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Abstract: Forest three-dimensional (3-D) structure, in the vertical dimension, consists of at least
two components, including overstory and a forest background matrix (i.e., shrubs, grass, and bare
earth). Quantitatively characterizing the proportions of forest sunlit (i.e., sunlit overstory and forest
background) and shaded (i.e., shaded overstory and forest background) components is a crucial step
in simulating the spatial variations of bidirectional reflectance distribution function (BRDF) of a forest
canopy. By developing a Voxel-based sorest sunlit and shaded (VFSS) approach driven by aerial laser
scanning data (ALS), we investigated the spatial variations of the forest sunlit and shaded components
in a heterogeneous urban forest park (Washington Park Arboretum) with abundant tree species and
a homogeneous natural forest area (Panther Creek). Meanwhile, we validated the forest canopy
directional reflectance at both solar principal and perpendicular planes at the plot level. Moreover,
we explored the effects of ALS data characteristics and forest stand conditions on the estimation
accuracy of forest sunlit and shaded components. Our results show that (1) ALS data effectively
stratify overstory and forest background with the accuracy decreasing from 87% to 65% as forest
densities increase; (2) the root mean square errors (RMSEs) between the modeled- and ALS-based
proportions of forest sunlit and shaded components range from 5.8% to 11.1% affected by forest
densities; and (3) the scan angles and flight directions have apparent effects on the estimation accuracy
of forest sunlit and shaded components. This work provides a solid foundation to investigate the
spatial variations of directional forest canopy reflectance with a high spatial resolution of 1 m.

Keywords: ALS; forest stratification; sunlit and shaded components; BRDF

1. Introduction

The anisotropic characteristics of forest canopy reflectance from multiple observation directions
are greatly affected by the proportions of visible sunlit and shaded components in a forest stand [1–3].
The shaded/sunlit proportions also affect the estimation accuracy of gross primary production (GPP)
using light use efficiency (LUE) models which are sensitive to the shaded/sunlit proportions [4,5].
A forest stand consists of overstory and forest background matrix, including shrubs, grass, and
bare earth in a vertical way. It can be divided into four components as follows: Sunlit overstory,
sunlit forest background, shaded overstory, and shaded forest background [6–8] under the specific
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observation geometry. The four component proportions directly determine the forest canopy spectral
characteristics [9] and further affect the retrieval accuracy of forest leaf area index (LAI) [10,11] and
chlorophyll content [12]. Then characterizing the sunlit and shaded components in a forest stand
will be beneficial to the calculation of C assimilation and transpiration using advanced ecosystem
models [13].

Most of the methods quantifying four forest components usually fall into three categories: (1) GO
models: Various geometric optical (GO) models have been developed to compute the proportions
of four forest components and bidirectional reflectance distribution function (BRDF) analytically
or empirically [1,14–17]. However, there still exist some difficulties and challenges as follows:
(i) The assumption that tree crowns have uniform shapes limits their applications in a heterogeneous
forest stand with various tree species. Moreover, it is difficult to approximate the actual mutual
shadowing effect between tree crowns using a statistical model and determining the unknown
parameters of statistical models characterizing tree spatial distribution patterns.(ii) Most of the GO
models are only used in relatively flat or slope areas, which prevent their applications in mountain
areas [18,19]. However, the topographic variations affect proportions of the four forest components,
further affecting the BRDF of a forest canopy [18–20]. (2) Ray-tracing algorithm: The ray-tracing
based methods have been successfully developed during the past decades, such as deterministic
ray-tracing [20], Monte Carlo ray-tracing model [21], and discrete anisotropic radiative transfer model
(DART) [22]. Compared to the GO models, DART can simulate complex forest scenes through
the importation of 3D trees generated in external modeling software or using turbid layers with
defined crown structure parameters [23]. However, it is difficult to reconstruct the same virtual forest
scene with the real forest plot used in DART software, which will introduce apparent errors to the
estimation and simulation of the four forest components and BRDF [24,25]. (3) Spectral mixture
analysis: The reflectance of a remotely sensed image pixel can be expressed as the weighted linear
combinations of reflectance values of the sunlit forest canopy, sunlit forest background, and all shaded
components based on the spectral mixture analysis [9,26–28]. However, similar spectral characteristics
make it challenging to separate the shaded forest components and further obtain the proportions
of four forest components in any observation direction using given optical imagery [28,29]. Thus, a
more flexible and generic approach is needed to characterize the spatial variations of the four forest
components based on the real forest three-dimensional (3D) scene.

The 3D structural information within the aerial laser scanning (ALS) data make it possible to
characterize canopy structure [30,31] and separate overstory and forest background [32] quantitatively.
Various structural parameters, such as crown size [33,34], tree height and location [35,36], canopy
cover [37], and LAI [38], have been successfully obtained from ALS data. Latifi [39] found that ALS
data outperformed other remotely sensed data in predicting forest structure parameters. Further, the
detailed vertical structure [40] and shadowing effects among tree crowns implicitly contained within
ALS data allow us to estimate the proportions of four forest components without using a statistical-based
method. Meanwhile, the ALS-based digital elevation model with high spatial resolution [41–43] can
be beneficial to accurately estimate the proportions of the four forest components. Hilker et al. [44]
derived the shaded component proportion of forest canopy using a hillshade algorithm [45] from
airborne Lidar data. However, few studies have paid attention to estimating the four forest component
proportions of a forest stand with a real 3D forest scene using the ALS data. An ALS-based approach is
needed to quantify the proportions of the four forest components. Additionally, the effects of ALS data
characteristics and forest structure on the four forest component proportions estimation are still not
clear. Therefore, our specific goals are:

(1) To develop an ALS-based method to estimate and validate the four forest component proportions
of a forest scene and

(2) To investigate the spatial variations of the proportions of the four forest components, and
further explore the factors affecting the estimation accuracy of the four forest components.



Remote Sens. 2020, 12, 1071 3 of 27

2. Materials and Methods

2.1. Study Sites

Two study sites were selected in this study. The first study site was the Washington Park
Arboretum (WPA), which is located at the south of the University of Washington campus in
Seattle, Washington, USA. It is an urban heterogeneous forest park. The dominant tree species
include Douglas fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla), western red cedar
(Thuja plicata), bigleaf maple (Acer macrophyllum), monkey puzzle (Araucaria araucana), southern
magnolia (Magnolia grandiflora), and New Mexican locust (Robinia Neomexicana). The terrain slope
throughout the WPA site is less than 15%. The second study site was the Panther Creek (PC) watershed,
which is a natural forest located at the southeast of the city of Portland, Oregon, U.S.A. It is a managed
natural forested area. The Douglas fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla),
western red cedar (Thuja plicata), and bigleaf maple (Acer macrophyllum) are dominant tree species
(Figure 1). The slope of the PC site was up to 51.3◦.

Figure 1. The original aerial laser scanning (ALS) colored by height and corresponding ALS data
overlaid with true-color aerial photos in the urban heterogeneous forest of Washington Park Arboretum
(WPA) in Washington state, USA, and natural homogeneous forest of Panther Creek (PC) site in Oregon
state, USA. Seven forest plots in total (i.e., WPA-P1, WPA-P2, WPA-P3, WPA-P4, PC-P1, PC-P2, and
PC-P3) were set up in these two study sites.

We established four circular plots (i.e., WPA-P1, WPA-P2, WPA-P3, and WPA-P4) with a radius of
30 m in the WPA site, and three square plots (i.e., PC-P1, PC-P2, and PC-P3) with a side length of 40 m
in the PC site based on the ground measurement data. According to forest densities’ variations, we
selected four plots (i.e., WPA-P1, WPA-P2, WPA-P3, and PC-P1) to validate the ALS-based four forest
component results. Meanwhile, three plots (i.e., WPA-P4, PC-P2, and PC-P3) were selected to explore
the effects of ALS data characteristics on the estimation of the four forest component proportions
resulting from a range of acquisitions of ALS data in these plots. Moreover, to investigate the effects
of surrounding forest stands on the four forest component proportions estimation of a given forest
stand, we constructed a plot (i.e., WPA-P2E) by extending the radius of plot WPA-P2 to 90 m. Based on
the values of normalized difference vegetation index (NDVI) of pixels of the HyMap hyperspectral
imagery, these forest plots were divided into three levels: Low density (i.e., 0.1 < NDVI < 0.3), medium
density (i.e., 0.3 < NDVI < 0.5), and high density (i.e., NDVI > 0.5).More detailed characteristics of the
plots can be found in Table 1.
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Table 1. Characteristics of seven forest plots for forest plots in both Washington Park Arboretum (WPA)
and Panther Creek (PC) sites.

Plot# Forest
Type Density Overpass

Times
Number of

Scan Angles Scan Angle Range (◦) Tree Height
(m)

WPA-P1 Mixed Low 3 22 -24 ~ -11, -8 ~ 0 6.0 -18.0

WPA-P2 Conifer Medium 2 32 -29 ~ -7, -3 ~ 5 8.7 - 31.0

WPA-P2E Mixed Medium 5 57 -29 ~ -7, -3 ~ 10, 18 ~ 28 3.7 - 25.4

WPA-P3 Mixed High 4 43 -26 ~ -16, -10 ~ 10, 18 ~ 28 12.0 - 34.0

WPA-P4 Conifer Medium 1 13 7 ~ 19 13.0 - 27.0

PC-P1 Conifer Low 2 22 -10 ~ -1, 2 ~ 12 4.5 - 9.8

PC-P2 Conifer Medium 2 24 -8 ~ 5, -3 ~ 6 33.5 - 57.2

PC-P3 Conifer Medium 2 23 -12 ~ -1, 3 ~ 13 18.6 - 38.8

2.2. Datasets

2.2.1. Field Data

We randomly selected 378 trees in the WPA site to measure the stem location and tree height using
the Global Navigation Satellite System (GNSS), working with a differential mode and laser range finder
in August 2009. We collected tree crown diameter measurements in two cross directions (North-South
and West-East) for each tree crown. In the PC site, we measured tree height and stem location for each
tree in the plots PC-P2 and PC-P3 in July 2009. There were 22 and 50 trees in the two plots, respectively.

2.2.2. Aerial Laser Scanning (ALS) Data

We acquired the ALS data for the WPA site in August 2008 using a Riegl LMS-Q560 (Riegal, Co.
Ltd. Horn, Austria) laser scanner with a pulse frequency of 133,000 Hz. The flight height ranged from
145 m to 412 m, and the average elevation was about 310 m. The average point density in the WPA site
was 26 points/m2. The coverage of the scan zenith angle in the collecting data process was −30◦ to
30◦ from nadir, and multiple flight lines were designed to acquire forest point cloud data (Table 1).
In the PC site, the ALS data was acquired using the Leica ALS60 (Leica Geosystems AG, Heerbrugg,
Switzerland) mounted in an aircraft with the 105 kHz pulse rate and at the flight height of 900 meters
above ground level in July 2010. The coverage of the scan zenith angle was ±14◦, and the average
point density in the PC site was 15 points/m2.

2.2.3. Hyperspectral Imagery Data

The aerial hyperspectral imagery was acquired using HyMap Sensor (HyVista Corporation, New
South Wales, Australia) in August 2010 in the WPA site with local time of 11:00 a.m. The HyMap sensor
has four spectrometers (visible spectrum (450 nm–890 nm), near-infrared (890 nm–1350 nm), shortwave
infrared 1 (1400 nm–1800 nm), and shortwave infrared 2 (1950 nm–2480 nm)), each sensor produced 32
spectral bands of imagery. We obtained the apparent surface reflectance from the raw radiance image
using HyCorr software (HyVista Corporation, New South Wales, Australia), and we georeferenced
the data using known field control points. During the flight time, we collected field-based spectral
measurements with Analytical Spectral Device (ASD) FieldSpec®4 Hi-Res (Malvern Panalytical Inc.
Westborough, MA, USA) of ground targets with 1 m above ground for calibrating aerial hyperspectral
imagery. The spatial resolution of the aerial imagery was 3 m. More detailed information about the
processing of hyperspectral imagery has been reported by Zhang et al. [38].



Remote Sens. 2020, 12, 1071 5 of 27

2.2.4. Visual-Based Validation Data

To validate the ALS-based tree crown segmentation results for the seven plots in both WPA and
PC sites, we visually identified and recorded the coordinates of every treetop point in these seven
plots from ALS point cloud data. Moreover, the crown diameters in the North-South and West-East
directions were manually measured, and the averaged crown diameter was used as the representative
value of a tree crown. The visual-based results were verified using the field-based measurement in the
WPA site. The number of field-based measured trees in the plots WPA-P1, WPA-P2, WPA-P3, and
WPA-P4 were seven, 11, eight, and four, respectively.

2.2.5. Modeled ALS Data

To investigate the effects of forest structural parameters on the proportion variations of the four
forest components, we modeled 15 circular plots with a radius of 30 m by combining existing point
cloud data of ALS individual trees with varied structural parameters and ground points from the
WPA site (Table 2). The location of the individual tree was obtained through the simulations for a
given tree spatial distribution pattern consisting of regular and clumped, using the R programming
language [46]. By changing the values of forest canopy cover from 12% to 93%, we created eight virtual
ALS coniferous plot point clouds to explore the effects of the canopy cover on the proportion variations
of the four forest components. With the preset spatial distribution patterns, three coniferous plots
(plot-9, plot-10, and plot-11) were modeled to investigate the effects of tree spatial distribution patterns
on the proportion variations of the four forest components.

Table 2. Characteristics of 15 modeled forest plots based on aerial laser scanning data (ALS).

Plot# Tree Height
(m)

Crown
Diameter (m)

Stem
No.

Canopy
Cover (%)

Spatial Distribution
Pattern Crown Shape

1 13 7.8 7 12 regular cone (conifer)

2 13 7.8 14 23 regular cone (conifer)

3 13 7.8 21 35 regular cone (conifer)

4 13 7.8 28 46 regular cone (conifer)

5 13 7.8 35 58 regular cone (conifer)

6 13 7.8 43 71 regular cone (conifer)

7 13 7.8 50 83 regular cone(conifer)

8 13 7.8 56 93 regular cone(conifer)

9 13 7.8 24 39 regular cone(conifer)

10 13 7.8 42 37 clumped cone(conifer)

11 13 7.8 42 71 regular cone(conifer)

12 21 7.8 24 39 regular cone(conifer)

13 21 / 13 7.8 24 39 regular cone(conifer)

14 12 10.3 13 38 regular sphere(broadleaf)

15 19 12.7 24 64 regular cone (conifer)

By setting the tree heights as 13 m (plot-9), 21 m (plot-12), and varied ranging from 13 m to
21 m (plot-13), we studied the shadows and occlusion effects resulting from tree height variations
on the four forest component proportions. For comparison purposes, we analyzed the effects of
crown shapes and sizes on the variation of the four forest component proportions, by modeling plot-9
with the cone-shaped crown of coniferous trees and plot-14 with the ellipsoidal crown shape of the
broadleaf trees. In reality, crown sizes usually simultaneously change with tree heights for most tree
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species [47,48]. Then, we modeled the plot-15 with both changed tree height and crown sizes compared
with plot-9.

2.3. Forest Vertical Stratification

The tree crown delineation and vertical stratification are the two crucial components of vertical
forest stratification, which is a fundamental step in studying the proportion variations of the four forest
components. We first obtained the tree height and crown size information after applying the tree crown
segmentation algorithm proposed by Li et al. (2012) [49] at WPA and PC-1 km, which was a 1km*km
subplot in PC site. Based on the ALS-based tree crown segmentation result, we stratified a forest stand
into overstory and forest background in both WPA and PC-1 km sites using the stratification threshold,
which can be determined based on the tree height distribution [50] within a forest plot. Manro et al. [51]
found that the frequency histogram of tree height represented different distribution patterns in forest
plots with different forest structures, such as unimodal distribution and bimodal distribution. Then we
determined the stratification threshold based on the frequency histogram of tree height. By plotting the
frequency histogram of ALS-based tree heights, the “two-peak” probability density function suggested
the two or multi-layer vertical forest structure in both WPA and PC sites. Then, we took the value of
the half tree height whose first-order derivations of the statistical probability density function equaled
zero and had minimum height frequency as the stratification threshold (Figure 2). Meanwhile, we also
obtained the stratification threshold in four forest plots (i.e., WPA-P1, WPA-P2, WPA-P3, and PC-P1)
by visually inspecting the height of understory vegetation for the validity of the stratification approach.
Finally, we separated the overstory and forest background with real topography information by adding
the corresponding elevation to each point of the height-normalized ALS data. An additional label was
added to each point as:

(X, Y, Z, Lov/Lbk) (1)

where Lov, Lbk are the labels for the overstory and forest background components.

Figure 2. The histograms of ALS-based individual tree height frequency in both WPA (a) and PC
(b) sites. The fitted probability density function curves (solid black lines) of individual tree height
frequency and their corresponding first-order derivation solid curves (red solid lines) used to determine
the height threshold (red dots) of forest vertical stratification.

2.4. Voxel-Based Forest Sunlit and Shaded (VFSS) Components’ Estimation

To investigate the spatial variations of the four forest component proportions, we developed a
voxel-based forest sunlit and shaded (VFSS) component estimation algorithm based on the stratified
ALS data. There are two steps involved in the VFSS algorithm:

(1) Sunlit and shaded identification: To identify the sunlit and shaded points for a given sun
position, we assumed that the parallel solar radiation beams all came from nadir direction. First, we
rotated the stratified forest ALS data (included overstory and background) according to the specific
rotation axis and rotation angle, so the parallel solar beam illuminated the forest ALS data from the
nadir direction. Then, the voxel-based model [31,52] for forest plot was produced from a revolving ALS
data with appropriate voxel size. In this experiment, the optimum voxel size was determined based on
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the sensitivity analysis described in Section 2.7. Furthermore, we classified all voxels into ‘empty’ and
‘non-empty’ based on the presence and absence of points within a voxel. Finally, we extracted the “line
quadrats” [53] to simulate the transmission paths for all parallel solar beams and identified sunlit or
shaded voxel for each ‘line quadrats.’ In each line quadrat, the first non-empty voxel was considered
the sunlit component, and the remaining non-voxels were considered as shaded components. Thus,
the forest ALS points were labeled as sunlit overstory, shaded overstory, sunlit background, or shaded
background according to the stratification result. Additional attribution information was added to
each point as:

(X, Y, Z, Lov/Lbk, Lsh/Lsu) (2)

where Lsh, Lsu are the labels for the shaded and sunlit components.
(2) Visibility determination: To determine the visibility of identified sunlit or shaded points in the

step 1(i.e., sunlit and shaded identification process) at a specific observation direction, we assumed
the observation direction was always from nadir direction. For the identified sunlit and shaded ALS
points, we rotated the ALS points to make the observation direction coincide with the nadir direction
and keep the relative location between the observation direction and forest stand. Then, we conducted
similar voxelization and line quadrat analysis like the ones in the step 1, and the additional labels were
added to each point as:

(X, Y, Z, Lov/Lbk, Lsh/Lsu, Lvi/Luv) (3)

where Lvi, Luv are the labels for the visible and non-visible components. Finally, we obtained the spatial
distributions of the four forest components at a fixed observation geometry. Furthermore, we obtained
the proportions of the four forest components based on the number of identified points over the total
points of a forest stand.

The surrounding trees might present apparent effects on the proportion of the four forest
components depending on if the given forest plots were bounded or unbounded forest stands. In this
study, the bounded forest stand was defined as an independent forest stand without any surrounding
trees, and the unbounded forest stand was defined as a partial forest stand coming from a continuously
forested area with the surrounding vegetation. The VFSS algorithm could not be applied directly in the
unbounded forest stand without considering the shadowing and occlusion effects of the surrounding
vegetation. In this case, we set up an extended forest stand with the same plot center and a larger
reference radius computed as the product tangent value of the solar zenith angle (SZA) and the height
of the tallest tree in the extended forest stand. Then, we obtained the proportions of the four forest
components in the unbounded forest stand using the VFSS algorithm incorporating the effects of the
surrounding vegetation.

2.5. Validation of the Four Forest Components

To validate the forest vertical stratification results, we set up three transects in both South-North
and East-West directions with the same spacing interval in forest plots and classified all voxels into
‘empty’ and ‘non-empty’ for the six transects. In an original ALS data, the voxels were identified as
empty ones whose heights were lower than a certain stratification threshold. While the voxels were
identified as empty when the height equaled 0 m in overstory data because the forest background layer
was removed. We used the gap size based on the number and location of empty voxels in six transects
to build an index named “probability of correctly identified gaps” to validate the forest stratification
results. The index was computed as the ratio of the total gap size in six transects based on stratified
overstory and original ALS data.

To validate the ALS-based proportion of the four forest components, we reconstructed four virtual
3D forest scenes based on the structural information of forest plots (i.e., WPA-P1, WPA-P2, WPA-P3,
and PC-P1) using the 3D Studio Max software (Autodesk, San Rafael, CA. U.S.A) which was used to
verify the four component proportions [18]. By setting the same observation geometry as the ALS
data, we then rendered the image of overstory and forest background separately with different colors
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to illustrate the sunlit and shaded components. The four components were classified in a rendered
image based on the pixel value of each color, and we obtained the number of pixels of each component.
Then the proportions of the four forest components were computed as the ratio of the pixel number
from each component over the total pixel number in a rendered image.

2.6. Validation Directional Forest Canopy Reflectance Estimation

We computed the directional reflectance of a forest canopy based on the weighted linear
combination of the reflectance of their four forest components as [1,5]:

R = RTkT + RGkG + RZTkZT + RZGkZG (4)

where RT, RG, RZT, and RZG, are the reflectance values of the sunlit overstory, sunlit forest background,
shaded overstory, and shaded forest background, respectively. The kT, kG, kZT, and kZG are the
proportions of the four forest components at a specific observation geometry configuration. We
investigated the spatial variations of forest canopy directional reflectance in the forest plot WPA-P2 in
both red and rear-infrared bands with a fixed sun position (i.e., SZA= 37◦, and solar azimuthal angle,
SAA = 150◦) and varied observation directions ranging from –60◦ to 60◦. First, we selected 9 pixels (27
in total) for low density, medium density, and high density in both red (i.e., 660 nm) and near-infrared
(i.e., 850 nm), respectively. Then, we obtained the reflectance values (i.e., RT, RG, RZT, and RZG) of the
four forest components by solving the 27 equations based on the ALS-determined weighted factor
(i.e., kT, kG, kZT and kZG) using the least square method [54]. In addition, we compared the ALS-based
directional forest canopy reflectance values in red and near-infrared bands with the simulated ones
using the DART model.

2.7. Sensitivity Analysis

To investigate the effects of ALS scan angles on the estimation accuracy of the four forest component
proportions, we analyzed the root mean square errors (RMSEs) between ALS- and 3DSMax-based four
forest component proportions in plots WPA-P2 (32 scan angles) and WPA-P4 (13 scan angles). In terms of
ALS flight path design, we analyzed the effect of crossed and parallel flight paths on the accuracy of the
four forest component proportions based on plots PC-P2 (i.e., crossed) and PC-P3 (i.e., parallel). To find
the optimum scan angle range for estimating the four forest component proportions, we compared the
RMSEs of the ALS- and 3DSMax-based four forest component proportions in plots WPA-P3 (i.e., –26◦ ~
–16◦, –10◦ ~ 10◦, 18◦ ~ 28◦). According to the two-side field-of-view ALS configuration with positive
(0◦~30◦) and negative (0◦ ~ -30◦) scan angle ranges, we set up six combinations of scan angle ranges
including negative-small (i.e., –10◦~0◦), negative-large (i.e., –26◦ ~ –16◦), negative-small and large (i.e.,
–10◦ ~ 0◦, –26◦ ~ –16◦), small negative and positive (i.e., –10◦ ~ 10◦), large negative and positive (i.e., –26◦

~ –16◦, 18◦ ~ 28◦) and all (i.e., –26◦ ~ –16◦, –10◦ ~ 10◦, 18◦ ~ 28◦). Moreover, we investigated the effects
of voxel size on the estimation accuracy of the four forest component proportions by changing the
voxel size from 0.1 m to 2.0 m with an interval of 0.1 m in forest plots WPA-P2 and PC-P1. Furthermore,
to explore the effects of the comprehensiveness of sampled ground points on the estimation of the
four forest component proportions, we restored all missing ground points using the inverse distance
weighted method [55].

3. Results

3.1. Forest Vertical Stratification

3.1.1. Tree Crown Segmentation

We found the visual-based tree height and crown diameter could capture 91% (n = 30,
RMSE = 1.53 m) and 83% (n = 30, RMSE = 1.41 m) variations of field-based ones in WPA site
(Figure 3a,b). Then, we further validated the ALS-based tree height and crown diameter using the
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visual-based results for four plots in both WPA and PC sites. By conducting the linear regression
statistical analysis between visual- and ALS-based tree height, it was found that the squared coefficient
(R2) decreased from 0.92 to 0.78 as the forest densities increased. In the meantime, the RMSEs increased
from 0.56 m in plot PC-P1 to 2.42 m in plot WPA-P3 with densities increasing, as shown in Figure 3c,e,g,i.
Similar variations were found for crown diameters in all plots from WPA and PC sites, and the most
significant correlation was 0.78, n = 10, RMSE = 1.05 m between the ALS- and visual-based crown
diameter in plot WPA-P1(Figure 3d). However, in high-density plot WPA-P3, the value of R2 between
ALS- and visual-based crown diameter was only 0.53, n = 29, RMSE = 2.35 m (Figure 3h). It was shown
that the segmentation result of tree height and crown size was valid. In addition, compared to crown
size, the segmentation result of tree height was more accurate.

Figure 3. Comparisons between the visual- and field-based tree heights (a) and crown diameters (b) in
the WPA site. The verified visual-based tree heights and crown diameters were used to validate the
ones obtained from the ALS-based method in both WPA (WPA-P1, WPA-P2, WPA-P3) (insets c–h) and
PC (PC-P1) (insets i and j) sites.

3.1.2. Separation of Overstory and Forest Background

We obtained the stratified overstory and forest background ALS data in both landscape and plot
levels using the forest stratification algorithm (Figure 4). The determined height threshold values in the
two study sites (i.e., WPA and PC-1 km) were 7.8 m and 5.0 m. For the forest plots WPA-P1, WPA-P2,
WPA-P3, and PC-P1, the height thresholds were 6.0 m, 6.9 m, 5.4 m, and 3.5 m, respectively. Moreover,
we validated the forest vertical stratification result using the method described in Section 2.5. As shown
in Table 3, the percentages of correctly identified gaps increased from 65% to 87% as forest densities
decreased by comparing the total gap size of original ALS data with the ones from stratified overstory
data at six transects (Figure 5a). Taking the transect L5 of plot WPA-P1 as an example, we identified
gap-A as 33 m and gap-B as 10 m from the original ALS data. Correspondingly, the detected gap sizes
based on the stratified overstory data were 30 m and 9 m, respectively (Figure 5b). The percentages of
the correctly identified gap size were 90.6% at transect L5.
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Figure 4. Graphs showing four different phases (i.e., original ALS data, tree segmentation, and stratified
overstory and forest background) of vertical forest stratification in both landscape and plot. levels
(WPA-P1, WPA-P2, WPA-P3, and PC-P1) in both WPA and PC sites.

Table 3. Comparisons between the gap sizes obtained from stratified overstory and original ALS data
and the root mean square errors of four forest component proportions between ALS and 3DSmax based
in four forest plots (WPA-P1, WPA-P2, WPA-P3, and PC-P1).

Plot# WPA-P1 WPA-P2 WPA-P3 PC-P1

Vertical
stratification

Height threshold (m) 6.0 6.9 5.4 3.5

Original gap size (m) 6.0 – 33.0 2.0 – 24.0 3.0 – 18.0 3.0 – 17.0

Overstorygap size (m) 5.0 – 30.0 2.0- 22.0 1.0 – 13.0 3.0 – 15.0

Original gap size (m) 137.0 179.0 114.0 144.0

Overstory gap size (m) 116.0 143.0 64.0 125.0

Identification percentage (%) 85.0 79.0 65.0 87.0

Gap size RMSE (m) 2.3 2.7 4.3 1.8

Root mean
square error (%)

Shaded background 2.6 3.8 3.3 5.6

Sunlit background 12.1 7.0 2.7 9.8

Shaded overstory 8.9 6.9 10.1 7.7

Sunlit overstory 4.1 5.6 16.8 2.5

Forest background 7.3 5.4 2.9 7.6

Forest overstory 6.5 6.3 13.5 5.1

Background and overstory 6.9 5.8 8.2 6.4
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Figure 5. Graphs illustrating the sampling design of six different line transects at forest plot level (a) and
comparison between the detected gap sizes obtained from original and stratified overstory ALS data (b).

3.2. ALS-Based Sunlit and Shaded Forest Components

3.2.1. Landscape Scale

Based on the VFSS algorithm described in Section 2.4, we obtained the four forest components’
spatial distribution maps at landscape and plot levels in both PC and WPA sites with the solar zenith
and azimuth angles of 30◦ and 90◦, respectively (Figure 6). The proportions of sunlit overstory and
sunlit forest background were 63.7% and 36.4%, 77.6%, and 23.4% for the WPA and PC-1 km sites at
the hotspot position. The proportions of shaded components, including both overstory and forest
background, gradually increased as the observation direction changing from hotspot to dark spot where
visible shadows reached to maximum positions. For example, the proportions of shaded components
in WPA were 0%, 39.5%, 46.7%, and 56.3% in the hotspot (view zenith angle, VZA = 30◦, view azimuth
angle, VAA = 90◦), nadir (VZA = 0◦, VAA = 90◦), a point in the solar perpendicular plane (VZA = 30◦,
VAA = 180◦), and dark spot (VZA = 30◦, VAA = 270◦), respectively. The proportions of visible forest
background were 36.3%, 43.5%, 41.2%, and 35.5% in WPA, and 22.3%, 27.6%, 26%, and 23.5% for PC site
at the hotspot, nadir, a point in the solar perpendicular plane, and dark spot, respectively. The highest
proportions of visible forest background were observed at nadir direction in both PC and WPA sites.

Figure 6. The ALS-based four forest component results at the landscape level in PC (upper) and WPA
(below) sites. View zenith angle (VZA) and View azimuth angle (VAA) represent view zenith angle
and view azimuth angle, respectively.
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3.2.2. Plot Scale

For forest plots WPA-P1 (Figure 7a), WPA-P2 (Figure 7e), WPA-P3 (Figure 7i), and PC-P1
(Figure 7m) we obtained the four forest components’ distribution maps using the VFSS method
demonstrated in Figure 7b,f,j,n, with the view zenith and azimuthal angles of 60◦ and 180◦, 60◦ and
160◦, 60◦ and 100◦, 60◦ and 225◦, respectively. The zenith and azimuthal angles of solar position were
15◦ and 180◦, 15◦ and 160◦, 5◦ and 100◦, 10◦ and 45◦, respectively. We modeled the forest background
(shown in Figure 7c,g,k,o) and overstory (shown in Figure 7d,h,l,p) distribution maps in the 3DSMax
environment for the corresponding virtual plots for validation purposes. Moreover, we plotted the
variation curves of the four forest component proportions with various observation directions at fixed
sun positions in both solar principal and perpendicular planes to better characterize their spatial
variations in these four plots, as shown in Figure 8.

Figure 7. The original ALS data (insets a,e,i,m) and their four forest component estimation results
(insets b,f,j,n) for four forest plots (i.e., WPA-P1, WPA-P2, WPA-P3, and PC- P1) and the simulated
sunlit and shaded forest background (insets c,g,k,o) and overstory (d,h,l,p) in both WPA and PC sites,
respectively. SZA, SAA, VZA, and VAA represent solar zenith angle, solar azimuth angle, view zenith
angle, and view azimuth angle, respectively.

Comparing the four forest component results obtained from ALS- and 3DSMax-based methods,
we found that ALS-based shaded components tended to underestimate the ones obtained using the
3DSMax-based method. This discrepancy was attributed to the incomplete sampling of a forest canopy
due to the occlusion effects of tree crowns with the fixed ALS scanning direction, shown in the Figure 8.
As shown in Table 3, it was found that the total RMSEs of the four forest component proportions
between the ALS- and 3DSMax-based methods were 6.9%, 5.9%, 8.2%, and 6.4% for plots WPA-P1,
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WPA-P2, WPA-P3, and PC-P1, respectively. Moreover, the estimation accuracy (RMSE = 5.8%, 5.2%,
6.5%, and 5.8%) of the ALS-based four forest components in solar principal plane was better than the
ones (RMSE = 8.1%, 6.5%, 9.9%, and 7.0%) from solar perpendicular plane in plots WPA-P1, WPA-P2,
WPA-P3, and PC-P1.

Figure 8. Comparisons between the four forest component results obtained from ALS- and
3DSMax-based results in both solar principal and perpendicular planes for forest plot WPA-P1
(insets a,e), WPA-P2 (insets b,f), WPA-P3 (insets c,g) and PC-P1 (insets d,h). The solar zenith and
azimuth angles were 15◦ and 180◦, 15◦ and 160◦, 5◦ and 100◦, 10◦ and 45◦ for forest plots WPA-P1,
WPA-P2, WPA-P3, and PC-P1, respectively. Negative view angles correspond to the forward-scattering
directions and the positive angles to the backscattering directions.

In addition, it was found that the proportions of sunlit forest background and overstory reached
the maximum point in the hotspot position for four plots shown in Figure 8a–d. Moreover, the
proportions of visible overstory and forest background held minimum and maximum values at nadir
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point, respectively. In the solar perpendicular plane, sunlit forest background and overstory (shown in
Figure 8e–h) held the maximum values in the nadir direction.

It should be noted that as the forest density increased, more obvious abrupt peak values were
observed in the sunlit forest background component in the WPA site, shown in Figure 8e-2,f-2,g-2.
The apparent changes of forest structure in high-density plots explained these changes as the observation
directions deviated from nadir direction. In addition, in plot PC-P1, the variations of visible sunlit
overstory proportions as VZA increased were different from the other three plots because the presence
of topography increased the probabilities of visible sunlit overstory by minimizing the occlusion effects
among tree crowns as VZA increased, shown in Figure 8h-4.

3.3. Directional Forest Canopy Reflectance

3.3.1. Spatial Variations

We obtained the spatial variations of shaded forest background (Figure 9a), sunlit forest background
(Figure 9b), shaded overstory (Figure 9c), and sunlit overstory (Figure 9d) with the full azimuthal angle
range (i.e., 0◦ to 360◦) and limited zenith angles ranging from –60◦ to 60◦ under a fixed azimuthal (150◦)
and zenith (37◦) angles of sun position in plot WPA-P2. The proportions of shaded forest background
and shaded overstory reached the minimum value of 0% at the hotspot point, and gradually increased
as the observation direction deviated away from hotspot position, shown in Figure 9a,c. Conversely,
the peak values of sunlit forest background (46.0%) and sunlit overstory (54.9%) were observed in the
hotspot position, shown in Figure 9b,d.

Figure 9. The spatial distributions of the ALS-based four forest component proportions (insets a–d)
and forest canopy reflectance in red (inset e) and near-infrared (inset f) bands for forest plot WPA-P2
with the solar zenith and azimuth angles of 37◦ and 150◦, respectively.

However, compared with the forest background components, more substantial variation rates
and more obviously sharp changing points for both shaded and sunlit overstory were observed near
the hotspot area in their hemispherical spatial distribution, shown in Figure 9c,d.
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We also obtained the reflectance values of shaded and sunlit forest background and shaded and
sunlit overstory as 0.02 and 0.057, 0.014 and 0.03 in the red band, and 0.275 and 0.358, 0.10 and 0.49 in
the near-infrared band using the method described in Section 2.6. As shown in the Figure 9e,f, we
plotted the spatial distribution of forest canopy reflectance in both red and near-infrared bands in plot
WPA-P2 using Equation (4). The reflectance values of red (i.e., 0.046) and near-infrared (i.e., 0.43) bands
reached the maximum at the hotspot point and gradually decreased with the observation direction
deviating away from the hotspot position.

3.3.2. Comparisons with DART Simulations

Through the comparison of the forest canopy reflectance values obtained from ALS- and
DART-based methods, similar trends were observed in solar principal and perpendicular planes
at the fixed sun position whose zenith and azimuthal angles were 37◦ and 150◦, respectively. In the
solar principal plane, the ALS-based forest canopy reflectance of 0.047 in the red band was lower
than the DART-based one at 0.064 in the hotspot area, shown in Figure 10a. This was explained by
the different reflectance values of forest background obtained from hyperspectral images caused by
mixed reflectance of bare earth and understory, and used in the DART software including bare soil
reflectance. Similar variation patterns of forest canopy reflectance in the red band was found in the
solar perpendicular plane, and the maximum values were observed in the nadir direction for both
ALS- and DART-based results, shown in Figure 10b. In the near-infrared band, the ALS-based forest
canopy reflectance generally underestimated by 13.8% and 15.9% than the ones obtained from the
DART-based method in solar principal and perpendicular planes, shown in Figure 10c,d. With the
increase of the VZA to 60◦, the DART-based forest canopy reflectance showed an increasing trend
instead of a continuous decreasing trend of ALS-based results. This discrepancy might be because the
multiple scattering effects were not considered in the ALS-based method.

Figure 10. Comparisons between ALS- and discrete anisotropic radiative transfer model based forest
canopy reflectance values in red (insets a,b) and near-infrared (insets c,d) bands with the view zenith
angles ranging from –60◦ to 60◦ in solar principal and perpendicular planes for forest plot WPA-P2.
The solar zenith and azimuth angles are 37◦ and 150◦, respectively.
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4. Discussion

4.1. The Effects of ALS Data Characteristics

4.1.1. Scan Angle and Flight Path

The scan angle range of acquiring ALS data had obvious effects on the estimation accuracy of
the four forest component proportions due to different spatial coverage of point cloud data in a 3D
forest stand. For example, obvious differences were found for the estimation result of the four forest
component proportions obtained using the ALS- and 3DSMax-based methods. The total RMSEs of
the four forest component proportions were 5.9% and 10.3% for WPA-P2 ( –29◦ ~–7◦, –3◦ ~5◦) and
WPA-P4 (7◦~19◦), respectively, as reported in Tables 3 and 4. This difference could be attributed to
the incomprehensive sampling of a forest plot due to the limited penetrability of the laser beam and
occlusion effects among tree crowns based on a single ALS flight line. Similarly, the retrieval accuracy of
crown diameter in WPA-P2 (R2 = 0.67, RMSE = 1.94 m) was better than the result in WPA-P4 (R2 = 0.60,
RMSE = 2.43 m). However, the values of R2 and RMSE between the ALS- and visual-based tree
height results in WPA-P2 (R2 = 0.89, RMSE = 1.77 m) were similar to the results in WPA-P4 (R2 = 0.85,
RMSE = 1.78 m). It means that the scan angle range had few effects on the segmentation of tree height.
This was consistent with the study of Holmgren et al. [56]. However, more scan angles are preferable
to collect a comprehensive forest point cloud data for retrieving crown diameter and estimating their
four forest components. For example, the points belonging to the shaded component were identified
as sunlit components owing to the incomplete point cloud data and affected the estimation accuracy of
the four forest component proportions.

Table 4. Comparisons between the gap sizes obtained from stratified overstory and original ALS data
and the root mean square errors of four forest component proportions between ALS- and 3DSmax-based
in three forest plots (WPA-P4, PC-P2, and PC-P3).

Plot# WPA-P4 PC-P2 PC-P3

Vertical
stratification

Height threshold (m) 6.4 3.2 2.5

Original gap size (m) 5.0 – 17.0 3.0 – 10.0 3.0 – 9.0

Overstory gap size (m) 4.0 – 16.0 1.0 – 7.0 1.0 – 6.0

Original gap size (m) 143.0 75.0 53.0

Overstory gap size (m) 102.0 56.0 36.0

Identification percentage (%) 71.0 72.0 68.0

Gap size RMSE (m) 3.9 2.5 2.9

Root mean square
error (%)

Shaded background 5.6 5.9 4.7

Sunlit background 9.7 8.1 8.9

Shaded overstory 15.1 7.5 15.9

Sunlit overstory 11.1 7.2 14.7

Forest background 7.6 6.9 6.8

Forest overstory 13.1 7.3 15.3

Background and overstory 10.3 7.2 11.1

Moreover, the directions of flight paths have apparent effects on the estimation accuracy of the
four forest component proportions. For example, the RMSE of overstory was 7.3% for plot PC-P2 with
two crossed flight paths. It was less than the corresponding one at 15.3% for plot PC-P3 with two
parallel flight paths (Table 4). Therefore, we recommend two or multiple crossed flight paths to acquire



Remote Sens. 2020, 12, 1071 17 of 27

a more comprehensive forest canopy ALS data to ensure the accuracy of vertical forest stratification
and further the estimation accuracy of the four forest components.

4.1.2. Optimal Scan Angle Range

The scan angle range greatly affected the estimation accuracy of the four forest component
proportions. We compared the four forest component proportions obtained using the ALS- and
3DSMax-based methods in plot WPA-P3 with multiple scan angle ranges of –26◦~–16◦, –10◦~10◦, and
18◦~28, shown in Figure 11. It was found that the estimations of four forest component proportions
obtained from both positive and negative sides (hereafter referred to two-side) scan angle ranges were
better than the ones estimated from only a single half range, reported in Table 5. This was verified by
the fact that the total RMSEs of 10.4% obtained from the one-side scan angle range of –26◦~–16◦ and
–10◦~0◦ was bigger than the one (i.e., 9.0%) from two-side scan angle range of –10◦~10◦. Furthermore,
the RMSE of ALS-based, the four forest component proportions (i.e., 9.0%) obtained from two-side
small scan angle range of –10◦~10◦ were better than the one (i.e., 9.7%) from two-side broad scan angle
range of 18◦~28◦and –26◦~–16◦. A more comprehensive forest canopy ALS data with multiple scan
angle ranges of –26◦~–16◦, –10◦~10◦, and 18◦~28◦ held the smallest RMSE of 7.7% of the four forest
components. Then we recommend obtaining a relative comprehensive forest canopy ALS data with
perpendicular or multiple crossed flight paths and a two-side scan angle range for estimating the
four forest component proportions. While there might be the trade-off between the flight cost and
comprehensiveness of forest ALS data, at least two-side scan angle range around nadir direction of
–15◦~15◦ is recommended to acquire the forest canopy ALS data.

Figure 11. Graphs showing the result of four forest component proportions including shaded forest
background (inset a), sunlit forest background (inset b), shaded overstory (inset c) and sunlit overstory
(inset d) with the view zenith angles varying from –60◦ to 60◦ in solar principal plane under different
scan angles for forest plot WPA-P3. The solid black line represents the 3DSmax-based result and the
various colored solid lines represent the ALS-based four forest component results with different scan
angles. The solar zenith and azimuth angles are 5◦ and 100◦, respectively.
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Table 5. Root mean square error of four forest component proportions between ALS- and 3DSmax-based
results under different scan angles in WPA-P3.

Root Mean Square Error (%)

Scan
Angles (◦)

Shaded
Background

Sunlit
Background

Shaded
Overstory

Sunlit
Overstory

Forest
Background

Forest
Overstory

Background
and

Overstory

-10◦ ~ 0◦ 7.5 2.1 19.3 26.2 4.8 22.8 13.8

-26◦ ~ -16◦ 6.2 3.1 14.9 22.8 4.7 18.9 11.8

-10◦ ~ 0◦

-26◦ ~ -16◦ 6.2 2.7 12.9 19.6 4.5 16.2 10.4

-10◦ ~ 10◦ 5.9 1.3 11.2 17.3 3.6 14.3 9.0

-26◦ ~ -16◦

18◦ ~ 28◦ 5.9 4.5 9.5 18.6 5.3 14.1 9.7

-10◦ ~ 10◦

-26◦ ~ -16◦

18◦ ~ 28◦
5.1 2.7 8.1 14.7 3.9 11.4 7.7

4.2. Voxel Size Determination

Setting the appropriate size of each voxel was a crucial step to accurately estimate the four forest
component proportions based on the VFSS algorithm. For the VFSS algorithm, the voxel size should be
equal or smaller than two times the neighboring point distance, ensuring that there is only one point
within each voxel. We investigated the variations of the four forest component proportions as the voxel
size increasing from 0.1 m to 2.0 m in WPA and PC sites, and we found that the four forest component
proportions had three distinct stages, such as the rapidly changing phase, relative stable phase, and
slow-changing phase. For the WPA site, we used the plot WPA-P2 as an example. The proportion
of sunlit overstory rapidly decreased from 35.5% to 21.3% as voxel sizes increased from 0.1 m to 0.4
m, were relatively stable when the voxel ranged from 0.4 m to 1.0 m, and then gradually increased
up to 28.9% when the voxel size was beyond the 1.0 m. The relatively stable variations of the four
forest component proportions were observed when the voxel sizes ranged from 0.4 m to 1.0 m in the
WPA site.

In terms of the PC site, the variations of the four forest component proportions held the relative
stable variations when the voxel sizes varied from 0.6 m to 1.3 m. Taking the plot PC-P1 as an example,
the sunlit forest background rapidly increased from 32.4% to 44.6% as voxel sizes changed from 0.1 m
to 0.6 m, and then decreased when the voxel size was beyond the 1.3 m. By analyzing the effects of
voxel size on the four forest component proportions in both WPA and PC sites, it is recommended that
the voxel size should be equal or smaller than two times the neighboring point distance, ensuring that
there is only one point within each voxel.

4.3. Effects of Forest Stand Conditions

4.3.1. Canopy Cover

The proportions of the four forest components exhibited variations of patterns with various
canopy covers under different observation directions in the eight modeled plots (i.e., plot-1 to plot-8).
By changing the canopy covers of eight modeled plots with different canopy covers, the proportion
of shaded forest background noticeably increased with canopy cover increasing from 12% to 23%,
with no apparent increase as canopy cover increased from 23% to 93%. (Figure 12). The increasing
mutual shadowing effects among tree crowns might result in variations as the canopy cover increased.
The spatial correlation of mutual shadowing effects in viewing and sunlit directions plays a crucial
role in stimulating the BRDF of forest canopy [57]. The traditional method for considering mutual
shadowing effects in GO models include Monte Carlo simulation and mathematical analysis [1,58].
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However, it is difficult to simulate the actual mutual shadowing effects in forest plot using the traditional
method. The detailed forest structural information implicitly contained within lidar data [30] makes
it possible to capture directly mutual shadowing effects among trees. It is beneficial to obtain more
accurate four component proportions, especially for the shaded background.

Figure 12. Graphs showing the variations of the four forest component proportions including shaded
forest background (inset a), sunlit forest background (inset b), shaded overstory (inset c), and sunlit
overstory (inset d) under different view zenith angles (i.e., from –60◦ to 60◦) in the solar principal plane
with the solar zenith angle of 30◦ for eight forest plots. The canopy covers are 12%, 23%, 35%, 46%,
58%, 71%, 83%, and 93% for forest plots 1 – 8, respectively. Red-dashed lines represent the increments
of forest component proportions between forest plots 1 and 8.

4.3.2. Tree Spatial Distribution

Our results showed that the tree spatial distribution patterns greatly affected the proportions
of the four forest components. (1) Same canopy cover with different patterns: It was found that the
proportions of forest background (sunlit and shaded) had obvious differences between plot-10 and
plot-9 (Figure 13a,b). However, the proportions of overstory (sunlit and shaded) in plot-9 were close to
the values in plot-10 (Figure 13c,d). It means that tree spatial distribution patterns significantly affected
the proportions of forest background components and limited effects in the overstory component for
the plots with the same canopy cover. (2) Same stem density with different patterns: By comparing
the four forest component proportions of the clumped distribution plot-10 with the ones of regular
distribution plot-11, it was found that the proportions of sunlit forest background (12.9%–41.6%) in
plot-11 were smaller than the ones (43.1%–71.5%) of plot-10 with the VZA ranging from –60◦ to 60◦.
The average increment values of shaded and sunlit overstory proportions from plot-10 to plot-11 were
14% and 14.7%, respectively, shown in Figure 13c,d. It was shown that we need not just determine stem
density, but also real tree spatial distribution for computing four forest component proportions and
simulating forest canopy BRDF. In most previous GO models, tree spatial distribution patterns were
usually assumed to meet the Poisson model, Neyman-A model, and hypergeometric model [1,14,16,59].
Although these models can be used to approximate the tree spatial distribution, the relative location
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and mutual shadowing effect between trees are usually inconsistent with the real forest. The detailed
3D structural information implicitly contained within ALS data makes it possible to directly estimate
the four forest component proportions based on the real spatial distribution of trees in the plot.

Figure 13. Comparisons of the four forest component proportions including shaded forest background
(inset a), sunlit forest background (inset b), shaded overstory (inset c), and sunlit overstory (inset d) for
three forest plots with different tree spatial distribution patterns with view zenith angles varying from
–60◦ to 60◦ in the solar principal plane whose solar zenith angle was 30◦.

4.3.3. Tree Height and Crown Shape

Tree height has apparent effects on the proportion of forest background, with limited effects on the
proportion of overstory. By comparing the variation of the four forest component proportions as tree
heights changed from 13 m (i.e., plot-9) to 21 m (i.e., plot-12), we found that the proportion of shaded
forest background increased 7.6% and sunlit forest background proportion decreased 17.6%, shown in
Figure 14a,b, while the proportions of shaded and sunlit overstory only increased by 7.1%, and 2.9%,
respectively, shown in Figure 14c,d. Furthermore, the effects of forest density on the proportion of the
four forest components were not negligible since the mutual shadowing effects among tree crowns
will mitigate the proportions’ variations of forest background with varied tree height. In addition, by
setting the crown shape of plot-9 as cone and plot-14 as a sphere, it was found that the proportion
of sunlit forest background in plot-14 (19.7%–45.8%) was smaller than the one of plot-9 (32%–65.5%).
Instead, the proportions of shaded overstory (i.e., 27%) and sunlit overstory (i.e., 28.7%) in plot-14 were
more significant than the ones (i.e., 22.7% and 16.6%) of plot-9. It means that the crown shape had
obvious influences in the four forest component proportions, which will further affect the reflectance
of forest canopy [60].

In reality, the tree height and crown diameter were dependent and affected each other during tree
growth [61]. By changing the tree height and crown shape in forest plot-15 we found that there were
significant variations for the proportions of shaded and sunlit overstory in the five plots (Figure 14).
It indicates that the accurate description of tree height and crown shape is essential to estimate four
component proportions and further simulate forest canopy BRDF in GO and ray-tracing models.
However, it was difficult to describe the varied tree height and crown shape in mixed forest plots in GO
models with specific expression [17]. In ray-tracing methods, each tree in a forest can be reconstructed
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by a variety of parameters that define the architectures of the tree. For example, to match the virtual
tree to the real trees, Qi J et al. [62] obtained tree height, tree crown diameter, and under-branch height
from filed measurements. However, there is still high uncertainty when we use ray-tracing methods to
simulate radiative transfer because it is usually difficult to reconstruct a 3D real forest scene precisely.

Figure 14. The spatial variations of the four forest component proportions including shaded forest
background (inset a), sunlit forest background (inset b), shaded overstory (inset c), and sunlit overstory
(inset d) with the view zenith angles changing from –60◦ to 60◦ in the solar principal plane with the
solar zenith angle of 30◦ for five forest plots with different tree heights or crown shapes.

4.3.4. Topographic Variations

The topographic variations will alter tree spatial distribution patterns and affect the proportions
of the four forest components. For the plot PC-P1, we compared the proportions of the four forest
components obtained based on the height normalized and original ALS data in both solar principal
and perpendicular planes. It was found that the proportions of both shaded and sunlit overstory from
original ALS data with topography (i.e., shaded forest overstory of 0%–31.9%, sunlit forest overstory
of 16.2%–35.5%), were larger than the ones of shaded overstory (i.e., 0%–29.8%), sunlit overstory
(i.e., 7.9%–28.6%) obtained from normalized ALS data at different VZA of –60◦ to 60◦ in the solar
principal plane. It can be explained by the fact that the reducing mutual shadowing effects among
tree crowns resulted from the increasing elevation when topography was present. The increased tree
height because of topography will increase the probabilities of sunlit tree crowns, which was shaded by
other tree crowns in a flat forested area. Conversely, the original ALS-based sunlit forest background
proportion with an average of 56%, was smaller than the normalized ALS-based result with an average
of 64.8%, because of mutual shadowing effects in normalized ALS data increased the probability
of shadow casting on other crowns and visible sunlit forest background. Similarly, as for the solar
perpendicular plane, after normalizing the height information, the average proportion of sunlit forest
background proportion increased from 54.2% to 63.7%. Furthermore, the proportions’ range of visible
overstory changed from 34.6%–61.6% to 29.9%–42%, with the VZA varying from –60◦to 60◦.



Remote Sens. 2020, 12, 1071 22 of 27

In conclusion, we found that the crown cover, tree height, spatial pattern of trees, crown diameter,
crown shape, and topographic variation had significant effects on the four forest component proportions
in a forest plot and subsequently affect the forest canopy BRDF. Geometric optical models, by assuming
the trees had identical height and geometry in a flat ground, cannot truly and accurately describe BRDF
for a natural forest. Moreover, it was difficult to reconstruct a forest scene before, using the ray-tracing
methods precisely. The voxel-based forest sunlit and shaded components’ estimation method in this
work can resolve this problem using ALS lidar data, because the detailed 3D structural information
implicitly contained within the lidar data makes it possible to capture the shadowing effect between
crowns directly [63–65].

4.3.5. Effects of Ground Points

The comprehensiveness of sampled ground points greatly affects the estimation accuracy of the
forest background component proportion using ALS data. Taking the plot PC-P3, for example, the
RMSEs of the shaded and sunlit forest background, shaded, and sunlit overstory were 2.4%, 3.5%,
11.3%, and 10.2% for the restored ALS data, and 4.8%, 8.9%, 15.9%, and 14.7% for original ALS data,
respectively. The total RMSE of the four forest component proportions obtained using the ALS data
with restored ground point was 6.9%, which was smaller than the one obtained using the original
ALS data of 11.1%. Thus, it is an effective way to restore the missing ground points to improve the
estimation accuracy of the four forest component proportions using ALS data.

4.4. Effects of Surrounding Forest Stands

The surrounding forest stands had obvious effects on the four forest component estimations,
changing the proportions of shaded forest components resulting from the shadows of surrounding trees
for a specific unbounded forest stand. As for forest plots WPA-P2 and WPA-P2E, there were obvious
differences between the four forest component proportions in the solar principal and perpendicular
planes with various observation directions (Table 6). For example, the differences of absolute values
between the sunlit overstory proportions of WPA-P2 and WPA-P2E were 23.4% for VAA = 160◦,
VZA= 60◦, and 23.6% for VAA = 70◦, VZA = 60◦, respectively. This discrepancy was explained by the
partially obscured effects of sunlit overstory by surrounding tree crowns. The larger the VZA, the more
obvious the obscure effects. For example, the total differences of the four forest component proportions
increased from 3.9% to 11.7%, 4.8% to 11%, 5.7% to 11.8%, and 5.5% to 6.9% with VZA increasing from
0◦ to 60◦, 15◦ to 60◦, 15◦ to 60◦, and 15◦ to 60◦ in the principal and perpendicular planes, respectively.
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Table 6. The comparison of four forest component proportions resulting from WPA-P2 and
WPA-P2E plots.

Plane
View

Azimuth
Angle (◦)

View
Zenith

Angle (◦)

Four Forest Component Proportions Difference (%)

Shaded
Background

Sunlit
Background

Shaded
Overstory

Sunlit
Overstory

Background
and

Overstory

Principal
plane

160 0 2.6 2.2 7.9 3.1 3.9

160 15* 0.0 3.2 0.0 3.2 3.2

160 20 0.1 2.7 11.8 8.9 5.9

160 30 1.5 2.2 10.6 9.9 6.1

160 40 4.8 4.9 11.7 11.6 8.3

160 50 6.0 2.1 10.1 14.0 8.1

160 60 6.5 12.3 4.6 23.4 11.7

340 15 1.4 4.8 9.6 3.4 4.8

340 20 0.7 4.2 8.5 4.7 4.5

340 30 0.4 2.9 7.8 5.3 4.1

340 40 2.1 0.9 6.2 7.4 4.2

340 50 6.5 1.5 2.9 10.9 5.5

340 60 13.7 8.3 3.7 18.5 11.0

Perpendicular
plane

70 15 0.0 5.9 11.3 5.4 5.7

70 20 0.4 6.1 11.3 5.5 5.8

70 30 3.5 8.9 11.4 6.0 7.5

70 40 6.9 8.6 10.6 8.8 8.7

70 50 13.0 4.6 8.1 16.5 10.6

70 60 14.4 1.2 8.1 23.6 11.8

250 15 0.1 5.7 10.9 5.4 5.5

250 20 1.1 6.8 10.6 4.9 5.8

250 30 3.5 7.9 10.0 5.6 6.8

250 40 4.6 7.5 8.7 5.8 6.6

250 50 7.1 3.7 6.1 9.5 6.6

250 60 7.3 3.2 3.3 13.8 6.9

5. Conclusions

In this study, we developed a new VFSS algorithm to estimate the proportions of the four forest
components using the ALS discrete lidar data in a forested area with topographic variations. This
method could estimate the spatial variations of the four forest components with any observation
geometry at both landscape and plot levels. Based on the analysis of our results and investigation of
various factors affecting the estimation accuracy of the four forest components, we concluded that:
(1) The implicitly contained 3D structural information within ALS data makes it possible to stratify
the overstory and forest background components vertically, (2) the voxel-based VFSS algorithm is an
effective way to simulate the spatial variations of the four forest components, (3) ALS configuration, data
characteristics, and voxel size setting affected the estimation accuracy of the four forest components,
and (4) the forest structural parameters, topographic variation, and surrounding forest stands had a
significant impact on the four forest component proportions. The quantified forest sunlit and shaded
proportions can be useful for improving the estimation accuracy of canopy LUE and forest biophysical
and biochemical properties. Additionally, it is also beneficial to the studies of forest canopy BRDF
using GO models.
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