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Abstract: Global biophysical products at decametric resolution derived from Sentinel-2 imagery
have emerged as a promising dataset for fine-scale ecosystem modeling and agricultural monitoring.
Evaluating uncertainties of different Sentinel-2 biophysical products over various regions and
vegetation types is pivotal in the application of land surface models. In this study, we quantified the
performance of Sentinel-2-derived Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR), and Fractional Vegetation Cover (FVC) estimates using global ground
observations with consistent measurement criteria. Our results show that the accuracy of vegetation
and non-vegetated classification based on Sentinel-2 surface reflectance products is greater than 95%,
which indicates the vegetation identification is favorable for the practical application of biophysical
estimates, as several LAI, FAPAR, and FVC retrievals were derived for non-vegetated pixels. The rate
of best retrievals is similar between LAI and FAPAR estimates, both accounting for 87% of all
vegetation pixels, while it is almost 100% for FVC estimates. Additionally, the Sentinel-2 FAPAR and
FVC estimates agree well with ground-measurements-derived (GMD) reference maps, whereas a
large discrepancy is observed for Sentinel-2 LAI estimates by comparing with both GMD effective
LAI (LAIe) and actual LAI (LAI) reference maps. Furthermore, the uncertainties of Sentinel-2 LAI,
FAPAR and FVC estimates are 1.09 m2/m2, 1.14 m2/m2, 0.13 and 0.17 through comparisons to ground
LAIe, LAI, FAPAR, and FVC measurements, respectively. Given the temporal difference between
Sentinel-2 observations and ground measurements, Sentinel-2 LAI estimates are more consistent
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with LAIe than LAI values. The robustness of evaluation results can be further improved as long
as more multi-temporal ground measurements across different regions are obtained. Overall, this
study provides fundamental information about the performance of Sentinel-2 LAI, FAPAR, and FVC
estimates, which imbues our confidence in the broad applications of these decametric products.

Keywords: leaf area index (LAI); fraction of absorbed photosynthetically active radiation (FAPAR);
fractional vegetation cover (FVC); Sentinel-2; Evaluation; Uncertainty

1. Introduction

The importance of vegetation is widely perceived in studies of land–atmosphere interactions [1–3].
Several biophysical indicators, i.e., Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR), and Fractional Vegetation Cover (FVC), characterize the function of
vegetation and are widely used in a broad range of user communities [4–7]. LAI is generally defined
as one half of the total green leaf area per unit ground surface area [8]. However, since the mono-angle
observation of remote sensing is not sensitive to the possible heterogeneity in leaf distribution within
the canopy, LAI derived from the remote sensing is often called effective LAI (hereafter, LAIe) that
assumes a random distribution of leaves in canopy volume [9]. The LAIe can be converted to the
actual LAI (hereafter, LAI) with the associated foliage clumping information as necessary [10]. FAPAR
measures the fraction of radiation absorbed by leaves in the 0.4–0.7 µm spectrum [11], and FVC is
the ratio of the vertically projected area of vegetation to the total surface area [12]. Due to the high
capacities of describing the energy and momentum exchange between the surface and atmosphere,
LAI and FAPAR are well-known as essential climate variables (ECVs) by the Global Climate Observing
System (GCOS) [13] in terrestrial ecosystems [4,14]. FVC plays a vital role in climatic and hydrologic
cycles through plant transpiration, photosynthesis, and surface albedo [12,15,16]. To collect long-term
global LAI, FAPAR, and FVC datasets for the monitoring and modeling of large-scale agroecosystems,
satellite remote sensing provides an effective way to generate these biophysical products on a regular
basis [17].

Several global LAI, FAPAR, and FVC remote sensing products have been generated from different
sensors, such as VEGETATION [14,18], MODIS [17,19,20], AVHRR [21–24], VIIRS [25,26], etc. However,
most global LAI, FAPAR, and FVC products are available only at hectometer-level (300 m–1000 m) or
even coarser spatial resolutions [27,28]. The moderate- or coarse-resolution pixels are usually mixtures
of several land cover types due to the heterogeneous land surface, introducing the main errors in the
retrieval of biophysical variables [29–31]. For instance, the largest difference between pure and mixed
pixels of MODIS LAI products can reach 178% over savanna [32]. Therefore, the finer spatial resolution
products of LAI, FAPAR, and FVC are necessary for various applications, especially in regions with
heterogeneous landscapes.

In particular, the Sentinel-2 constellation, which comprises Sentinel-2A and Sentinel-2B satellites
designed by the European Space Agency (ESA), offers free multi-spectral decametric spatial resolution
(10 to 60 m) optical imagery at a 5-day interval over global terrestrial surfaces [33]. Due to its high
spatiotemporal resolution observation as well as rich spectral bands, the Sentinel-2 provides an
opportunity for opening a new prospect of generating global LAI, FAPAR, and FVC products at
decametric spatial resolution. Following the release of Sentinel-2 multi-spectral instrument (MSI)
images, the algorithm to derive vegetation biophysical variables (LAI, FAPAR, and FVC) was proposed
by Weiss and Baret [34]. Compared to other methods (e.g., look-up table [28], empirical relationship
between biophysical variables and vegetation indices [29,35], etc.) to derive biophysical variables,
the newly developed algorithm for Sentinel-2 imagery is advantageous in two aspects. First, this
algorithm is generic without inputs of the specific land cover type, which can be easily extended for
the retrieval of vegetation biophysical variables at the global scale. Second, this algorithm has been
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integrated as a Simplified Level 2 Product Prototype Processor (SL2P) tool in the Sentinel Application
Platform (SNAP) software (version 7.0.0, http://step.esa.int/main/download/snap-download/) and is
accessible for public communities to generate biophysical products [36,37]. That is, we can easily use
the SL2P tool to derive biophysical estimates at regional to global levels as necessary. Therefore, it
can be expected that Sentinel-2 biophysical estimates derived by this algorithm will be broadly used
in various fields [37–39]. However, due to the uncertainty associated with data pre-processing and
inversion algorithms [40,41], the accuracy of Sentinel-2 LAI, FAPAR, and FVC estimates need to be
evaluated for the potential algorithm improvement and wide applications in ecological environment.

The schemes for the evaluation of product performance are generally categorized into two types:
direct validation and product intercomparison [42,43]. Direct validation is the most common way
to assess products to understand their uncertainties associated with input, pre- or post-processing
and inversion algorithms. A lot of previous studies evaluated the product uncertainties by direct
validation and offered several ground datasets [40,42]. Although these ground datasets were spatially
dispersed, their inadequate spatiotemporal representativeness restricts the evaluation of long-term
global products [44,45]. By contrast, product intercomparison mainly evaluates the spatiotemporal
coverage and consistency among different products over a long period of time or a large spatial scale,
providing additional information on the relative performance of each product [20,42]. Both of these
two schemes have been used in the Sentinel-2 derived biophysical estimates [46–48]. For the newly
developed S2LP tool in the year 2016 to derive Sentinel-2 LAI, FAPAR, and FVC estimates, several
studies [36–39,49–52] reported the uncertainty of these estimates in different regions and observation
dates. Nevertheless, previous validation studies suffered from several limitations as follows, which
should be addressed for a better understanding on the performances of different biophysical estimates
derived from the S2LP tool.

First, the assessment of Sentinel-2 biophysical estimates was generally performed in one or a few
regions, and its results were spatially limited [36,49,50]. Second, most validation studies focused on the
specific biophysical variable, such as LAI or FAPAR [38,52]. Third, the validation was only implemented
on a single vegetation type, i.e., crops or forests [39,49]. Forth, since the retrievals of biophysical
variables were evaluated based on the individual field campaigns, the inconsistent measurement criteria
may introduce incomparable results for product validation in different studies [37,39,51]. Finally, the
sources of uncertainty for deriving these biophysical variables have not been fully explored [38,49].
These knowledge gaps highlight a necessity for a comprehensive evaluation of the Sentinel-2 vegetation
biophysical estimates using globally available ground measurements.

This study aims to comprehensively evaluate the Sentinel-2 biophysical estimates over various
regions, observation dates and vegetation types using all available in situ data measured in the same
criteria and explore the reasons that caused the uncertainty of estimates. Thus, we have generated
long-term Sentinel-2 LAI, FAPAR, and FVC estimates to achieve the specific objectives: (i) to evaluate
the spatiotemporal coverage of high-quality retrievals for different variables and perform the product
intercomparison between Sentinel-2 biophysical estimates and other decametric-resolution reference
maps derived by ground measurements over numerous pixels; (ii) to quantify the uncertainty of
Sentinel-2 estimates for different vegetation types (i.e., crops, forests, and grasses) using available
ground measurements; (iii) to compare the reliability of three Sentinel-2 biophysical estimates, i.e.,
LAI, FAPAR, and FVC. This paper is organized as follows. Section 2 briefly describes the study area,
ground measurements and Sentinel-2 MSI data used in this study. Section 3 introduces the methods
for generating Sentinel-2 biophysical estimates and evaluating their performances. Section 4 presents
the evaluation results of Sentinel-2 biophysical estimates. Section 5 discusses the possible factors that
impact on the accuracy of Sentinel-2 estimates, as well as the limitation of the current study and future
directions. Finally, Section 6 provides concluding remarks on this study.

http://step.esa.int/main/download/snap-download/
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2. Study Area and Data

2.1. Study Area

The study areas were selected based on the ImagineS field campaign (http://fp7-imagines.eu/

pages/services-and-products/ground-data.php) which aims to validate the satellite-derived biophysical
products of the Copernicus Global Land service [53]. ImagineS provides in situ data of 23 sites with the
consistent measured criteria during the years 2013–2016. As the first Sentinel-2 satellite was launched
on 23 June 2015, 10 sites covering ground measurements over 2015–2016 were further selected for
the product validation in this study. The ground measurements marked as yellow dots were mainly
located in 5 countries, i.e., Spain, Ukraine, Kenya, France and Italy (Figure 1). Additionally, crops,
forests, grasses and bare land were also highlighted in each measurement.
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Figure 1. Spatial distribution of the selected sites for which LAI (LAIe), FAPAR, and FVC measurements
were available from 2015 to 2016. The color image (RGB) is a composition of Sentinel-2 three bands,
i.e., band 8a (near-infrared), band 4 (red), and band 3 (green), at 20-m spatial resolution, where yellow
points represent the ground elementary sampling units (ESUs). (a-e) denote the location of ground
measurements in Ukraine, France, Spain, Italy, and Kenya, respectively.

Specifically, the Barrax site in Spain consists of more than 60% dry land and other irrigated
land with different crop types, such as corn, wheat, barley, etc. The terrain of this site is flat and its
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elevation is around 700 m. The parcel size of cropland is generally over 0.02 km2 and this region
falls within the cold semi-arid climate based on the Köppen–Geiger climate classification maps [54].
The Pshenichne site in Ukraine is surrounded by winter wheat, maize, soybean, and winter rapeseed in
the dry and irrigated land, with the parcel size of approximately 0.01 km2, the elevation of 195 m, and
the warm-summer humid continental climate. The Maragua_UpperTana site in Kenya is characterized
by small parcel size (<0.01 km2) in dry land and a variety of vegetation types, including tea, coffee,
banana, etc. The elevation of this site ranges from 1600 to 2000 m, and this site falls within the temperate
oceanic climate. The vegetation type of the Collelongo site in Italy is dominated by the deciduous
forest, i.e., European beech. This region is located in the warm-summer humid continental climate and
its elevation is from 700 to 1900 m. The other 6 sites in France are generally flat (elevation: 100–300 m)
with large crop types in both the irrigated land (maize and soybean) and dry land (sunflower, wheat
and rapeseed), and only the Meteopole site and Condom site have some grasses and deciduous forests,
respectively. The parcel size of cropland changes from less than 0.01 km2 to more than 0.05 km2, and
all sites are grouped into the temperate oceanic climate.

2.2. Ground Truth Data and Ground-measurements-derived (GMD) Reference Maps

For each study area, more than ten elementary sampling units (ESUs) were selected, and the area
of each ESU was 20 m × 20 m, which is identical to the spatial resolution of Sentinel-2 biophysical
estimates. The 10–25 sampling plots were measured using different sampling schemes for various
types of plantations (e.g., the three sampling schemes for random, row or tree plantation were shown
in Figure A1 in Appendix A) in each ESU, and the spatial location of each ESU was recorded using a
global positioning system (GPS) [55,56]. Then, all measured variables in this ESU were averaged to
represent the corresponding value of the whole ESU. Several instruments, including the LAI-2200 plant
canopy analyzer, AccuPAR ceptometer and Digital Hemispherical Photography (DHP), were used to
measure LAIe, LAI, FAPAR, and FVC, respectively, at these sites. The LAI-2200 and AccuPAR can only
generate LAIe due to the randomness assumption of leaf distribution on canopy architecture in these
instruments [57]. The LAI can be calculated from DHP because it can derive LAIe and clumping index
simultaneously. Since the algorithm of the Sentinel-2 LAI estimate did not involve the clump index, it
can only derive the LAIe retrievals. Thus, to better understand the performance of the LAI algorithm
and LAI estimates in practice, both LAIe and LAI ESUs were used in this study. The FAPAR and FVC
can be also estimated from DHP. Specifically, the gap fraction was first derived from the DHP images
with the classification of vegetation and background elements, and then both FAPAR and FVC were
calculated based on the derived gap fraction [58]. More details about the measured ESUs at each site
are depicted in Table 1 in Section 2.3. Moreover, the number of ESUs is different for the 4 variables
(LAIe, LAI, FAPAR, and FVC) because they were measured by different instruments (DHP, LAI-2200,
and AccuPAR) at several sites. It should be noted that the variable of harvested crops or bare land
was also included in ground ESUs, introducing larger standard deviation of measured biophysical
variables at several sites, such as Barrax, Peyrousse, Savenès, etc.

The GMD reference maps with 30-m spatial resolution, which are useful to assess the quality of
kilometric biophysical products, were derived using these ground ESUs and were provided by the
ImagineS field campaigns [53]. Specifically, a transfer function, which employed a multivariate ordinary
least squares regression with an iteratively re-weighted least squares method, was established based
on the ground ESUs and the reflectances from Landsat-8 Operational Land Imager (OLI) scenes [55].
Then, this empirical relationship was employed to generate the reference maps for the whole study
area. Since the GMD reference maps were widely used as the benchmark data for the land surface
models and the validation of coarse resolution products, the intercomparison with GMD reference
maps can assess the potential Sentinel-2 biophysical estimates for different applications.
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Table 1. The acquisition dates (Year-DOY (Day of Year)) of in situ measurements and Sentinel-2A
images. The number, average (µ) and standard deviation (σ) of ground ESUs are reported in the last 4
columns. The “-” indicates that no available satellite data at this site.

Site Name Country Year-DOY Ground ESU Number (µ ± σ)

In-situ
Measurements

Sentinel-2A
(cloud free) LAIe (m2/m2) LAI (m2/m2) FAPAR FVC

Barrax Spain 2015-203 2015-207 44 (1.58 ± 1.61) 35 (1.67 ± 2.04) 35 (0.37 ± 0.42) 35 (0.34 ± 0.39)

Pshenichne Ukraine
2015-188 2015-197 28 (2.14 ± 0.36) 28 (3.28 ± 0.95) 28 (0.81 ± 0.04) 28 (0.70 ± 0.08)
2015-204 2015-214 28 (2.56 ± 0.36) 28 (3.78 ± 0.79) 28 (0.85 ± 0.05) 28 (0.73 ± 0.12)

Meteopol

France

2015-173 2015-187 2 (0.52 ± 0.06) 2 (0.55 ± 0.08) 2 (0.34 ± 0.02) 2 (0.35 ± 0.05)
Peyrousse 2015-174 2015-187 12 (0.51 ± 0.44) 12 (0.89 ± 0.78) 12 (0.32 ± 0.24) 12 (0.33 ± 0.25)

Urgons 2015-174 2015-187 12 (0.92 ± 0.25) 7 (1.67 ± 0.50) 7 (0.47 ± 0.12) 7 (0.39 ± 0.08)
Creón D’armagnac 2015-175 2015-187 14 (2.40 ± 1.23) 8 (3.05 ± 1.94) 9 (0.61 ± 0.34) 8 (0.49 ± 0.31)

Condom 2015-176 2015-187 8 (0.77 ± 0.42) 8 (1.24 ± 0.76) 8 (0.43 ± 0.22) 8 (0.42 ± 0.22)
Savenès 2015-176 2015-187 13 (0.74 ± 0.57) 10 (0.77 ± 0.69) 10 (0.32 ± 0.29) 10 (0.31 ± 0.27)

Collelongo Italy 2015-189 - 15 (2.63 ± 0.32) 15 (3.62 ± 0.56) 15 (0.83 ± 0.04) 15 (0.78 ± 0.06)
2015-268 2015-262 15 (2.78 ± 0.22) 15 (3.79 ± 0.35) 15 (0.86 ± 0.17) 15 (0.86 ± 0.03)

Maragua_UpperTana Kenya 2016-068 2016-075 26 (1.33 ± 1.31) 26 (1.78 ± 1.38) 26 (0.55 ± 0.32) 26 (0.54 ± 0.32)

2.3. Sentinel-2 MSI Data

The Sentinel-2A and Sentinel-2B satellites were launched on 23 June 2015 and 7 March 2017,
respectively. Both of them have very similar MSI band characteristics and the same spatiotemporal
resolution. The combination of two satellites can provide a revisit cycle of better than 5 days
for observations globally. The MSI bands cover the visible, near-infrared, and shortwave-infrared
spectral domains. According to the band information of Sentinel-2 MSI, the spatial resolution, central
wavelength, band width and normalized spectral response of each band were displayed, and the bands
used to derive the biophysical variables are highlighted in Figure 2.
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Figure 2. The normalized spectral response of Sentinel-2A multi-spectral instrument (MSI) bands.
These bands cover the visible, near-infrared, and shortwave-infrared spectral domains. The top three
rows show the name, spatial resolution, and width of each band, respectively. The filled area indicates
the selected bands (bands 3–7, 8a, and 11–12) for the LAI, FAPAR, and FVC retrievals.

According to the spatial location and acquisition date of ground ESUs, the corresponding
Sentinel-2 MSI data were downloaded from the ESA Copernicus Open Access Hub (https://scihub.
copernicus.eu/dhus/#/home). Due to the limited temporal coverage (2015–2016) of ground ESUs,
only Sentinel-2A data can be used in this study. Table 1 shows the observation dates of ground
ESUs and Sentinel-2A MSI data, as well as the number of ground ESUs for LAIe, LAI, FAPAR,

https://scihub.copernicus.eu/dhus/#/home
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and FVC at each site. We carefully selected Sentinel-2 data by considering the criteria of no cloud
contaminations and the minimal gap of observation dates between ground ESUs and Sentinel-2A
data. As a result, seven tiles, i.e., T30TYP, T31TCJ, T35UQR (2 dates), T30SWJ, T33TUG, and T37MBV,
were acquired for ten sites. For these sites, the dates of several Sentinel-2A images were not exactly
consistent with those of ground ESUs. This is primarily due to the relatively long revisit cycle
(10 days) of a single Sentinel-2 satellite, as well as cloud effects. Hence, the impact of the temporal
gap between ground measurements and Sentinel-based products needs to be further considered in
the validation result. The Level-1C products of Sentinel-2A, which have already been corrected for
radiometric and geometric uncertainties, were downloaded for each site. Since the Level-1C product
only provides the top of atmosphere (TOA) reflectance, we used the Sen2Cor processor (version 2.5.5,
http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-5-5/) to generate atmospherically
corrected surface reflectance (Level-2A) from Level-1C products. Additionally, the result of the
Sen2Cor processor can provide the scene classification layer including the detection of atmospheric
influences (cloud, cloud shadow, cirrus, etc.) and land cover types (vegetation, not-vegetated and
water). The pixel accuracy of cloud identification was approximate 90% according to the previous
study [59], and this layer has been widely used to select the high-quality vegetation pixels in validation
activities of Sentinel-2 biophysical estimates [37,38,49]. Moreover, the accuracy of vegetation and
non-vegetated identifications from this layer will be further evaluated in Section 4.1 to indicate the
reliability of this layer in the validation of Sentinel-2 biophysical estimates. Due to the different spatial
resolutions (10- and 20-m) for band 3–7, 8a, and 11–12, the reflectances of these bands were resampled
to the 20-m grid to match the ground ESU using the nearest neighbor method integrated in the Sentinel
Application Platform (SNAP).

3. Methodology

3.1. Generation of Sentinel-2 LAI, FAPAR, and FVC Estimates

The theoretical algorithms of LAI, FAPAR, and FVC retrievals were developed based on the
neural network [34]. Specifically, the process of this algorithm includes three main steps: generating
the training datasets through the PROSAIL model, calibrating the neural network and predicting
biophysical variables using the trained neural network, as shown in Figure 3. The PROSAIL model [60]
couples the Scattering from Arbitrarily Inclined Leaves (SAIL) canopy bidirectional reflectance
model [61] and the PROSPECT leaf optical properties model [62], which were used to describe the
influence of canopy structure and leaf property on the canopy reflectance, respectively. The value
distribution patterns for the input variables of the PROSPECT model were determined by the prior
knowledge from the literature data as well as the individual vegetation type. For the input variables of
the SAIL model, the soil reflectance was mainly derived from a soil reflectance database representing
a large variation of soil characteristics [63,64]. The LAI and average leaf angle (ALA) distributions
were established from the VALERI dataset, while the valid range of hot spot parameter (hspot) was
derived from a previous study [65]. The directional information, including solar zenith angle, view
zenith angle and relative azimuth angle between solar and view acquired from Sentinel-2 images, was
taken into account in the PROSAIL model to simulate the corresponding canopy reflectance. More
details about the distribution of input variables were described in Weiss and Baret [34].

http://step.esa.int/main/third-party-plugins-2/sen2cor/sen2cor_v2-5-5/


Remote Sens. 2020, 12, 912 8 of 24
Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 23 

 

 

Figure 3. The framework of the Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically 

Active Radiation (FAPAR), and Fractional Vegetation Cover (FVC)  retrieval algorithm for Sentinel-

2 imagery. The “N”, “Cab”, “Cw”, “Cm”, “Cbp” in the PROSPECT model and “LAI”, “ALA”, “hspot”, 

“ρsoil”, “θs”, “θv”, “φsv” in the Scattering from Arbitrarily Inclined Leaves (SAIL) model denote 

mesophyll structure index, chlorophyll content (μg/cm2), dry matter content (g/cm2), water content 

(g/cm2), brown pigment content for leaf and leaf area index (m2/m2), average leaf angle (°), hot spot 

parameter, sol reflectance, solar zenith angle (°), view zenith angle (°), relative azimuth angle between 

solar and view (°), respectively. 

3.2. Evaluation of Estimate Quality and Comparison with GMD Reference Maps 

The qualities of Sentinel-2 LAI, FAPAR, and FVC estimates were first evaluated in this study, 

including the classification accuracy of vegetation and non-vegetated pixels and the spatial coverage 

of best retrievals. Note that the evaluation processes were implemented using the quality control 

layer to exclude pixels that were contaminated by clouds, cloud shadow, cirrus and snow. First, the 

classification accuracy of vegetation and non-vegetated pixels needs to be evaluated because the 

algorithm derived biophysical variables without the inputs of the specific land cover types. Although 

the algorithm introduced the reflectance spectra representing a large variation of soil types and 

provided the QA layer with the input out of range (QA = 1) to reduce the impacts of non-vegetated 

pixels, many vegetation pixels without cloud contaminations were also identified as this case based 

on visual inspection. Similarly, the abnormal situation that a lot of non-vegetated pixels were labeled 

as the best retrieval (QA = 0) was observed due to the imperfect algorithm. That is, the LAI, FAPAR, 

and FVC retrievals derived from the algorithm may be greater than 0 for non-vegetated pixels. This 

result likely introduces undesired errors in the application of Sentinel-2 estimates. Thus, the layer of 

vegetation and non-vegetated classification is essential to utilize these estimates properly, and its 

accuracy should be evaluated. 

Second, as a vital indicator of the quality of retrievals, the algorithm path of each pixel is stored 

in the QA layer of each Sentinel-2 biophysical estimate. By comparing the retrieval rate of different 

algorithm paths, we can evaluate the overall quality of the biophysical estimate. Moreover, an 

indicator called the retrieval index (RI) that characterizes the proportion of the high-quality retrievals 

[25,66] was adopted to show the spatial coverage of the best retrievals with no cloud, cloud shadow, 

cirrus and snow contaminations. The RI of each Sentinel-2 tile selected in this study was calculated 

using Equation (1). 

100%
Number of the best retrieved pixels

RI
Number of total vegetation and cloud free pixels

 


 (1) 

Third, the performance of Sentinel-2 time-series biophysical estimates was analyzed over three 

sites representing three vegetation types (crops, forests, and grasses). Since the first Sentinel-2 satellite 

was launched on 23 June 2015, all Sentinel-2 images from July 2015 to July 2018 were acquired over 

Figure 3. The framework of the Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active
Radiation (FAPAR), and Fractional Vegetation Cover (FVC) retrieval algorithm for Sentinel-2 imagery.
The “N”, “Cab”, “Cw”, “Cm”, “Cbp” in the PROSPECT model and “LAI”, “ALA”, “hspot”, “ρsoil”,
“θs”, “θv”, “ϕsv” in the Scattering from Arbitrarily Inclined Leaves (SAIL) model denote mesophyll
structure index, chlorophyll content (µg/cm2), dry matter content (g/cm2), water content (g/cm2), brown
pigment content for leaf and leaf area index (m2/m2), average leaf angle (◦), hot spot parameter, sol
reflectance, solar zenith angle (◦), view zenith angle (◦), relative azimuth angle between solar and view
(◦), respectively.

The derived dataset from the PROSAIL model was then used for training the neural network.
Eight bands from the Sentinel-2 MSI in Section 2.3 were used to retrieve biophysical variables, given
that other bands are more sensitive to atmosphere or clouds. Note that the generated canopy reflectance
was simulated to fit the Sentinel-2 bands by considering the noises embedded in different wavebands.
The neural network consisted of 3 layers: the input layer, hidden layer and output layer. The input
layer includes 11 neurons, which represented 11 input variables: canopy reflectance of 8 spectral bands
and the cosine of 3 angles that refer to the geometry of observation (solar zenith angle, view zenith
angle and relative azimuth angle between solar and view). The hidden layer contains 5 neurons with
tangent sigmoid transfer functions. Since a single variable was derived from the output layer with a
separate linear transfer function, a total of 3 neural networks were needed for respectively generating
LAI, FAPAR, and FVC retrievals. As the biophysical algorithm has been integrated as a S2LP tool
in SNAP, this S2LP tool was applied to the Sentinel-2 surface reflectance to generate LAI, FAPAR,
and FVC estimates for all decametric resolution pixels. Each biophysical estimate also contains the
corresponding quality indicators (QA) that enables us to better understand the spatial structure of
uncertainties. The key indicator to characterize the quality of estimates is the valid range of input and
output variables, which can be grouped into the following 3 categories: (1) the best retrievals (QA = 0);
(2) the input out of range (QA = 1); (3) the output out of range (QA > 1).

3.2. Evaluation of Estimate Quality and Comparison with GMD Reference Maps

The qualities of Sentinel-2 LAI, FAPAR, and FVC estimates were first evaluated in this study,
including the classification accuracy of vegetation and non-vegetated pixels and the spatial coverage
of best retrievals. Note that the evaluation processes were implemented using the quality control
layer to exclude pixels that were contaminated by clouds, cloud shadow, cirrus and snow. First, the
classification accuracy of vegetation and non-vegetated pixels needs to be evaluated because the
algorithm derived biophysical variables without the inputs of the specific land cover types. Although
the algorithm introduced the reflectance spectra representing a large variation of soil types and
provided the QA layer with the input out of range (QA = 1) to reduce the impacts of non-vegetated
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pixels, many vegetation pixels without cloud contaminations were also identified as this case based on
visual inspection. Similarly, the abnormal situation that a lot of non-vegetated pixels were labeled
as the best retrieval (QA = 0) was observed due to the imperfect algorithm. That is, the LAI, FAPAR,
and FVC retrievals derived from the algorithm may be greater than 0 for non-vegetated pixels. This
result likely introduces undesired errors in the application of Sentinel-2 estimates. Thus, the layer
of vegetation and non-vegetated classification is essential to utilize these estimates properly, and its
accuracy should be evaluated.

Second, as a vital indicator of the quality of retrievals, the algorithm path of each pixel is stored
in the QA layer of each Sentinel-2 biophysical estimate. By comparing the retrieval rate of different
algorithm paths, we can evaluate the overall quality of the biophysical estimate. Moreover, an indicator
called the retrieval index (RI) that characterizes the proportion of the high-quality retrievals [25,66]
was adopted to show the spatial coverage of the best retrievals with no cloud, cloud shadow, cirrus
and snow contaminations. The RI of each Sentinel-2 tile selected in this study was calculated using
Equation (1).

RI =
Number o f the best retrieved pixels

Number o f total vegetation and cloud− f ree pixels
× 100% (1)

Third, the performance of Sentinel-2 time-series biophysical estimates was analyzed over three
sites representing three vegetation types (crops, forests, and grasses). Since the first Sentinel-2 satellite
was launched on 23 June 2015, all Sentinel-2 images from July 2015 to July 2018 were acquired
over three tiles, i.e., T35UQR, T33TUG, and T37MBV. To reduce the undesired variability caused
by cloud/cloud shadow/cirrus/snow/ice contaminations, only high-quality observations (pixels were
labeled as vegetation or non-vegetated) were further selected based on the scene classification layer
from the surface reflectance products. The QA values of each biophysical variable were also extracted
to show their evolutions across seasonal and annual contexts. Moreover, the corresponding ground
ESUs at each selected site were added to evaluate the accuracy of Sentinel-2 biophysical estimates.

Finally, the high-resolution GMD reference maps are generally severed as benchmarks for the
assessment of kilometric satellite-derived biophysical products or inputs for land surface models at
the regional level [4,43]. The evaluation of the spatial consistency between Sentinel-2 estimates and
GMD reference maps was thus essential to analyze the potential of Sentinel-2 estimates in various
applications. To spatially match Landsat-based GMD reference maps and Sentinel-2 derived retrievals,
the Sentinel-2 estimate was projected to the same coordinate system as the GMD reference map and
was resampled to the 30-m grid using the nearest neighbor method. Several statistical metrics (Bias,
root mean square error (RMSE), and coefficient of determination (R2)) were adopted for the analysis of
each Sentinel-2 derived biophysical estimate.

3.3. Uncertainty Quantification

The uncertainty is characterized using the RMSE between Sentinel-2 biophysical estimates and
the corresponding benchmark values. In this study, the ground ESUs were employed as the benchmark
to quantitatively analyze the uncertainty of the Sentinel-2 biophysical estimates. Based on the
available ground ESUs (Table 1), we carefully selected the valid pixel of Sentinel-2 estimates following
three criteria: (i) the vegetation pixel; (ii) the pixel with no cloud, cloud shadow, cirrus and snow
contaminations; (iii) the best retrieval from the neural network algorithm. As a result, a total of 111
LAIe, 97 LAI, 98 FAPAR, and 128 FVC ground ESUs were used in this study. Additionally, the GCOS
identified target requirement uncertainties of max (0.5, 20%) for LAI product and max (0.05, 10%) for
FAPAR product [13], which was also taken as the criteria to evaluate the corresponding Sentinel-2
biophysical estimates. Finally, the performance of Sentinel-2 biophysical estimates was also analyzed
for individual vegetation types, i.e., crop types, forests, and grasses.



Remote Sens. 2020, 12, 912 10 of 24

4. Results

4.1. The Accuracy of Vegetation and Non-vegetated Pixel Classification

According to the scene classification algorithm described in Sentinel-2 surface reflectance products
algorithm theoretical basis document (ATBD), the vegetation or non-vegetated pixels were identified
using NDVI and a reflectance ratio index defined by the ratio of the reflectance of the near-infrared
band to that of the green band. Since the latter index was built for monitoring the senescing vegetation,
NDVI, which is advantageous to distinguish the growing vegetation and other types, was used in this
study. We calculated the histogram of NDVI from all selected tiles, i.e., seven tiles in Section 2.3, for
vegetation and non-vegetated pixels, as shown in Figure 4. Among tens of millions of pixels without
cloud contaminations, the mean NDVIs of vegetation and non-vegetated pixels were 0.71 and 0.28,
respectively, which were calculated from all vegetation (red area in Figure 4) and non-vegetated (blue
area) pixels. Although the mean NDVIs of different land cover types were quite different, Figure 4
shows their NDVIs had some overlaps, from 0.40 to 0.60. It is noteworthy that the uncertainty of
non-vegetated pixel classification cannot be neglected, as a pixel is likely covered by vegetation when
its NDVI is greater than 0.40, based on previous in situ measurements [67–70]. Therefore, the NDVI
overlap between vegetation and non-vegetated pixels, as well as the uncertainty of non-vegetated
pixel classification, are potentially key factors that affect the accuracy of vegetation and non-vegetated
pixel identification in the scene classification layer from Sentinel-2 surface reflectance products.
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Figure 4. The histogram of NDVI for vegetation (red area) and non-vegetated (blue area) pixels,
respectively. The statistical results (pixel count, mean and standard deviation (std) value of pixels) for
all vegetation (red area) and non-vegetated (blue area) pixels are shown in the left panel.

According to the spatial distribution of ground ESUs, a total of 202 pixels were selected from
the scene classification layer and the evaluation results are shown in Table 2. Among these pixels,
the number of unclassified pixels (=1) can be negligible. Note that the cloud-contaminated pixels
were excluded to achieve a reliable result. Among the 183 valid pixels, six vegetation pixels were
identified as non-vegetated pixels in the Sentinel-2 scene classification layers. We checked the
NDVI of these six pixels and found that their values ranged from 0.38 to 0.47, which confirms our
aforementioned analysis that the NDVI overlap (Figure 4) between vegetation and non-vegetated pixels
is one of the possible causes for the vegetation misclassification. Overall, the accuracy of vegetation
and non-vegetated classifications were 96.13% and 100%, respectively, indicating the vegetation
or non-vegetated pixel identifications agree well with ground investigations by integrating NDVI
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information. Therefore, the scene classification layer is valuable to identify the vegetation pixels in the
Sentinel-2 biophysical estimates.

Table 2. The evaluation results of vegetation and non-vegetated pixel identifications in the scene
classification layer from Sentinel-2 surface reflectance products based on the investigations of
ground ESUs.

Sentinel-2 Scene Classification Layer

Ground ESUs
Unclassified Cloud Land cover Vegetation Non-vegetated Accuracy

1 18
Vegetation 149 6 96.13%

Non-vegetated 0 28 100%

4.2. Spatial Coverage of Biophysical Retrievals from Different Algorithm Paths

As indicated in Section 4.1, the pixel identified as vegetation in the scene classification layer was
selected at each site because this pixel was not contaminated by cloud, cloud shadow, cirrus, and snow.
The number of these high-quality pixels was calculated by each whole tile of Sentinel-2, as shown
in Figure 5a. Since not all Sentinel-2 images have full observations in the whole tile, the number of
high-quality pixels for several sites (Barrax, and Pshenchine (2015-188)) was less than for other sites.
However, we can observe that millions of vegetation pixels were available for each site, indicating
the reliability of the RI evaluation results. The proportion of pixels from different algorithm paths
exhibited a large discrepancy for LAI, FAPAR, and FVC estimates (Figure 5b–d). For LAI retrievals
(Figure 5b), the RI was greater than 75% at each tile and 87.3% for overall tiles. The other poor-quality
retrievals, accounting for 12.4% of all vegetation pixels, were mainly caused by the input being out of
range. The reasons for the input being out of range in the trained neural networks are likely from three
aspects: (i) the imperfection of the RTM model, i.e., PROSAIL, in simulating canopy reflectance; (ii) the
range of input variables, such as Cab, ALA, LAI, etc., cannot represent all actual cases; (iii) uncertainties
in atmospheric correction for Sentinel-2A MSI images. The former two cases inevitably introduce
errors in the generation of training datasets, while the last case refers to the errors embedded in the
input surface reflectance.

For FAPAR estimates (Figure 5c), the overall distribution of retrievals from different algorithm
paths was quite similar to that of LAI estimates. Nevertheless, two sites, i.e., Barrax and Pshenchine
(2015-188), exhibited the proportion of retrievals caused by the output being out of range was about 5%.
Therefore, the out of range issue of FAPAR retrievals needs to be further considered in the algorithm
improvement and the applications of this product. By contrast, the highest RI (almost 100%) for FVC
estimates (Figure 5d) over each site indicated the robustness of the retrieval algorithm. The observed
RI differences for LAI, FAPAR, and FVC estimates emphasize that assessing the spatial coverage of
high-quality retrievals should be a pre-requisite to more comprehensively understand the performance
of different Sentinel-2 biophysical estimates.
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Figure 5. (a) The number of pixels used in evaluating the spatial coverage of retrievals from different
algorithm paths for Sentinel-2 biophysical estimates at each site. The pixel identified as vegetation in
the scene classification layer was selected. The proportion of (b) LAI, (c) FAPAR, and (d) FVC estimates
with the best retrievals, input out of range, and output out of range in all vegetation pixels at each site
was also displayed. The “Bar”, “Col”, ”Con”, “Cre”, “Mar”, “Pey”, “Psh1”, “Psh2”, “Sav”, and “Urg”
are the abbreviation name of Barrax, Collelongo, Creón D’armagnac, Maragua_UpperTana, Peyrousse,
Pshenichne (2015-188), Pshenichne (2015-204), Savenès, and Urgons sites.

4.3. Analysis of Sentinel-2 Time-Series Biophyiscal Estimates

Figure 6 shows the seasonal trajectory of Sentinel-2 biophysical estimates as well as their QA
values and the ground ESUs over three example sites (crops, forests, and grasses) for three years (July
2015–July 2018). Overall, the number of valid observations increased from the year 2017 for all sites,
which is primarily due to the additional inclusion of Sentinel-2B data. For the crop site (50.001◦N,
30.142◦E), Sentinel-2 biophysical estimates displayed the typical seasonality of crop growth (Figure 6a),
with higher values for dates with obvious vegetation than those dates without vegetation. The LAI,
FAPAR, and FVC showed the similar seasonal trajectory because of the highly physical correlations
among them. However, only the QA values of LAI and FAPAR estimates were similar, which were
quite different from those of the FVC estimates. For the inferior quality of LAI and FAPAR estimates at
different observation dates, the outputs out of range (QA > 1) of almost all estimates were caused by
the non-vegetated observations, while the estimates with inputs out of range (QA = 1) were observed
at both non-vegetated and vegetation observations.
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Figure 6. The temporal trajectory of Sentinel-2 LAI, FAPAR, and FVC estimates from July 2015 to
July 2018 at the (a) crop site, (b) forest site, and (c) grass site, respectively. The square point indicates
the value of the ground ESU. The scene classification layer (SCL) shown at the top of each panel was
extracted from Sentinel-2 surface reflectance products. The quality indicator (QA) was also displayed
together with the biophysical variable for each observation date.

For the forest site (41.854◦N, 13.583◦E), all Sentinel-2 biophysical estimates displayed the distinct
seasonality of a mid-latitude temperate forest (Figure 6b). The abnormal estimates were found in July
2016, which may be the consequences of unfavorable atmospheric conditions, such as the residual
cloud effects that caused the input to be out of range. For the grass site (0.773◦S, 36.984◦E), the number
of valid observations was much less than that of crop and forest sites due to the higher cloudiness at
the equatorial region. Thus, Sentinel-2 cannot track the seasonal variation of LAI, FAPAR, and FVC
estimates because of the insufficient time-series observations. Indeed, although Sentinel-2 comprises
two satellites, which can be combined to improve the temporal continuity of biophysical estimates, it
can be observed that several key stages of vegetation were lacking. However, the agreements with
the ground LAIe, FAPAR, and FVC ESUs at each site indicate the good performance of Sentinel-2
time-series biophysical estimates.

4.4. Intercomparison with GMD LAI, FAPAR, and FVC Reference Maps

The Sentinel-2 LAI, FAPAR, and FVC estimates were further compared with overall vegetation
pixels of GMD reference maps. Similarly, the vegetation pixels were identified by the scene classification
layer from Sentinel-2 surface reflectance products. Figure 7 illustrates the density scatter plots for
LAIe, LAI, FAPAR, and FVC comparisons between Sentinel-2 estimates and GMD reference maps.
It was observed that Sentinel-2 LAI estimates showed a slight overestimation (Bias = 0.26 m2/m2)
across the whole range of LAIe values (Figure 7a). In particular, the higher LAI values (> 4 m2/m2) of
Sentinel-2 estimates departed from those of GMD LAIe reference maps, introducing a large positive bias.
This difference can be attributed to the high sensitivity of red-edge bands to high LAI values [71–73].
Since the GMD LAIe maps were derived from Landsat-8 data without red-edge bands, the saturation
of reflectance results in lower LAIe values. For the LAI comparison shown in Figure 7b, Sentinel-2 LAI
estimates exhibited some underestimations (Bias = −0.42 m2/m2) compared with GMD LAI reference
maps because the LAI is greater than LAIe based on ground measurements. Overall, Sentinel-2
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LAI estimates were more consistent with GMD LAIe reference maps (RMSE = 0.89 m2/m2) than
LAI reference maps (RMSE = 1.04 m2/m2). This is not surprising since the algorithm of Sentinel-2
LAI estimate did not consider the clumping effect and consequently the LAI retrievals should be
more consistent with LAIe. In terms of FAPAR comparison (Figure 7c), the agreement of Sentinel-2
estimates with GMD reference maps was quite good, with small bias (Bias = −0.06) and low uncertainty
(RMSE = 0.15). Additionally, no significant bias (Bias = −0.05) was observed for FVC comparison
between Sentinel-2 estimates and GMD reference maps (Figure 7d). The performance of Sentinel-2
FVC estimates was similar to that of Sentinel-2 FAPAR estimates when compared to the GMD reference
maps. Nevertheless, both Sentinel-2 FAPAR and FVC estimates were lower than the GMD reference
maps for the large values (> 0.8).
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Figure 7. The biophysical-specific comparison between ground-measurements-derived (GMD) reference
maps and Sentinel-2 estimates at the pixel scale from 2015 to 2016. The solid black and dash black lines
represent the linear fit for all pixels and 1:1 line, respectively. The colorbar shows the density of pixels
falling at each grid. (a)–(d) stand for LAIe, LAI, FAPAR, and FVC comparison, respectively.

4.5. Uncertainty Assessment

Figure 8 shows the uncertainty of Sentinel-2 biophysical estimates that were evaluated by the
collected ground ESUs. The performance of Sentinel-2 estimates differed with biophysical variables.
The best agreement with ground ESUs was observed for FAPAR estimates, whereas LAI estimates
performed at an inferior level when compared to both the ground LAIe and LAI ESUs. The performance
of FVC estimates with the corresponding ground ESUs was also good, with almost no bias and low
uncertainty, although some variations were observed for low FVC values. Overall, although Sentinel-2
LAI estimate represents the LAIe according to the developed algorithm, Figure 8a,b show some
overestimations (Bias = 0.57 m2/m2) and underestimations (Bias = −0.40 m2/m2) by the confrontation
with ground LAIe and LAI ESUs, respectively. Furthermore, Sentinel-2 LAI estimates exhibited better
agreement with ground LAIe ESUs (R2 = 0.42) than LAI ESUs (R2 = 0.39), with lower RMSE. The
proportion of Sentinel-2 LAI pixels satisfying the GCOS uncertainty requirement (max (0.5, 20%)) was
46.85% and 40.21% for representing LAIe and LAI, respectively. It should be noted that Sentinel-2 LAI
showed the considerable overestimation for the medium LAI (1.5 m2/m2 < LAI < 3.5 m2/m2) compared
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with ground LAIe ESUs, whereas the dispersion of Sentinel-2 LAI estimates with ground LAI ESUs
was larger than that with ground LAIe ESUs.
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Figure 8. The comparisons between ground ESUs and Sentinel-2 biophysical estimates. (a) Ground
LAIe ESUs versus Sentinel-2 LAI estimates; (b) Ground LAI ESUs versus Sentinel-2 LAI estimates;
(c) Ground FAPAR ESUs versus Sentinel-2 FAPAR estimates; (d) Ground FVC ESUs versus Sentinel-2
FVC estimates. The colors stand for different vegetation types (i.e., crop types, forests, and grasses,
respectively) shown in the right colorbar. The blue and black solid lines denote the fitting line and
1:1 line, respectively. The red dashed lines show the Global Climate Observing System (GCOS)
specifications boundaries for LAIe (max (0.5, 20%), LAI (max (0.5, 20%)) and FAPAR (max (0.05, 10%)).

For FAPAR, the values of most pixels were distributed between 0.7 and 1.0, but the bias and
RMSE were only −0.02 and 0.13, respectively, indicating the good performance of Sentinel-2 FAPAR
estimates. Nevertheless, the dispersion of Sentinel-2 FAPAR cannot be ignored as the R2 was relatively
low (=0.59). Moreover, Sentinel-2 FAPAR estimates that meet the uncertainty requirements (max (0.05,
10%)) suggested by GCOS accounted for 45.92% among 98 ground ESUs. For FVC, the number of
pixels (n = 128) used for the validation was much larger than that for LAI and FAPAR because of its
good spatial coverage (Figure 5d). The Sentinel-2 FVC showed a similar performance with FAPAR
except that its dispersion was a marginally higher.

In order to understand the potential of Sentinel-2 biophysical estimates in various applications,
the performance of GMD reference maps was assessed using the same ground ESUs (Figure A2
in Appendix A). In general, our comparison reveals that GMD reference maps exhibited better
performances and better relationships (R2(LAIe) = 0.65 and R2(LAI) = 0.79) than Sentinel-2 estimates
for LAIe and LAI, which are primarily attributed to the use of ground ESUs in the generation of GMD
reference maps. However, the performances of GMD FAPAR (RMSE = 0.11) and FVC (RMSE = 0.14)
reference maps were comparable with their corresponding Sentinel-2 estimates (RMSE = 0.13 for FAPAR
and 0.17 for FVC), indicating the Sentinel-2 FAPAR and FVC estimates are promising for terrestrial
applications, such as coarse spatial resolution product validation, and land surface modelling, etc.
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To further assess the Sentinel-2 estimates, they were compared to ground ESUs for individual
vegetation types. In particular, since different crops have distinct leaf and canopy architectures, each
crop type was also evaluated separately, as shown in Figure 8 and Table 3. For Sentinel-2 LAI estimates,
it overestimated LAIe and underestimated LAI for all vegetation types (especially for the crops shown
in Figure 8a,b), but the specific performance over each type was quite different. The lowest uncertainty
of LAI estimate was achieved by grasses (RMSE = 0.40 m2/m2 for LAIe and 0.59 m2/m2 for LAI),
followed by forests (RMSE = 0.69 m2/m2 for LAIe and 0.89 m2/m2 for LAI) and crops (RMSE = 1.16
m2/m2 for LAIe and 1.24 m2/m2 for LAI). Moreover, it can be observed that the crop types exhibited
quite different performances for representing both LAIe and LAI. The LAI estimates of corn showed
the obvious overestimations (Bias = 0.96 m2/m2) and underestimations (Bias = −0.63 m2/m2) compared
to ground LAIe and LAI ESUs, introducing a large uncertainty for overall crops. The best agreement
between Sentinel-2 LAI estimates and ground ESUs was achieved by coffee. For FAPAR and FVC
retrievals, Sentinel-2 estimates showed a better agreement with ground ESUs over forests (lowest
RMSE and highest R2) than grasses and crops. Specifically, among all crops, the FAPAR estimates
of sunflower and the FVC estimates of coffee performed the best with the ground FAPAR and FVC
ESUs, respectively. Even though the neural network was trained for overall vegetation types based
on the description of Sentinel-2 biophysical algorithms, the performances of estimates varied with
vegetation types. Additionally, it should be noted that the distribution of measurements for different
vegetation types was not sufficient enough. Adding more ground ESUs, especially for the grasses, may
achieve a more robust evaluation result of Sentinel-2 estimates. The various factors that contribute to
the uncertainty of Sentinel-2 biophysical estimates will be further discussed in Section 5.1.

Table 3. Direct validation results of Sentinel-2 biophysical estimates over different vegetation types.
The “N” and “-” denote the number of valid pixels and unavailable results, respectively. The gray color
in the table indicates few ground ESUs were used to evaluate the Sentinel-2 biophysical estimates,
while the bold numbers show the validation results for crops (including alfalfa, banana, Tea, ect.),
forests, grasses, respectively.

Vegetation type LAIe (m2/m2) LAI (m2/m2) FAPAR FVC

N Bias RMSE R2 N Bias RMSE R2 N Bias RMSE R2 N Bias RMSE R2

Alfalfa - - - - - - - - - - - - 4 −0.00 0.01 0.79
Banana 1 0.35 0.35 - 1 −0.76 0.76 - 1 −0.16 0.16 - 1 −0.24 0.24 -

Prunus Popplar 1 −0.29 0.29 - 1 −1.16 1.16 - 1 −0.10 0.10 - 1 −0.08 0.08 -
Tea 4 −0.86 1.02 <0.1 4 −1.08 1.22 <0.1 4 −0.16 0.16 0.52 4 −0.14 0.14 0.34

Coffee 7 0.59 0.64 0.73 7 0.02 0.61 0.74 7 0.01 0.15 0.92 7 −0.02 0.13 0.87
Sunflower 8 0.80 1.12 0.44 7 0.46 0.99 0.33 7 0.10 0.12 0.92 20 0.15 0.20 0.62
Soybean 24 0.40 1.23 <0.1 21 −0.29 1.47 <0.1 21 −0.08 0.17 <0.1 25 −0.08 0.19 <0.1

Corn 39 0.96 1.24 0.46 29 −0.63 1.24 0.21 30 0.02 0.12 0.33 38 0.17 0.19 0.56
Crops 84 0.65 1.16 0.37 70 −0.39 1.24 0.32 71 −0.02 0.14 0.52 100 0.06 0.18 0.34

Forests 19 0.42 0.69 0.68 19 −0.52 0.89 0.61 19 −0.04 0.07 0.63 20 −0.10 0.12 0.55
Grasses 8 0.09 0.40 0.65 8 −0.19 0.59 0.42 8 −0.03 0.14 0.39 8 −0.05 0.17 0.32

5. Discussion

5.1. Understanding Uncertainty of Sentinel-2 Biophysical Estimates

From our comprehensive evaluations presented in Section 4, the characteristics of Sentinel-2
biophysical estimates, including the RI spatial coverage and uncertainty for different vegetation types
were well analyzed. Here, we investigate the possible reasons that caused the differences between
retrievals and ground ESUs to better understand the performances of Sentinel-2 biophysical estimates.
First, the uncertainty of estimates partially caused by the error of atmospheric correction for the surface
reflectance products, which was reported by previous studies [74–76], was considered. Specifically,
the range of surface reflectance uncertainty (relative uncertainty) was 0.0123 (5%)–0.0174 (14.59%) in
the spectral domain of bands 3–7, 8a, 11–12. Second, uncertainties from the trained neural network
used to derive the biophysical variables can also introduce some undesired errors. Based on the
algorithm evaluation [34], the theoretical performance described by RMSE was 0.89 m2/m2 for LAI,
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0.05 for FAPAR, and 0.04 for FVC. This can explain why the FAPAR and FVC estimates showed
better agreement with ground ESUs than LAI estimates. Finally, although considerable efforts were
made to select the proper Sentinel-2 data with observation dates close to those of ground ESUs, the
temporal gaps between these two datasets cannot be neglected. This temporal mismatch is also a very
important factor that caused the potential uncertainty of Sentinel-2 biophysical estimates. For instance,
the overestimation of Sentinel-2 LAI estimates compared with ground LAIe ESUs may be due to the
Sentinel-2 later observation dates. Thus, more ground measurements should be obtained in the future
to improve the robustness of the validation results.

5.2. Limitations and Future Prospects

According to previous studies, the uncertainty of Sentinel-2 LAI estimates was generally 0.54–1.16
m2/m2 for crops [36,37,39,46,47,50–52] and 1.55 m2/m2 for forest [49]. In terms of Sentinel-2 FAPAR
estimates, the uncertainty was 0.11 for crops [39] and 0.16–0.24 for forests [38]. The uncertainty of
Sentinel-2 FVC estimates has been reported as being from 0.11 to 0.18 for crops [36,37,39]. Compared
to these similar studies, this study used more ground validation data from the same field campaign at
a large spatial scale to assess Sentinel-2 biophysical estimates. In general, our validation results agree
with the findings reported by other studies. Particularly, a variety of benchmark data with the consistent
measurement criteria enables us to better understand the performance of long-term Sentinel-2 estimates
simultaneously for different biophysical variables (LAI, FAPAR, and FVC) and vegetation types (crops,
forests, and grasses). Moreover, the uncertainties of estimates caused by the input reflectance data or the
retrieval algorithm were also analyzed. However, the quantified uncertainty of Sentinel-2 biophysical
estimates was limited by the availability of ground measurements, especially for the time-series
validation. The most effective way is to add more ground measurements from spatiotemporally
well-distributed field campaigns for various vegetation types. To achieve a robust evaluation result,
an integration of in situ reference data from globally distributed research networks (i.e., FLUXNET,
Chinese Ecosystem Research Network (CERN), Terrestrial Ecosystem Research Network (TERN), et
al.) [25,77] will be considered in the future work because these networks have been continuously
collecting in situ data for many years. The networks of site-based measurements are advantageous for
the validation of decametric products because the footprint of ground measurements is close to the
pixel grid of products. Therefore, more ground measurements covering the products at specific time
periods (2015-present), will be collected from the global network of sites and then could be used to
better quantify the uncertainties, particularly the performance of time-series attached to the Sentinel-2
biophysical estimates.

Compared to the widely used coarse-resolution (≥300 m) products, the first available decametric
biophysical estimates can be generated from Sentinel-2 imagery by user communities as necessary.
Based on the validation results, Sentinel-2 FAPAR and FVC estimates have similar performances with
the corresponding GMD reference maps. However, the GMD reference maps need to collect the field
measurements, which are unavailable to derive long-term or global products in this manner. Therefore,
the good performances of the Sentinel-2 FAPAR and FVC estimates indicate their great potential in
various applications. It should be noted that the uncertainty of Sentinel-2 LAI estimates tends to be
relatively large, caused by the large uncertainty of trained neural networks. Furthermore, the algorithm
improvement of Sentinel-2 biophysical estimates can be considered from several aspects. As described
in Section 3.1, LAI, FAPAR, and FVC were separately derived from three independent neural networks.
Therefore, the importance of input 11 variables (eight bands and three observation angles) should
be calculated to better understand their performance on the retrieval of each biophysical variable.
Moreover, we observed that the performance of each biophysical variable was quite different in terms
of the spatial coverage of best retrievals (Figure 5) and the uncertainty (Figure 8). However, due to the
highly physical correlations among LAI, FAPAR, and FVC (Figure 6), the joint retrieval of them from
a neural network may improve their consistency, accuracy and computational efficiency [23], which
is noteworthy to be considered in the future. Additionally, as different vegetation types exhibited a
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large discrepancy in the agreement with ground measurements, the accuracy of LAI retrievals could be
improved if the vegetation-specific neural network was trained. Finally, Figure 6 shows that Sentinel-2
biophysical estimates cannot well capture all the key growth stages of vegetation caused by the relative
long revisit cycle of satellites and cloud contaminations. The combination of Sentinel-2 MSIs with
other satellite sensors at different spatial resolutions, such as Landsat-8 OLI (Harmonized Landsat
Sentinel-2) [78], Terra/Aqua MODIS, PROBA-V vegetation instrument, etc., will be promising in the
generation of temporally continuous biophysical variables at a fine spatial resolution.

6. Conclusions

The current hectometric or kilometric spatial resolution biophysical products restrict the modeling
of the ecosystem process at the regional level with heterogeneous landscapes. The newly developed
biophysical algorithm for Sentinel-2 MSI imagery provides an effective way to generate the first
global LAI, FAPAR, and FVC estimates at decametric spatial resolution. However, there is a need
for a comprehensive validation of these estimates over various regions, observation dates and
vegetation types to understand their performances and further extend their applications. In this
study, a quantitative validation of Sentinel-2 LAI, FAPAR, and FVC estimates were performed over
2015–2016 using all ground observations with the consistent measured criteria and GMD reference
maps. The results show that the accuracy of vegetation and non-vegetated classification results is more
than 95% based on the ground investigations, which can be used to identify the vegetation pixel, since
the algorithm generates the biophysical retrievals for all pixels. The evaluation of spatial coverage
for best retrievals in different variables shows FVC estimates achieve the best performance (~ 100%)
followed by LAI (87.3%) and FAPAR (87.2%) estimates. The inferior quality of other retrievals is
mainly caused by the input being out of range, which needs to be considered in the future algorithm
improvement. The product intercomparison shows the Sentinel-2 FAPAR and FVC estimates are quite
consistent with the GMD reference maps, while large discrepancies of LAI estimates are observed over
both GMD LAIe and LAI reference maps. Confrontation with ground ESUs indicates that Sentinel-2
LAI estimates are closer to LAIe because of uncorrected clumping effect in the retrieval algorithm.
For Sentinel-2 FAPAR and FVC estimates, no obvious systematic errors (Bias = −0.02 for FAPAR and
0.03 for FVC) are observed and their uncertainties are quite low (RMSE = 0.13 for FAPAR and 0.17 for
FVC). Additionally, the performances of all Sentinel-2 biophysical estimates for forests and grasses
are better than for crops, even though a single neural network was used to derive estimates for all
vegetation types. However, these validation results are limited due to the relatively small number
of ground measurements and the temporal gaps between Sentinel-2 and ground observations. More
multi-temporal ground measurements across different regions are needed to provide fundamental
information for the improvement of retrieval algorithms and broad applications of these decametric
biophysical estimates.
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