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Abstract: This paper presents a framework based on machine learning algorithms to predict nutrient
content in leaf hyperspectral measurements. This is the first approach to evaluate macro- and
micronutrient content with both machine learning and reflectance/first-derivative data. For this,
citrus-leaves collected at a Valencia-orange orchard were used. Their spectral data was measured
with a Fieldspec ASD FieldSpec® HandHeld 2 spectroradiometer and the surface reflectance and
first-derivative spectra from the spectral range of 380 to 1020 nm (640 spectral bands) was evaluated.
A total of 320 spectral signatures were collected, and the leaf-nutrient content (N, P, K, Mg, S, Cu, Fe,
Mn, and Zn) was associated with them. For this, 204,800 (320 × 640) combinations were used. The
following machine learning algorithms were used in this framework: k-Nearest Neighbor (kNN),
Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial Neural Network
(ANN), Decision Tree (DT), and Random Forest (RF). The training methods were assessed based on
Cross-Validation and Leave-One-Out. The Relief-F metric of the algorithms’ prediction was used to
determine the most contributive wavelength or spectral region associated with each nutrient. This
approach was able to return, with high predictions (R2), nutrients like N (0.912), Mg (0.832), Cu
(0.861), Mn (0.898), and Zn (0.855), and, to a lesser extent, P (0.771), K (0.763), and S (0.727). These
accuracies were obtained with different algorithms, but RF was the most suitable to model most
of them. The results indicate that, for the Valencia-orange leaves, surface reflectance data is more
suitable to predict macronutrients, while first-derivative spectra is better linked to micronutrients. A
final contribution of this study is the identification of the wavelengths responsible for contributing to
these predictions.
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1. Introduction

Remote sensing techniques can be useful for the estimation of plant health conditions,
including monitoring the nutritional status [1–4], the stress response [5–7], plant count [8,9], yield
prediction [10–12], chlorophyll content [13–15], pest and disease identification [16,17], and biomass
estimation [18], among others. Multisensory data is often used to accomplish this task, including
the ones acquired by orbital sensors, aircraft or Unnamed Aerial Vehicle (UAV)-embedded cameras,
terrestrial sensors, and field spectroradiometers, known as proximal sensors [19–23]. This type of
sensor can measure the spectral response of a target at very-high resolutions while having a reductive
amount of radiometric interference by being near the leaf sample.

The usage of proximal sensors for plant evaluation has assisted phenological studies of different
species. Due to the high spectral resolution capability of these sensors, studies have been relatively
successful in modeling phenomena, such as the ones previously stated, but at the leaf level, like
plant stress, yield prediction, nutrient content, chlorophyll, and many other attributes [24–27]. They
also have the advantage of helping to define, in detail, the appropriate spectral regions to estimate
these phenomena. This definition is relatively important as it can guide future research towards
the development of equipment specifically designed to measure these regions [23]. Another type of
contribution is that it can assist in creating spectral vegetation indices or other simpler mathematical
models that contribute to identifying the different characteristics of plants [13,28].

Currently, one of the most common problems in monitoring crops is knowing the proper amounts
of fertilization rates. Traditional agronomic methods used to evaluate plant nutrients are done regularly,
in key periods, to manage fertilization of agricultural fields [29]. These methods require the collection
of a high number of leaves for the chemical analysis of the leaf tissue. However, this chemical analysis is
a time-consuming, labor-intensive, and pollutive task [3,30,31]. Remote sensing, specifically proximal
sensing, can provide an effective alternative in assisting nutritional analysis of plants more accurately.
The use of proximal sensors has an advantage over traditional agronomic methods since it allows to
infer vegetation conditions in a non-invasive and non-destructive manner [32–35].

Regarding the monitoring of plant and leaf nutritional conditions by remote sensing systems,
recent research has made significant advances, especially in the estimation of nitrogen (N)
content [1–4,21,25,28,31]. These studies were conducted at orbital, aerial, terrestrial, or proximal
levels in different crops. N deficiency is linked to a characteristic chlorosis symptom, which is
observable at the visible spectra [21,25,28]. Still, considerable research was also able to identify spectral
bands and wavelengths in the near and short-wave infrared regions related to this nutrient [2,3,25,28,36].
Regardless, even though N is a pretty standard nutrient to be evaluated by remote sensing systems,
the same cannot be said about others.

The evaluation of nutrients, other than N, by proximal sensors, is more unusual. One study was
able to infer potassium (K) content by computing random two-band spectral indices calculated from
hyperspectral data ranging from 350 to 2500 nm [37]. Others focused on evaluating a large group
of macronutrients, magnesium (Mg), S, phosphor (P), K, and calcium (Ca), and found important
associations between the spectral region of 470 to 800 nm with them [32] Lastly, one approach aimed
to predict macronutrients like K, calcium (Ca), and magnesium (Mg), as well as micronutrients
like manganese (Mn) and iron (Fe), by using near-infrared spectroscopy, but their method did not
return satisfactory results for micronutrients [24]. Recent literature demonstrates how hyperspectral
measurements are being linked to nutrients, specifically macro. However, there is a gap in terms
of micronutrient prediction by spectral sensors that need to be addressed by new research, and few
studies were conducted within this theme. In citrus, a study performed a Partial Least-Squares
Regression (PLSR) evaluation on both macro- and micronutrients and archived interesting results using
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Laser-Induced Breakdown Spectroscopy (LIBS) [38]. Similar research, focusing only on near-infrared
spectroscopy, also returned high predictions for both classes of nutrients [39].

Another way to infer chemical components from hyperspectral measurements is by applying a
derivative analysis. The derivation of the reflectance data allows highlighting absorption features of
components that, in a traditional spectral curve (i.e., reflectance curve), may not be measured with the
same accuracy or even be detected [40–42]. Studies that apply a derivation of the reflectance curves in
plants have found good correlations with N [40,41] and cadmium (Cd) concentrations [42]. Since the
gains of derivative analysis are known in the literature, there are also methods for data analysis in the
remote sensing scenario that may benefit from it. The advantages proportionated by derivatives may
assist in the evaluation of leaf nutritional content when combined with more robust techniques.

The aforementioned studies found high relationships with hyperspectral data by employing
various statistical methods in their analysis. However, methods like Partial Least-Squares Regression
(PLSR), Principal Component Analysis (PCA), Stepwise-Multiple Linear Regression (SMLR), among
others, returned different accuracies even for the same cultures [15,24,32,37–40,42]. Some of these
methods are also reductive, and the prediction may decrease if an increase occurs in the model
complexity [32]. Since hyperspectral measurements produce high and complex amounts of data, one
type of approach that could ideally deal with this is machine learning.

Machine learning algorithms are a robust and intelligent technique that can model different types
of data [43,44]. These algorithms have the advantage of being non-parametric and non-linear while
being able to analyze noised and imperfect data [45–47]. They are also capable to perform numerous
combinations and calculations in a matter of seconds, achieving relative success in remote sensing
applications regarding plant analysis [48,49]. Concerning hyperspectral measurements, among the
applications evaluated, these algorithms were able to return state-of-the-art performances for many
situations [5,16,23,50–52]. Even though, to date, no study evaluated the performance of machine
learning algorithms in inferring both plant macro- and micro-nutritional content with only leaf
hyperspectral measurements. Since these algorithms have returned good accuracies in different
hyperspectral analyses, they could be appropriate to deal with the complexity imposed by this type of
dataset in the described situation.

As previously stated, the first-derivative of the reflectance data has already been proved to be
effective in associating with different chemical components. From this information, it could be assumed
that both the reflectance data and its first-derivative could be of assistance in predicting different
nutrients of the leaf tissue. Since the derivation of a reflectance curve can highlight hard-to-detect
components at the first level, it is possible that, by integrating these curves with machine learning
algorithms, one can create important information regarding proximal sensing and plant nutritional
analysis. In this spirit, a framework adopting machine learning algorithms are proposed to predict
macro- and micronutrient content in the leaf-tissue directly from its hyperspectral response. This is
the first approach to evaluate different nutrient content combining machine learning methods and
reflectance/first-derivative data.

In this study, citrus leaves—more specifically, from Valencia-orange trees—were selected to
compose the experimental dataset. It is well known that a sufficient supply of both macro- and
micronutrients is critical to the management and sustainability of these plants, and the balance of
available nutrients is a key component to profitability [53]. Citrus plants are economically important
to the agricultural sector of many countries and may benefit significantly from a rapid and indirect
nutritional assessment, such as the one proposed here. In this manner, the aims of this work are
to a) show a method to indicate the most suitable spectra (reflectance/first-derivative), in order to
model the nutrient content according to the algorithms’ performance; and b) determine the important
wavelengths or spectral regions associated with each nutrient.
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2. Materials and Methods

The framework proposed in this paper was divided into four main phases (Figure 1). In the
first phase, the hyperspectral measurements of the leaf samples in a Valencia-orange orchard were
performed. These measurements were conducted with a field spectroradiometer. In the second phase,
the spectral measurements were corrected, and the data were pre-processed. These corrections aimed to
convert the radiance signal to reflectance, as well as remove the noise and calculate their first-derivative.
The third phase involved the data analysis by machine learning algorithms. In this phase, a fine-tuning
to determine the most appropriate parameters to model the data was performed. The fourth and
final phase consisted of the organization of the prediction values into a hyperspectral map, where it
was identified as the most appropriate algorithm and wavelength (i.e., spectral window) to predict
each nutrient.
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2.1. Study Area and Data Acquisition

As a study area, an open field of citrus trees, located on private property in the municipality of
Ubirajara, São Paulo state, Brazil, was selected. The species analyzed were all of Valencia-orange
(Citrus sinensis “Valencia”), planted on a Citrumelo–Swingle rootstock. During the evaluation, the trees
were in their vegetative phase, with an adult size, measuring nearly 3 m in height (ground-related),
with crown areas around 5.5 m2. During the survey, the trees were at their maturing stage, which is
five years from their initial planting. The area contains 752 trees per hectare, planted at approximately
a 7 × 1.9 m spacing. Each plantation field was 250 m × 250 m in size, with some fields compensating
for others accordingly to its location. The plantation fields were selected randomly inside this property
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and configured the different conditions of the treatments. Before the analysis, the soil was fertilized
with 250 kg/ha of N in the form of urea, 125 kg/ha of phosphorus excreted, expressed as P2O5, and
167 kg/ha of potassium oxide (K2O). The area is predominantly composed of red-yellow podzolic soil,
situated in a Cwa Köppen [54] subtropical climate type unit.

This paper evaluated leaf samples from multiple orange tress scattered around different planting
fields in an experimental portion of the orchard. In each field, the number of trees was selected
according to the size of the planting field and trees planted per area. The selection was both to measure
the leaf hyperspectral response and to collect them. A total of 320 samples collected in the field,
with both spectra curves and later-known nutrient content, were gathered during this survey. The
sampling method followed standard recommended agronomic procedures, guided by a field specialist.
To represent the proper conditions of a citrus tree, only leaves at a medium canopy height and those
visually healthy with no signs of diseases or damages were evaluated. A lift platform was used to
elevate the person with the equipment. Since the chemical analysis of the leaf tissue recommends the
3rd or 4th leaf of a fruit branch to be sampled, the spectroradiometer equipment was directed as close
as possible to the leaves that shared this description.

After measuring the spectral radiance, the leaves were extracted from their respective branches,
separated, and identified them into plastic bags to be submitted to the laboratory. The leaf samples
consisted of the same leaves that had their spectral radiance measured. They were conditioned at
an appropriate temperature and transported accordingly. In the laboratory, the leaves were washed
with a neutral detergent to remove any impurities. Later, they were dried in an oven, for 48 h, at
60–65 ◦C, and then crushed. From the crushed material, 100 mg was used for the N analysis. For that,
the Kjeldahl titration method [55], divided into 3 phases, was followed: (1) digestion; (2) distillation in
a nitrogen distiller; and (3) titration with sulfuric acid (H2SO4). The remaining material was separated
and used for the analysis of the other macronutrient (P, K, Ca, Mg, and S) and the micronutrients
(copper (Cu), Fe, Mn, and zinc (Zn)), following standard laboratory procedures of chemical analysis of
the leaf-tissue [56].

2.2. Hyperspectral Measurement Processing

The spectral radiance of the Valencia-orange leaves was measured with a Fieldspec ASD FieldSpec®

HandHeld 2 spectroradiometer. To record each target, the equipment was positioned at a 45◦ angle
concerning the tree canopy. For that, a lift platform was used to ensure the correct height. This
equipment operates at a spectral range of 325 nm to 1075 nm. In this study, a 10◦ aperture lens was
adopted, and 10 readings/measurements were conducted in each leaf to produce one mean spectral
signature. This procedure was important to reduce noise and variance for the same target. Before each
spectral measurement, a Lambertian (Spectralon® plate) surface plate was registered. This Lambertian
plate was used to calibrate the equipment and convert the digital number to a physical signal. As
mentioned, the leaf-spectral response in-field was recorded into 320 measurements for this experiment.

The measured spectral curves consist of the radiance value of the target (i.e., leaf samples) spread
along the electromagnetic spectrum. To produce the reflectance value (i.e., reflectance factor), the
Hemispherical Conical Reflectance Factor (HCRF) was calculated as shown in Equation (1) [57]:

HCRF(ωiωr) =
dL (θr, Φr) (target)

dL (θr, Φr) (reference)
K (θi, Φi, θr, Φr) (1)

where dL is the radiance; ω is the solid angle; θ and Φ are the zenith and azimuth angles, respectively;
i is the incident flux; and r is the reflected energy flux. The K value is the calibration coefficient (i.e.,
correction factor specified for the equipment). The target corresponds to the radiance of the leaf and the
reference is the radiance of the Lambertian surface plate. The HCRF represents the spectral signature
of the recorded target.

After obtaining the reflectance factor of each leaf, a low signal-to-noise removal was performed
by excluding wavelengths under 380 nm and above 1020 nm. After this, the first-derivative of all



Remote Sens. 2020, 12, 906 6 of 21

the HCRFs (n = 320) was calculated. The first-derivative calculation is a traditional method for
modeling spectral data, and many approaches have discussed this issue. For this study, a linear least
mean-squared smoothing filter [58] was firstly performed to reduce the random noise that may vary
with the wavelengths and affect the derivative function. In most cases, noise can be assumed to be
stationary with constant variance. It then can estimate a noise-free spectrum s(λ) in terms of the
current value of the observed data. By knowing the correct signal of the spectrum giving a specific
wavelength s(λ), it is possible to perform a final approximation to estimate derivatives by suitable
difference schemes according to a finite band resolution: ∆λ. Thus, the first-derivative was calculated
according to [58]:

ds

dλ

∣∣∣∣∣ = s(λi) − s
(
λj

)
∆λ

(2)

where ∆λ is calculated as |λj − λi|, assuming that the interval between the bands is constant. Additional
tests involving further derivates, such as the second, third, and fourth, were also made in the
experimental phase of this study. However, there were no indications of an improvement over the
first-derivate for the used dataset during the machine learning analysis. For this reason, the proposed
framework was limited only to the first-derivative, but future research using different leaf data to
process additional derivatives is encouraged.

From the total leaf measurements (n = 320) used here, 10% (n = 32) was randomly separated
and designed to compose the testing dataset (Figure 2). Wavelengths ranging from 380 to 1020 nm
were used in the software as columns, while the leaf measurements (320) were used as rows. The 32
measurements were configured as an independent dataset, which belonged to the Valencia-orange trees
located at different plantation fields, never before seen by the algorithms. The other 288 measurements
configured the dependent dataset and belonged to trees with conditions or characteristics distinct from
one another, observed during the field campaign. To indicate that, a descriptive statistical analysis
was conducted with the nutrients’ concentration from the chemical analysis of the leaf tissue, and
the following parameters were calculated: minimum, maximum, mean, standard deviation, median,
and coefficient of variation. They were important to demonstrate the discrepancy of the dependent
(calibration/training) data used, and how representative it could be of the nutritional conditions of
Valencia-orange leaf tissue in the analyzed period.

2.3. Machine Learning Analysis and Hyperspectral Mapping

In a computational environment, the nutrients were individually selected as the target variables.
As input parameters, the reflectance and the first-derivative were used, and the performance of the
algorithms in predicting these nutrients was evaluated. As stated, the curves were separated into
three sets. The training dataset was used to set-up the hyperparametrization of the chosen algorithms.
For that, the Random Search approach [59] was used. The same conjunction of training/validation data
was adopted for all algorithms. This process was repeated with a fine-tuning until the reduction in
the mean absolute error (MAE) did not result in any more practical gains, as the modification in the
parameters impacted the processing time. Once the hyperparameters of each algorithm were defined,
the testing dataset was used to verify its real performance.

To configure and run the algorithms, the open-source computer program RapidMiner 9.5 was
used, which is based on a particular Python Library [60], while still permitting the development and
implementation of different codes. The workstation for this task was equipped with an Intel(R) Core
(TM) i7-8550U CPU 4.00 GHz, a Nvidia GeForce MX-150 4Gb GDDR5 64-bits 6008 MHz GPU, and
8GB RAM DDR4 2400MHz. The algorithms for the proposed framework were as follows: k-Nearest
Neighbor (kNN), Lasso Regression, Ridge Regression, Support Vector Machine (SVM), Artificial
Neural Network (ANN), Decision Tree (DT), and Random Forest (RF). The prediction metrics to
evaluate these algorithms were the coefficient of determination (R2), mean absolute error (MAE), and
root-mean-squared error (RMSE). To ascertain the relationship between the measured data and the
predicted data, the overall finest models were evaluated in a regression plot.
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Figure 2. Spectral wavelengths used for testing the machine learning algorithms’ performance. In green
are the spectral reflectance, while in dark-red are their respective first-derivatives.

Regarding the configuration of each algorithm, the parameters of the used methods were set to the
library default values, except those described in Table 1. For both the DT and RF algorithms an Extreme
Gradient Boosting (XGBoost) model was used to increase their performances. This model adopts
a forward-learning ensemble method [61], which obtains predictive results in gradually improved
estimations. To illustrate the machine learning architecture regarding data inputs and outputs in the
proposed analysis, a structure was organized in Figure 3.

Table 1. Detailed information regarding the algorithms adopted in the proposed framework.

Algorithm Hyperparameter Criteria

kNN Distance
Number of Neighbors

Euclidian
k-Neighbors = 5

Lasso Regression (L1) Strength (α)
Elastic Net Mixing Proportion (L1–L2)

1.0
0.57:0.43

Ridge Regression (L2) Strength (α)
Elastic Net Mixing Proportion (L1–L2)

0.1
0.57:0.43

SVM Radial Basis Function (RBF)
Kernel exp(-g|x-y|2)

g = automatic
Regression Loss = 1.00
SVM Type Cost = 1
Tolerance = 0.001
Interaction (limit) = Unlimited

ANN
Activation: Logistic Function
Adam Optimizer
Regularization (α) = 0.0001

Neurons (First Hidden Layer) = 400
Neurons (Second Hidden Layer) = 200
Interactions = 10,000

DT Number of Leaves
Trees Depth

Leaves (minimal) = 2
Tree-depth (maximum) = 100

RF Number of Trees
Nodes

Trees = 100
Nodes (maximum) = 5
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It is also important to address that, although hyperspectral data is relatively easy to obtain, leaf
tissue analysis can be limited. This is mostly because the chemical analysis can be highly cost if
considering the amounts of data required to process the machine learning algorithms. Therefore, the
appropriate number of samples is something to be observed in each case. In this study, the amount of
data used to train and validate/test the used algorithms should be sufficient based on the literature. One
study [62] compared different learners, such as RF, SVM, kNN, and others, in diverse settings. Between
these settings, they evaluated the number of classes per problem (from 2 to 50) and the number of
samples per class (from 5 to 100). This returned a variation of 10 to 5000 samples. Through their study,
it was demonstrated that data curation could be modeled by these algorithms from a few to a high
number of samples and still achieve appropriate results. In comparison with the proposed approach,
other machine learning frameworks also adopted similar sample sizes, like 324 leaf measurements that
were used to model the water-stress response from lettuce [23], 189 hyperspectral observations that
were used to model grapevine water status [63], and 266 observations that were used as training to
predict nitrogen content in rice fields [64].

As a discussion example, a recent paper collected 500 samples per class with 540 spectral bands
and adopted a Cross-Validation method with a dataset considering 200 samples for each validation to
demonstrate the importance of the feature selection methods [65]. Regardless, hyperspectral data have
a characteristic distinct from most data, which is a high number of bands/wavelengths available to
model a given problem. The used dataset was composed of 320 leaf measurement (in which 32 were
separated as a test) and 640 spectral bands (380–1020 nm). This gives a total of 204,800 combinations
to work with, which should be enough to configure a training/testing dataset. Although this high



Remote Sens. 2020, 12, 906 9 of 21

dimensionality could offer potential problems to hyperspectral data processes [65], studies already
suggested that maintaining the original data could also outperform feature-selected subsets [66,67].

As mentioned, though the aforementioned studies did use similar sample sizes of data to train,
validate, and test their learners, little information related to hyperspectral wavelengths and machine
learning method sample size could be encountered in the literature [65]. Since there is no research
focused on evaluating the impact of the training set to model spectral data, a previous comparison
regarding two well-known sampling methods was performed. The first is the cross-validation method,
which is more suitable to deal with the most common tasks in machine learning data curation [43].
The Cross-Validation method was performed with 10k folders. This model separates the data into
10(k) parts while using nine of them to train the algorithm and one to validate. This process is done
sequentially, constantly changing the folder used for validation. In this manner, the chosen algorithm
is always validated by data not used during the training phase. The second method used was the
Leave-One-Out approach. This method is similar to Cross-Validation, but instead it only takes one
data instance for validation each time. The method is considered a very time-intensive procedure, and
it is only recommended for smaller datasets [43]. After applying the Random Search approach [59] to
perform a fine-tuning, both training methods’ results were compared (Table 2).

In the Cross-Validation method, from the 288 samples, 90% was used to train while 10% was used
to validate, and was repeated 10 times randomly. In the Leave-One-Out method, 287 samples were
used to train, while one sample was used to test it. This was repeated until all instances were used. The
low difference between MAE predictions in each nutrient for both methods indicates that, even when
adopting a more suitable training approach to model smaller datasets (Leave-One-Out), the training
results are similar. Still, while the Leave-One-Out method is approximately unbiased, it could result in
a high variance. Normally, the variance in fitting a model tends to be higher in small datasets since it is
more sensitive to noise and artifacts in the used training sample. Because of that, a Cross-Validation
method would also show signs of high variance, as well as a high bias if given a limited amount of data.
This was not the case here, since both methods returned high predictions and similar metrics, thus
indicating that, whatever the training method, the amount of data (204,800 combinations) was sufficient
to model the given problem. Regardless, the Leave-One-Out method needed a higher computational
cost, which is something to be considered when evaluating the amount of processed data. In the
workstation, the Leave-One-Out-averaged processing time for all algorithms was 7.5 times slower
than the Cross-Validation method. Because of that, the Cross-Validation method was adopted in this
study, but future research should considerer both methods according to their respective dataset size
and characteristics.

Lastly, the contribution of each spectral wavelength into the performance of the algorithm was
computed by displaying their Relief-F value. Relief-F uses a kNN scoring to address noise data while
handles incomplete data [68]. It is considered a reliable metric to inform a feature score and then be
applied to rank top-scoring features. Here, the Relief-F values were used to map the hyperspectral
response of each nutrient regarding the strength of the individual wavelengths to the performance
of the evaluated algorithms. Aside from that, to help ascertain the hyperspectral relationship with
the evaluated nutrients dataset, an analysis of each nutrient and a Shapiro–Wilk normality test at
a 95% confidence interval was performed. As the normality test returned a p-value under 0.05,
a non-parametric Spearman’s correlation test in a pairwise comparison was executed to verify the
association between each nutrient.
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Table 2. MAE returned from both training methods: Cross-Validation and Leave-One-Out.

Method N P K Ca Mg S Cu Fe Mn Zn

kNN
MAE (Ref.)—Cross-Validation 0.682 0.122 1.070 6.125 0.201 0.179 6.793 17.022 4.890 5.058

MAE (1st Der.)—Cross-Validation 0.884 0.174 1.235 6.358 0.357 0.154 6.589 16.789 3.012 4.246
MAE (Ref.)—Leave-One-Out 0.700 0.158 1.107 6.549 0.224 0.144 6.723 17.686 4.705 5.157

MAE (1st Der.)—Leave-One-Out 0.912 0.178 1.301 6.897 0.377 0.163 6.453 16.949 3.192 4.349
Lasso Regression

MAE (Ref.)—Cross-Validation 1.986 0.083 1.322 7.010 0.523 0.118 17.552 31.849 8.004 7.128
MAE (1st Der.)—Cross-Validation 1.056 0.079 1.756 6.849 0.446 0.287 17.389 30.595 7.341 9.058

MAE (Ref.)—Leave-One-Out 1.898 0.095 1.352 7.101 0.538 0.107 17.515 32.256 8.058 7.185
MAE (1st Der.)—Leave-One-Out 1.285 0.087 1.975 6.942 0.455 0.284 17.395 30.112 7.578 9.088

Ridge Regression
MAE (Ref.)—Cross-Validation 2.058 0.245 1.022 9.388 0.589 0.284 17.383 27.218 9.085 6.143

MAE (1st Der.)—Cross-Validation 1.359 0.234 1.766 6.238 0.687 0.235 17.287 33.185 7.898 8.897
MAE (Ref.)—Leave-One-Out 2.045 0.277 1.079 9.183 0.587 0.225 17.858 27.351 9.056 6.041

MAE (1st Der.)—Leave-One-Out 1.350 0.202 1.768 6.156 0.678 0.202 17.084 33.584 7.984 8.789
SVM

MAE (Ref.)—Cross-Validation 0.789 0.134 1.012 5.888 0.456 0.179 18.894 20.170 3.374 7.071
MAE (1st Der.)—Cross-Validation 1.058 0.158 1.415 5.979 0.568 0.199 10.152 23.158 6.385 5.759

MAE (Ref.)—Leave-One-Out 0.798 0.159 1.028 5.978 0.456 0.178 18.265 20.588 3.318 7.052
MAE (1st Der.)—Leave-One-Out 1.158 0.178 1.456 5.899 0.589 0.158 10.128 23.480 6.318 5.878

ANN
MAE (Ref.)—Cross-Validation 0.789 0.157 1.025 7.126 0.285 0.134 7.895 29.389 5.058 6.388

MAE (1st Der.)—Cross-Validation 1.058 0.193 1.453 6.087 0.456 0.146 9.185 19.241 4.358 5.268
MAE (Ref.)—Leave-One-Out 0.744 0.155 1.064 7.235 0.259 0.138 7.563 29.289 5.568 6.456

MAE (1st Der.)—Leave-One-Out 1.057 0.189 1.487 6.023 0.482 0.105 9.458 19.568 4.238 5.215
DT

MAE (Ref.)—Cross-Validation 0.689 0.158 1.056 6.054 0.315 0.113 7.874 19.498 4.286 5.158
MAE (1st Der.)—Cross-Validation 1.055 0.123 1.126 6.586 0.467 0.205 6.894 31.218 4.878 4.238

MAE (Ref.)—Leave-One-Out 0.641 0.102 1.085 6.088 0.305 0.106 7.415 19.352 4.984 5.512
MAE (1st Der.)—Leave-One-Out 1.028 0.112 1.285 6.547 0.489 0.202 6.897 31.189 4.489 4.354

RF
MAE (Ref.)—Cross-Validation 0.689 0.078 1.112 3.025 0.210 0.087 7.289 18.548 4.898 3.789

MAE (1st Der.)—Cross-Validation 0.638 0.101 1.207 6.238 0.389 0.179 6.046 16.189 3.874 1.789
MAE (Ref.)—Leave-One-Out 0.677 0.089 1.103 3.045 0.207 0.088 7.358 18.895 4.984 3.898

MAE (1st Der.)—Leave-One-Out 0.622 0.107 1.201 6.125 0.379 0.189 6.215 16.189 3.789 1.875
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3. Results

The chemical analysis of the leaf tissue returned heterogeneous and non-parametric results for the
nutrient content of the analyzed leaves (Table 3). Analysis has shown that the majority of the nutrients
presented a high variability and uniform distribution. This behavior was most noticeable in nutrients,
such as Ca, Fe, Mn, and Zn. Regardless, this condition is important to demonstrate the applicability
of the proposed framework. Since this is a heterogeneous dataset, machine learning algorithms are
advantageous for modeling data with such characteristics.

Table 3. Descriptive data from the chemical analysis of the Valencia-orange leaves.

Summary Macronutrient (g/kg) Micronutrient (mg/kg)

N P K Ca Mg S Cu Fe Mn Zn

Mean 29.55 2.13 17.07 30.72 5.36 2.36 72.20 86.95 36.69 27.77
Std. Dev. 2.95 0.43 3.34 13.18 1.39 0.38 26.09 39.50 19.11 13.09
Median 29.45 2.17 16.70 28.85 5.25 2.35 69.90 78.35 33.10 22.80

Min. 24.00 1.21 11.80 10.70 2.70 1.60 25.50 26.20 14.30 10.90
Max. 36.70 2.98 28.30 78.60 9.90 3.60 128.90 207.30 122.10 69.80

Coeff. Var. 9.98 20.39 19.60 42.90 25.97 16.37 36.14 45.44 52.105 47.16

All of the nutrients returned a p-value under 0.05 for the Shapiro–Wilk normality test at a 95% confidence interval.

The correlation between nutrients (Figure 4) is important information to characterize a dataset. The
correlation coefficients indicated that, although significant, most nutrients have a low correlation value
among themselves. Still, the pairwise comparison returned an expected behavior. Macronutrients,
such as N, P, and K, showed positive correlations with each other while presenting negative correlation
coefficients (N and P) with the other nutrients. The correlation coefficients between the nutrients varied
around 0.5 or below, with the highest reaching 0.59 and lowest reaching −0.60. The low correlation
value is also favorable for the proposed framework, as it helps to isolate the effects of the nutrient on
the evaluated wavelengths.
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For the machine learning algorithms used, the results were separated between the two datasets:
reflectance (Table 4) and first-derivative (Table 5). The algorithms returned good performances
(R2 > 0.80) for the macronutrients with the spectral reflectance as predictors. When the first-derivative
was used, the algorithms performed well on both macro- and micronutrients (some R2 > 0.80), but all
performances were improved for the micronutrients. This is an important discovery, as it highlights
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the importance of first-derivative measurements and their relationship with micronutrients in the
Valencia-orange leaf tissue. In both datasets, algorithms like RF, ANN, and kNN returned better
predictions than most linear ones, such as Lasso and Ridge Regressions and SVM. The MAE predictions
returned here are similar to the predictions resulted from the training phase, which indicates how
adjusted the sampling method was.

Table 4. The machine learning algorithms’ accuracy performance for the reflectance data.

Method N P K Ca Mg S Cu Fe Mn Zn

kNN
R2 0.852 0.623 0.621 0.179 0.797 0.119 0.834 0.437 0.592 0.431
MAE 0.704 0.163 1.087 6.765 0.285 0.204 7.083 18.142 5.105 6.005
RMSE 1.245 0.278 2.041 13.905 0.445 0.416 11.362 36.248 11.707 10.157

Lasso Regression
R2 0.394 0.452 0.315 0.157 0.413 0.660 0.215 0.180 0.189 0.128
MAE 2.145 0.193 1.542 7.304 0.627 0.137 19.881 34.140 8.470 7.852
RMSE 2.526 0.335 2.745 14.091 0.757 0.258 24.744 43.751 16.513 12.573

Ridge Regression
R2 0.351 0.153 0.354 0.169 0.139 0.056 0.232 0.222 0.190 0.137
MAE 2.468 0.284 1.347 9.923 0.698 0.298 19.321 28.456 9.456 6.541
RMSE 2.912 0.417 2.597 13.989 0.916 0.431 24.485 42.158 16.502 12.982

SVM
R2 0.638 0.404 0.530 0.336 0.458 0.400 0.277 0.308 0.742 0.447
MAE 0.902 0.247 1.546 6.551 0.505 0.233 19.692 21.421 3.666 7.891
RMSE 1.952 0.349 2.275 12.501 0.752 0.344 23.754 40.201 9.309 9.741

ANN
R2 0.860 0.656 0.762 0.481 0.733 0.438 0.841 0.340 0.698 0.595
MAE 0.840 0.177 1.265 7.637 0.359 0.174 8.377 30.259 5.880 6.949
RMSE 1.211 0.265 1.619 11.052 0.510 0.332 11.120 39.251 10.078 8.567

DT
R2 0.743 0.661 0.613 0.576 0.759 0.452 0.731 0.453 0.730 0.640
MAE 0.787 0.178 1.434 6.375 0.345 0.166 8.835 20.016 5.090 5.681
RMSE 1.644 0.263 2.064 12.123 0.484 0.328 14.472 35.726 9.525 8.0811

RF
R2 0.912 0.771 0.699 0.624 0.832 0.727 0.754 0.527 0.854 0.741
MAE 0.706 0.093 1.146 3.525 0.234 0.100 7.828 19.375 5.093 4.246
RMSE 1.059 0.216 1.818 9.404 0.405 0.231 13.850 33.233 7.007 6.846

The bolded in the table are the scores representing the overall best performance of each nutrient.

Table 5. The machine learning algorithms’ accuracy performance for first-derivative data.

Method N P K Ca Mg S Cu Fe Mn Zn

kNN
R2 0.669 0.453 0.329 0.311 0.512 0.172 0.752 0.512 0.898 0.587
MAE 0.944 0.180 1.341 6.994 0.398 0.184 7.456 17.846 3.594 4.948
RMSE 1.867 0.335 2.717 12.039 0.689 0.404 13.903 33.740 5.859 8.655

Lasso Regression
R2 0.257 0.401 0.161 0.287 0.401 0.158 0.292 0.190 0.234 0.130
MAE 1.489 0.197 1.986 7.048 0.486 0.304 19.513 33.146 7.934 9.588
RMSE 2.804 0.354 3.040 12.258 0.789 0.407 23.503 43.487 16.055 12.561

Ridge Regression
R2 0.210 0.310 0.157 0.302 0.129 0.222 0.273 0.183 0.300 0.158
MAE 1.650 0.265 1.997 6.978 0.789 0.248 19.212 34.240 8.242 9.047
RMSE 2.987 0.380 3.101 12.268 0.987 0.358 23.819 44.289 15.348 11.978

SVM
R2 0.373 0.323 0.330 0.531 0.270 0.459 0.679 0.423 0.649 0.513
MAE 1.357 0.250 1.714 6.745 0.678 0.240 11.870 24.653 6.676 6.159
RMSE 2.262 0.373 2.716 10.511 0.844 0.326 15.829 36.705 10.855 9.397

ANN
R2 0.721 0.554 0.445 0.566 0.564 0.582 0.800 0.444 0.838 0.731
MAE 1.287 0.219 1.680 6.495 0.559 0.197 10.030 20.466 4.617 5.605
RMSE 1.712 0.302 2.471 10.113 0.652 0.287 12.493 36.028 7.372 6.983

DT
R2 0.703 0.633 0.491 0.491 0.479 0.474 0.786 0.509 0.728 0.584
MAE 1.298 0.136 1.223 6.850 0.597 0.232 7.013 32.559 4.976 4.832
RMSE 2.767 0.274 2.368 13.015 0.832 0.314 25.209 33.861 15.036 11.391

RF
R2 0.866 0.765 0.548 0.501 0.507 0.453 0.861 0.612 0.879 0.855
MAE 0.738 0.119 1.225 6.668 0.424 0.209 6.509 17.280 4.050 2.075
RMSE 1.185 0.219 2.231 10.839 0.693 0.328 10.389 31.640 6.377 5.121

The bolded in the table are the scores representing the overall best performance of each nutrient.
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To ascertain the relationship between each nutrient prediction, their regression values were
plotted (Figure 5a,b). A quick analysis of the best-predicted values versus the laboratory-measured
values demonstrates how the performance of the algorithms varied with the increase in the nutrient
concentrations. Nutrients such as P and Ca did not show a closer resemblance with a 1:1 relationship
(dashed-line—Figure 5a,b) as much as the other nutrients’ predictions, even lower ones such as Fe.
Regardless, most predictions were quite well related to the laboratory data, and on-site measurements
of nutrients like N, K, Mg, S, Cu, Mn, and Zn may benefit from the advantage promulgated by the
approach presented here.Remote Sens. 2020, 12, x FOR PEER REVIEW  15 of 23 
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The calculated Relief-F value showed the contribution of each wavelength to the algorithms’
performance (Figure 6a,b). This contribution is important to isolate specific spectral regions and
wavelengths of the electromagnetic spectrum most closely related to each nutrient. This relationship,
however, is limited to the evaluated algorithm and its performance. Still, since most performances
were relatively high (Tables 3 and 4) for most nutrients, this metric is an interesting parameter, as it
shines some light on the spectral mapping of Valencia-orange leaf nutrients, as not much is known
about their spectral behavior.

As mentioned, the Relief-F value calculated for each wavelength indicated important contributions
in different ranges for each nutrient (Figure 5a,b). Because of that, certain bands of the electromagnetic
spectrum contributed more than others. To summarize the information obtained from the proposed
framework, a table (Table 6) indicating the nutrient and its class (macro or micro), the machine learning
method most suitable to model it, its coefficient of determination (R2), the spectral data which its
prediction was calculated from, and the most contributive wavelengths or spectral regions to model
the measured nutrient from the Relief-F value was created. These results demonstrate the potential of
applying different machine learning algorithms for this task. So far, this is the first approach of its kind
with nutrient content in leaf tissue analysis.
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Table 6. Summarized information on the results obtained by the proposed framework.

Nutrient Class Method R2 MAE Spectral Data Contributive Wavelengths/Spectral Regions
(nm) *

N Macro RF 0.912 0.706 Reflectance 384–412; 421; 423; 432; 433; 435; 440–455; 464–472;
480–487

P Macro RF 0.771 0.093 Reflectance 385–411; 438–456; 472–477; 502; 521; 527; 544–555;

K Macro ANN 0.763 1.265 Reflectance 762–764; 816; 838; 857; 903 908; 915–925; 934–957;
973–1020

Ca Macro RF 0.624 3.525 Reflectance 545–551; 749–787; 843–888; 901–1020
Mg Macro RF 0.832 0.234 Reflectance 390; 411–412; 445; 496; 554; 586–630; 643; 656–669

S Macro RF 0.727 0.100 Reflectance 579; 590; 595; 609–612; 618; 624–632; 645–680;
684–689; 700

Cu Micro RF 0.861 6.509 First-Derivative 388; 394; 416–419; 430–432; 440; 452–456; 461; 475;
512; 523; 823; 863–865; 951; 977–979;

Fe Micro RF 0.612 17.280 First-Derivative 391–396; 405; 421–424; 433–436; 474–477; 552; 758;
810; 837; 890–892; 910; 926

Mn Micro kNN 0.898 3.594 First-Derivative 381; 392–410; 414; 438; 555–568; 582; 819; 607;
761–767; 823–835; 841

Zn Micro RF 0.855 2.075 First-Derivative 381; 398; 407–411; 420; 449; 555–559; 604–607; 858

* These wavelengths and regions were obtained by sorting the highest Relief-F values of each prediction.

4. Discussion

In the proposed framework, both reflectance data and their first-derivatives were used to predict
macro- and micronutrients. This approach used a robust technique (machine learning) to model the
hyperspectral data, which helped to ascertain some discoveries. The results demonstrated compelling
performances to predict most of the nutrients (Tables 3–5). Nutrients like N, Mg, Cu, Mn, and Zn
were predicted with an R2 of 0.912, 0.832, 0.861, 0.898, and 0.855, respectively. Other nutrients like
P, K, and S presented inferior performances with an R2 of 0.771, 0.763, and 0.727, respectively. The
worst performances were obtained for nutrients like Ca and Fe, with their R2’s equal to 0.624 and
0.612, respectively. In comparison to the literature, most of these performances, specifically those
related to macronutrients, were similar or superior for other types of plants and methods. For N,
predictions using visible to infrared data returned accuracies between 0.73 to 0.87 (R2) [2,30,40]. For
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K, a three-band combination index predicted the nutrient with an R2 equal to 0.74 [37]. In nutrients
like Mg, S, P, Ca, and others, the predictions (R2) variated between lower values of 0.27 up to 0.98,
depending on the method applied and the plant evaluated [24,26,30,32,38,39,50].

One important finding from this research is the relationship between nutrients, algorithms, and
leaf-spectral curves. For macronutrients, the performance of the algorithms was superior when
adopting the surface reflectance data. As for the micronutrients, the first-derivative of the spectral
reflectance returned better performances for the algorithms (Figure 5a,b and Table 6). This finding
can be related to information reported in the literature [39–41]. Since first-derivative spectra allow
for highlighting absorption features of the original spectra, it could potentially be linked to different
components not so easily observable in spectral reflectance data alone. This approach demonstrated
a better relation for all micronutrients when linked to the algorithms with the first-derivative, so
this could offer a possible explanation. As previously mentioned in Section 2.2, other derivatives of
the dataset were evaluated, but could not find a significant difference over the first derivative. Still,
further research should continue to explore the association between first-derivative spectra, second-
and third-derivatives, and micronutrients.

Another contribution of the proposed framework is that, although, with a limitation in the
accuracy of the algorithms, it is possible to identify the wavelengths and the spectral regions that
most contributed to predicting each nutrient (Figure 6a,b and Table 6). While some nutrients show
contributions from the same wavelengths, these contributions vary in value (Relief-F). Even so, most of
the nutrients showcase particular wavelengths that could potentially be isolated or used in combination
with others to ascertain their relationship with the prediction (Table 6). This finding could help to map
the Valencia-orange leaf spectral behavior related to both macro- and micronutrients and promote the
investigation of simpler mathematical models or spectral indices capable of modeling these nutrients
by focusing on these wavelengths.

Machine learning algorithms have the advantage of modeling data in a non-linear and a
non-parametric manner. Unlike many traditional statistical methods, these algorithms are built
with the advantage of dealing with noisy, complex, and heterogeneous data [16,23,50–52]. These
characteristics proved to be an advantage for this study, as the data used had higher variance, was
not-normal (Table 3), and, while statistically significant, low-correlated in a pairwise manner (Figure 4).
Previous research aimed to model nutrient content with similar characteristics by using multiple
mathematical methods in the analysis of plant hyperspectral data, but it did not return the same
accuracies [15,24,32,40,42]. Nonetheless, since machine learning methods can deal with most of the data
inconsistencies, both in hyperspectral measurements and in nutrient content analysis, the proposed
framework should be more appropriate to combine these features not requiring data modification
while still returning good performances.

Finally, the different performances returned by the algorithms should be discussed. It is clear that
regression models like Lasso, Ridge, and SVM were inferior to others (Tables 3 and 4) in both scenarios
(reflectance/first-derivative). Although SVM is known to handle high dimensionality data and do
well with a limited training dataset [45], it performed poorly in the used dataset in comparison with
the rest. The DT algorithm, though not as inferior in performance as the aforementioned algorithms,
achieved middling results in comparison with the remaining methods. For the DT, the XGBoost model
was adopted to improve the prediction performance, which was also implemented in the RF base
model. During the experimental phase, this boosting model proved to be of assistance in enhancing the
performance of both algorithms. Still, DT did not return predictions as accurate as did the RF algorithm.

The highest performances were obtained by the RF, ANN, and kNN algorithms; both for macro-
and micronutrients. While RF was better in almost all predictions, ANN and kNN performed well in
only particular cases, especially for K (reflectance data) and Mn (first-derivative data), respectively.
kNN is a simpler method than ANN and RF, being relatively faster. However, throughout the different
nutrients, RF and ANN had better consistency. The ANN was constructed in a manner that could
predict most of the nutrients, but performance rates were limited. The amount of available data for
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training the algorithms could also be a potential hindrance for deep learning networks to handle. While
the ANN method benefited from a multilayer perceptron, with two hidden layers and a high number
of neurons and interactions, the RF algorithm was boosted with the XGBoost model, which returned a
continuous performance for the reflectance and first-derivative datasets. Regardless, as no machine
learning algorithm is considered universally appropriate to deal with any task, a framework like the
one proposed here is recommended since it makes uses of multiple algorithms because different data
could potentially impact its performance.

5. Conclusions

The proposed approach uses leaf spectral data in the visible and near-infrared regions, and switches
between reflectance and its first-derivative data to predict the amount of macro- and micronutrients
measured in the laboratory. This method was able to return high predictions (R2) for nutrients like
N (0.912), Mg (0.832), Cu (0.861), Mn (0.898), and Zn (0.855), and, to a lesser extent, P (0.771), K (0.763),
and S (0.727). These accuracies were obtained with the RF, ANN, and kNN algorithms, among
which RF performed the best. Another discovery was that reflectance data is more suitable to model
macronutrients, while the first-derivative of the reflectance data is better related to micronutrients.
Another contribution also made by this study is the identification (by the Relief-F value) of the
wavelengths most responsible for the prediction results. Each nutrient was better correlated to one
or more spectral wavelengths. Because of it, future research should evaluate simpler models or
spectral vegetation indices capable of modeling the nutrient content by focusing on these wavelengths.
Although the presented method was used for evaluating the nutritional conditions of Valencia-orange
leaves, it can be replicated for different plants and cultivars, with the possibility of even better
performances being achievable. Furthermore, as an advantage of this approach, this framework may
be implemented in hyperspectral data obtained with sensors embedded in UAV-based systems.
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