = 0.696)
was detected between particulate matter PM2.5 and LST. Generally, PM2.5 can reduce the amount
of surface solar irradiances reaching the ground surface and cause a cooling effect on the surface.
In contrast, there were no strong results showing effects of wind speed and rain on LST variations.
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4. Discussion

Spatiotemporal fusion models can make up the limitations of remotely sensed data missing or
cloud contamination in the related thermal environment researches, and they provide a new method
for previous researchers who had to use single daily LST data representing continuous data, because
of the satellites’ long return time cycle [50,61]. Especially, the flexibility and the performance of the
FSDAF method has higher efficiency and lower input requirement. Compared with the results of
previous studies [48], the RMSE between predicted LST and the observed LST in this study could
be kept within 2.50 ◦C, showing a high precision level. However, the result of Landsat-like LST is
dependent on the date of input Landsat image acquisition and is especially influenced by using the
replacement data because of data missing or cloud contamination. Figure 18 shows the closer the
input Landsat image acquisition date to the predicted date is, the higher the accuracy of the result is.
By selecting Landsat LST of 28 June 2013 as the reference, “Landsat-like” LST predicted 4 June 2013,
which was the closest to the output predicted date showing the smallest differences from actual LST
[Figure 18b]. Comparatively, LST differences greater or less than 3 ◦C were more obvious if using
Landsat-like LST generated from 11 May 2013 [Figure 18a] or 31 August 2013 [Figure 18c]. Also, the
selection date of the paired input data also affects the predicted Landsat LST. The input coarse MODIS
LSTs of various dates have differences in the satellite viewing angles and sun geometry, among others,
which also cause some deviations between actual LST and predicted LST. As to the serial LST dynamics
analysis, 8-day Landsat-like LSTs were predicated and then were combined to generate the integrated
monthly Landsat-like LST by using the maximum value composite method. However, due to the cloud
coverage influence, uncertainties and new methods should be solved while using the FSDAF method
for large scale LST analysis [62,63].
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most major cities in north and central-north China. In Zhou’s research, spatial distributions of surface 
Urban Heat Island Intensity (SUHII) of Zhengzhou ranged from 2 °C to 3 °C in summer and from -
0.5 °C to 0 °C in winter [32]. Yao et al. also proposed that the SUHII of Zhengzhou ranged from 2 °C 
to 4 °C in summer and from -2 °C to 0 °C in winter [40]. However, more attention should be paid to 
explain uncertainties about the urban cooling effect, especially by combining the results of the 

Figure 18. Difference between Landsat LST (28 June 2013) and three predicted “Landsat-like” LST
generated by using one single input MODIS LST (28 June 2013) and three different pairs of inputs (MODIS
LST and Landsat LST) on different dates: 11 May 2013 (a), 4 June 2013 (b), and 31 August 2013 (c).

The urban area of Zhengzhou city expanded by 28.94% from 2013 to 2016. This is similar to previous
studies that revealed a continuous and rapid expansion in the process of Zhengzhou urbanization for
many years [64,65]. The urban expansion affected LST with great variations. In summer, the center of
the urban area had a relatively higher LST than the surrounding suburbs, while it presented a completely
opposite LST distribution in winter. This phenomenon is widespread in most major cities in north and
central-north China. In Zhou’s research, spatial distributions of surface Urban Heat Island Intensity
(SUHII) of Zhengzhou ranged from 2 ◦C to 3 ◦C in summer and from −0.5 ◦C to 0 ◦C in winter [32].
Yao et al. also proposed that the SUHII of Zhengzhou ranged from 2 ◦C to 4 ◦C in summer and from
−2 ◦C to 0 ◦C in winter [40]. However, more attention should be paid to explain uncertainties about the
urban cooling effect, especially by combining the results of the numerical simulation and the remote
sensing retrieval method. As for the driving forces on LST, similarly to other research [66], in summer
months, NDVI-LST showed a negative correlation, while NDBI had a quite strongly positive correlation
with LST. However, due to the seasonal fluctuations of vegetation, the relationship of NDVI-LST
changed dramatically and showed weaker correlations in winter, as reported in other research [67,68].
Different LULC types had different specific heat capacities, and vegetation was transferred to built-up
land, which increased LST [69]. This is consistent with the results of previous studies [70], indicating
that ISA changes have a large impact on the spatial distribution of LST.

In addition, except for ISA, NDVI, and NDBI, a range of climatic factors including air temperature,
wind speed, and rain can also affect the LST variations [23]. Research has disclosed climatic multiple effects
on LST and pointed out the potential strategies for heat stress alleviation and urban planning [71,72].
For example, the strong correlation between air temperature and LST could be used to perform estimation
of spatially distributed near surface air temperature with constructing models [73,74]. However, according
to Figure 17a, we can see the biggest difference between LST and air temperature was 15 ◦C in March.
The reason for this may have been the fast vegetation growth inducing the LST increase. In the whole year,
LST fluctuated in some months while there was only one peak in the air temperature curve. That shows
the complex thermal variations mechanics of land surface in respect to radiance and emission. Although
we pointed out the negative impacts of PM2.5 on LST, there are still great uncertainties. For example,
Cao et al. pointed out urban haze/aerosol pollution was also a great contributor that intensifies the high
surface temperature agglomeration effect on the center of the urban area at night [75]. The wind effects
may differ according to different location and topography. The change of the urban boundary layer
wind field reduces the LST of the urban center, especially in coastal cities, and good ventilation can better
improve the effects of the urban thermal environment [76]. With long-term and multi-site data, it could
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be disclosed that there is a negative correlation presented between LST and precipitation [73]. In addition
to these significant factors that have a great impact on the LST changes, there are still some possible
contributors, e.g., incoming surface radiation, duration and intensity of sunlight, elevation, etc. [77]. LST
variations are affected by the contribution from multi factors, and comprehensive analysis is helpful for
fully understanding the relevant driving forces and driving modes [78].

5. Conclusions

In this study, to overcome the shortage of coarser spatial resolution of MODIS data and lower
temporal resolution of Landsat data, “Landsat-like” datasets were generated using the FSDAF method,
including LST, NDVI, and NDBI. Under the urban expansion, LST variations and related driving
factors were analyzed.

The results show that high spatiotemporal-resolution “Landsat-like” LST has a high accuracy level,
and the overall trend is consistent with Landsat LST and MODIS LST for the same date. From July 2013 to
July 2016, the urban area expanded from 389.85 km2 to 484.56 km2. LST increases ranging from 1.80 ◦C to
3.92 ◦C were detected in areas where the impervious surface area increased, while LST decreases ranging
from −3.52 ◦C to −0.70 ◦C were detected in areas where ISA decreased. The relationship between NDVI
and LST showed significant seasonal differences; in summer, it revealed a negative linear relationship
(R2 = 0.425 and R2 = 0.549, p < 0.001). NDBI presented a strongly positive correlation with LST in
summer with R2 more than 0.6. Monthly Landsat-like LSTs were generated from four predicated 8-day
“Landsat-like” LST in each month to indicate comprehensive dynamics. Also, monthly Landsat-like
NDVI and NDBI, air temperature, PM2.5, and other factors were analyzed to disclose the driving forces.
In future research, temporal and spatial fusion efficiency and precision can be improved by using
multi-source data or deep-learning algorithms. Also, urbanization effects on thermal environment
should be analyzed by coupling different dimensional data including land surface factors, energy
consumption, and urban morphology. This study can provide practical information and guidance to
assist local thermal environmental management and to advise decision-makers about good land use
practices to be applied during urban expansion.
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