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Abstract: Registration of point clouds is a central problem in many mapping and monitoring
applications, such as outdoor and indoor mapping, high-speed railway track inspection, heritage
documentation, building information modeling, and others. However, ensuring the global consistency
of the registration is still a challenging task when there are multiple point clouds because the
different scans should be transformed into a common coordinate frame. The aim of this paper
is the registration of multiple terrestrial laser scanner point clouds. We present a plane-based
matching algorithm to find plane-to-plane correspondences using a new parametrization based on
complex numbers. The multiplication of complex numbers is based on analysis of the quadrants
to avoid the ambiguity in the calculation of the rotation angle formed between normal vectors
of adjacent planes. As a matching step may contain several matrix operations, our strategy is
applied to reduce the number of mathematical operations. We also design a novel method for global
refinement of terrestrial laser scanner data based on plane-to-plane correspondences. The rotation
parameters are globally refined using operations of quaternion multiplication, while the translation
parameters are refined using the parameters of planes. The global refinement is done non-iteratively.
The experimental results show that the proposed plane-based matching algorithm efficiently finds
plane correspondences in partial overlapping scans providing approximate values for the global
registration, and indicate that an accuracy better than 8 cm can be achieved by using our global fine
plane-to-plane registration method.

Keywords: terrestrial laser scanners; plane correspondences; complex numbers; global fine
plane-to-plane registration

1. Introduction

In recent years, the rising role of building information modeling (BIM) has driven the market
for static terrestrial laser scanners (TLS). TLS is an efficient and cost-effective technology for rapid
and accurate collection of 3D point clouds. TLS point clouds are the most suitable data source for
the generation of as-built BIMs, which are a crucial tool for many construction and architecture
professionals. To derive globally consistent 3D point cloud models from TLS with high positional
accuracy, registration is a mandatory task. Typically, in the existing frameworks, the registration
of multiple point clouds is divided into a pairwise registration step and a global fine registration
step. Pairwise registration involves finding feature correspondences between pairs of point clouds
and minimizing the sum of residuals over all such feature correspondences for the estimation of
transformation parameters (3D rotation matrix and 3D translation vector), which establish the relative
orientation for each pair of scans in a common coordinate system. In practice, pairwise registration
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using free-form correspondences (e.g., iterative closest point algorithm [1]), feature point-based
(e.g., keypoints) methods [2–7], or primitive-based (e.g., lines or planar surfaces) approaches [8–13]
should be applied first to obtain the transformation parameters. However, a problem which arises
in the registration of multiple point clouds is that corresponding scan features may still present
significant residual errors from pairwise registration task. As a direct consequence, most of the
pairs of registered point clouds will contain loop closing errors, thus reducing their local metric
accuracy. Then, the global refinement should be used to minimize the influence of pairwise alignment
errors on the transformation parameters, by distributing the residual errors evenly across the scan
project [14]. Our present contribution is twofold. First, a plane matching strategy by decoupling
rotation and translation parameters is proposed. The proposed matching algorithm makes use of a new
parametrization based on complex numbers to find the correspondence between pairs of segmented
planes. Second, a new global closed-form solution is proposed via graph-based formulation adapted
for plane-to-plane correspondences. The proposed solution refines the sensor positions by treating
the 3D points and their corresponding surface normal as observations. To the best of our knowledge,
the proposed method is the first using this approach.

The rest of the paper is organized as follows. Section 2 provides the related works in point cloud
registration, helping the reader to gain an insight into the registration problem. The studied area,
our proposed plane-based matching approach, and our global fine registration solution based on plane
correspondences are presented in Section 3. Experimental evaluation of the proposed solution on
real datasets and a discussion about the potential and limitation of the proposed method are given in
Section 4. Finally, the paper is concluded in Section 5.

2. Related Work

Typically, standard global refinement solutions first find the transformation parameters using [1],
then evenly redistribute loop closing errors with the help of a graph-based optimization such as the
one proposed by [15], which has been extended to 3D by [16]. This task is formulated as a scan graph,
in which each scan denotes a node, and each edge highlights the spatial constraint between the pairs
of nodes. A globally consistent registration of multiple point clouds via graph optimization was
proposed by [14]. The authors find the coarse alignments using an unambiguous geometric keypoint
configuration able to reduce the number of candidates that are sampled in the iteration process, called
on K-4PCS [6], and the pairwise candidate solutions are filtered using a discrete graphical model
of the scan network. Then, least-squares optimization [15] is used to evenly distribute the residual
error. Ji et al. [13] generated a globally consistent 3D map of high-speed viaduct point clouds using
closing condition and external geometric constraints. Their proposed method uses artificial targets
for the iterative pairwise registration step. The pairwise transformations are also refined with [1],
followed by global refinement to evenly spread the residual errors, as described in [15]. Yang et al. [17]
use a branch-and-bound strategy to globally solve the objective function. It first uses the iterative
closest point algorithm for a coarse registration task and refines the transformation parameters with
the algorithm of [15]. The approach proposed by Huber and Hebert [2] uses surfaces and a Bayesian
filter for alignment of multi-view 3D point clouds. The main disadvantage of this method is its high
computational cost. Other global refinement approaches rely on general graph optimization [18],
bundle adjustment [19], low-rank sparse decomposition strategy [20], kernel-based energy function [21]
and visual bag of words [22], which are computationally less attractive.

The aforementioned existing methods for registration of multiple point clouds are prominently
iterative free-form or point-based correspondences. Despite their popularity, iterative solutions
have several limitations. For instance, they are not effective for sparse point clouds, require good
approximate values to avoid convergence to weak local minima, they are sensitive to noise, and involve
a matching step which incurs a high computational cost. Furthermore, when a downsampling step is
applied, as in [6], the details of objects in the scene may be lost [12]. In contrast, closed-form solutions
estimate the transformation parameters in one-step and they do not require approximate values.
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Additionally, plane-based approaches can achieve alignments with higher accuracy, are less influenced
by the presence of outliers [23], and are more robust in identifying corresponding feature pairs [24].
In [25] a closed-form solution for pose-graph relaxation is introduced for enhancing the consistency of
3D maps. First, planar surfaces are extracted from the point clouds and matched. In the subsequent
step, the pairwise registration of scans is performed. Assuming that the rotation parameters are
accurately estimated, the sensor pose vectors are then refined using the least-squares solution of [15].
Pavan and dos Santos [26] introduce a global closed-form refinement of multiple point clouds with local
consistency of planes. They use the similarity of plane properties and the geometric constraint formed
by planar surfaces to identify correspondences and place all the rotation parameters into a common
coordinate system by exploiting a property of quaternions. Moreover, the global refinement procedure
is done using a combination of [1] and the global refinement algorithm of [15]. Yan et al. [27] presented
a framework for global registration of building point clouds using portals (windows and doors) of
rooms to connect scans with limited overlap, while the global refinement step is formulated based
on linear integer programming. First, they classify all the points into horizontal and vertical groups
according to the normals of the points. Then, portals are extracted by detecting boundary points in the
vertical segments. After, pairwise matching are encoded in a connection graph. The globally consistent
registration of the point clouds is obtained by choosing an optimal subset of the pairwise matchings
from the graph. To avoid enumerate an extremely large number of constraints, an acceleration scheme
by iterative adding constraints is proposed. During the registration step, local alignments remain
conflicting after each optimization step. Thus, the set of constraints are added and the optimization is
realized again. This process is repeated until the conflict free registration is obtained. The registration
is refined using [1].

In general, closed-form solutions are more efficient because they provide the best transformation
in one-step, without requiring initial approximations for each pair of scans. Closed-form solutions
avoid convergence issues of iterative methods and have been shown to achieve more efficient and
accurate registration results [28]. Since urban environments are characterized by an abundance of
planar surfaces and current point cloud registration methods are inefficient for large-scale data [29],
a closed-form global registration method based on planes have clear advantages for urban mapping
applications [28,30]. While closed-form solutions are more suitable for pairwise registration of point
clouds, there is a lack of global closed-form solutions in the literature, especially for plane-based
approaches. In this article, we propose a new closed-form solution for global registration of point
clouds from plane-to-plane correspondences.

3. Data and Method

3.1. Studied Area

We evaluate our proposed method on three different TLS datasets. We use one outdoor and two
indoor scan projects for our experiments. Detailed information of the experiments is listed in Table 1.

Table 1. The core specifications of the TLS sensors and outdoor/indoor experiments.

ID TLS
Sensor Area (m)

Average
Overlap

(%)

Mean Point
Density

Points/m2

Mean Size
(Million
Points)

Number
of Scans Environment

Patio Batel Faro LS
880 150 × 170 45 12 1.5 9 Urban

(outdoor)

Lape Faro LS
880 15 × 15 × 3 70 6 2.7 4 Office

(indoor)

Royal exhibition
building

Faro Focus
S120

70 × 30 ×
15 70 11 4.5 16 (for

each floor)
Building
(indoor)
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The Faro 880 TLS offers a near-spherical field of view made possible by a 320◦ vertical angle
scanning range and a 180◦ horizontal field with a linearity error in the rangefinder less than 3 mm at
a range of 10 m, a ranging error about 1 mm and the measurement speed of 122,000 pts/sec. The Faro
Focus S120 offers a distance accuracy up to ± 2 mm, a range from 0.6 m up to 120 m, a measurement
rate up to 976,000 pts/sec, vertical field of view (vertical/horizontal) of 305◦/360◦, and a maximal vertical
scan speed of 97 Hz. Figure 1 shows the marker position for each dataset.
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Figure 1. Marker position of each dataset. (a) “Patio Batel” dataset, (b) “Lape” dataset and (c) “Royal
building exhibition” dataset.

Our outdoor scan project “Patio Batel” (located in a urban area in the south of Brazil, –30◦04′09”S,
–51◦24′20”E) is part of a densely urban environment, in which there are cars, pedestrians, trees, poles,
streets and building façades, as shown in Figure 1a. The “Lape” (located in a urban area in the south of
Brazil, –30◦04′09”S, –51◦24′20”E) and the “Royal exhibition building” ” (located in an urban scene in the
south of Australia, –38◦34′06”S, 145◦18′07”E) experiments were conducted to evaluate the performance
of the method in an indoor environment. The first dataset contains features as tables, computers, chairs
and façade constructions, as shown in Figure 1b. The “Royal exhibition building” experiment was
carried out to evaluate the performance of the method with scans of a historical building with complex
interior structures. The indoor area features as chairs and façade constructions, as shown in Figure 1c.
Figure 2 shows some detailed views of unregistered point clouds for each datasets.
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3.2. Method

In this section, we first describe the general prerequisites for TLS scans acquisition and
preprocessing with a brief description of plane segmentation using the random sample consensus
(RANSAC) algorithm [31]. Then, we present the closed-form registration method that first finds a set of
plane correspondences with complex numbers and minimizes the sum of residuals over all such plane
correspondences. Finally, the closed-form solution, which uses a set of plane-to-plane correspondences
to consistently redistribute the residual errors across the whole project, is presented. In Figure 3,
the proposed framework is shown, and the involved steps are illustrated. The details of these steps are
explained in the subsequent sections.
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3.2.1. Plane Segmentation with the RANSAC Algorithm

Planar surfaces are abundant in human-made environments, and their extraction requires less
storage than voxel-grid representations. However, due to the varying point density of TLS data,
measurement errors can lead to sparse outliers. These can influence the plane extraction task, and reduce
the registration accuracy. To avoid these weaknesses, we start by removing outliers from the raw
point cloud (ℵ) using the statistical outlier removal technique proposed by [32]. The filtered point
cloud ℵ′ is obtained based on a statistical analysis of a query point pi with respect to its surrounding
neighbors k ∈ ℵ. Thus, given a filtered reference point cloud ℵr′ and a filtered target point cloud ℵt′

with both inliers and outliers, the RANSAC algorithm is used for plane extraction task. This is done by
randomly selecting three non-collinear points in ℵ′, followed by a voting scheme to find the optimal
fitting plane model. The best fit plane is estimated by finding the eigenvector corresponding to the
smallest eigenvalue of the covariance of weighted point coordinates, as described in [17].

3.2.2. Estimation of Transformation Parameters from Plane Correspondences

Typically, pairwise registration of point clouds follows a two-step strategy. First, corresponding
features are required in overlapping scans, and second, transformation parameters are estimated to
align a pair of point clouds relative to each other in a common coordinate system. Our proposed
strategy is based on plane correspondences and estimates the rotation and translation parameters
separately. Given two sets of segmented planar surfaces Si ⊂ ℵr′ and S′i ⊂ ℵt′, the transformation from
pi ∈ ℵr′ to p′i ∈ ℵt′ consists of a 3D rigid motion, as follows:

p′i = Rpi + t (1)



Remote Sens. 2020, 12, 1127 7 of 19

where R denotes the 3D rotation, t represents a 3D translation and pi = [xi, yi, zi]
T a point in 3D space.

The condition that a point p′i lies on a plane π′ =
[
u′T, d′

]T
in ℵr′, where u′ = [a′, b′, c′]T is the normal

vector of plane π and d its distance to the origin, can be written as [26]:

u′Tp′i + d′ = 0 (2)

where u′ is the unit normal vector of the plane π′ and d′ its distance to the origin. By substituting
Equation (1) into (2), we can obtain the following expression:

u′TRpi + u′Tt + d′ = 0 (3)

from Equation (3), we have:
u′Tt = −(u′TRpi) − d′ = d− d′ (4)

note that the rotation R from vector u to the vector u′ is expressed as:

u′ = Ru (5)

We now have two separate sets of equations per plane correspondence, one for t, as presented in
Equation (4), and one for R, as can be seen in Equation (5). Given a set of putative correspondences,
we can estimate the transformation parameters R and t using a closed-form solution. As described
by [26], a system of equations At = l + v can be formed to estimate the parameter t, where A and l are
obtained by stacking u′ and d− d′ for all plane-to-plane correspondences and v contains the residual

values. The least-squares solution for t can be obtained as: t̂ =
(
ATA

)−1
ATl. The estimate of R is

obtained using Horn’s solution [33]. In the subsequent section, we describe our proposed method to
find corresponding planes using complex numbers.

3.2.3. Plane Matching with Complex Numbers

In its basic form, the estimation of the transformation parameters relies on the presence of pairs
of corresponding planes. Dold and Brenner [34] give a plane matching method for TLS point clouds.
They investigated the combinatorial complexity of the search for corresponding planes. Our plane
matching algorithm extends this method by adding a false positive detection task. This is done by
inferring the relative angle between patch plane vectors using complex numbers. It works in three
steps: (1) Classification of the segmented planes; (2) Determination of the rotation between pairs of
candidate planes; and (3) Calculation of approximate translation.

• Classifying the segmented planes
First, we assume that the TLS is mounted on a tripod and is levelled using a bubble level.

Consequently, planes extracted from TLS data have small deviations from vertical and horizontal
planes [35]. Thus, given two sets of segmented planar surfaces Si ⊂ ℵr′ and S′i ⊂ ℵt′, our algorithm
separates these in different classes, i.e., horizontal planes (representing the planes parallel to the floor)
and vertical planes (representing the wall planes of buildings) using the third component of the normal
vector of Si or S′i . The horizontal planes are those whose normal vectors and the z axis form an angle
smaller than 3 degrees, while the vertical planes are those whose normal vectors and the z axis form
an angle larger than 89 degrees. Such classification procedure is essential to reduce the search space,
and for the optimization of the matching performance.

• Calculating the rotation between normal vectors of pairs of candidate planes
Second, given a set of segmented planes in both the reference point cloud (ℵr′) and the target

point cloud (ℵt′), as presented in Figure 4a, in order to calculate the rotation angle (θ) between the
normal vectors (Figure 4b) of each pair of candidate planes for correspondence (Figure 4c), we propose
the use of complex numbers. Figure 4 shows an example of segmented planes, the normal vectors and
the relative roation angle between two segmented planes in ℵr′ and ℵt′.
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As shown in Figure 4c, θ1 and θ2 represent the rotation angles of u1 to u′1 and u2 to u′2, respectively,
where u1 and u′1 are the normals of the pair of segmented planes π1 in ℵr and π′1 in ℵr′, and u2 and u′2
are the normals of the pair of segmented planes π2 in ℵt and π′2 in ℵt′. For vertical planes, we can
assume that R is only applied around the z axis; then, for every pair of adjacent non-parallel vertical
planes, we have:

u′ = Ru ∴


a′

b′

c′

 =


cosθ − sinθ 0
sinθ cosθ 0

0 0 1




a
b
c

 (6)

Equation (6) can be rewritten as:[
a′ b′

]T
= S(θ)

[
a b

]T

c′ = c
(7)

where S(θ) is the rotation matrix in the xy plane.
For all angles θ, the matrices S(θ) form a special orthogonal group M(2). All rotation S(θ) in the

plane can be represented by a complex number. Then, the rotation in the plane of a vector (a, b) ∈ R2

can be rewritten by the multiplication of complex numbers, as follows [36]:

a′ + ib′ = eiθ (a + ib), (8)

where eiθ = cosθ+ i sinθ. Thus, the complex number eiθ can be calculated by multiplying Equation
(8) by the inverse of the complex number (a + ib), as follows:

eiθ =
(aa′ + bb′) − i(ab′ − ba′)

a2 + b2 (9)

Then, the rotation angle between (a, b) and (a′, b′) can be calculated using the following expression:

θ = atan(cosθ, senθ) (10)

Subsequently, the algorithm checks the correspondence for every two pairs of non-parallel vertical
planes calculating the difference between their relative angle (ε), as follows:

ε = |θ1 − θ2| (11)
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The pseudo-correspondences between the two pairs of non-parallel vertical planes are established
if |ε| ≤ 1 degree, otherwise, the correspondence hypothesis is rejected. Please note that, to avoid the
singularity problem, the planes must be non-parallel vertical planes, since vertical planes are influenced
by the rotation of the TLS sensor.

• Selection of pairwise plane correspondences
In the third step, the components tx and ty are calculated using the pairs of corresponding

non-parallel vertical planes. For this step, we can reduce the search space by initially assuming
that tz = 0. Thus, we can use two corresponding planes to estimate an approximation of tx and ty,
as follows:

a1tx + b1ty = uT
1 t = d1 − d′1

a2tx + b2ty = uT
2 t = d2 − d′2

(12)

which can be further decomposed to:[
a1 b1

a2 b2

][
tx

ty

]
=

[
d1 − d′1
d2 − d′2

]
(13)

where u1 =
[

a1 b1 0
]T

, u2 =
[

a2 b2 0
]T

, u1
′ =

[
a′1 b′1 0

]T
, u2

′ =
[

a′2 b′2 0
]T

and

t =
[

tx ty tz
]T

. The solution for Equation (13) is given as follows:[
tx

ty

]
=

1
a1b2 − b1a2

[
b2 −b1

−a2 a1

][
d1 − d′1
d2 − d′2

]
, (14)

An issue which requires attention in this solution is the correspondence between non-parallel
vertical planes. The choice of parallel vertical planes can lead to an inconsistent system of equations with
no solution. Similarly, the solution for component tz is obtained using the third pair of corresponding
non-parallel vertical planes, as follows:

tz = uT
3 t = d3 − d′3 (15)

where u3 =
[

0 0 1
]T

and u3
′ =

[
0 0 1

]T
are parallels to the z axis. Next, all pairs of vertical

planes considered as pseudo-corresponding are combined to find the correct correspondences. This is
done by using the approximated translation values and the rotation angle, as follows:

errorxy = u′Tt + d′ − d

δ =
∣∣∣θ1 − β

∣∣∣ (16)

where β is the rotation angle from normal vector u in Si to the combined normal vector u′ in Si
′, d and

d′ are the perpendicular distances between the origin of the coordinate system and the combined
planes, respectively.

For δ values less than a predefined threshold and for the smallest errorxy value, the pair of
corresponding planes is added to the set of pseudo-correspondences with respect to the planes π1 ↔ π1

′

and π2 ↔ π2
′ . Then, the two steps of rotation angle estimation and the approximated estimation of tx

and ty components are repeated using other planes and a new set of pseudo-corresponding planes
is found. The combinations inserted in this set are regarded as true correspondences. In addition,
the third component of translation parameters (tz) is recalculated using corresponding horizontal
planes. Thus, pairs of pseudo-corresponding horizontal planes are combined to find the correct
correspondences using the following expression:

errorz = u′Tt + d′ − d, (17)
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When errorz is less than a predefined threshold, the pair of corresponding horizontal planes is
added to the set of pseudo-correspondences with respect to the planes π3 ↔ π3

′ . The combinations
inserted in this set are also regarded as true correspondences. After all verifications, the potential
corresponding planes are used to refine the translation parameters.

3.2.4. Proposed Global Plane-to-Plane Refinement Solution

Due to the accumulated residual errors resulting from the consecutive pairwise registration
steps, a global refinement task should be used to minimize the loop closure error across all scan
pairs in the project [14]. Given a discrete set of putative pairwise registrations, we develop a global
refinement solution based on a plane-to-plane approach. The global refinement is done with the help
of a pose-graph structure.

According to [37], a graph G(X,T) is formed by nodes (X) and edges (T), where nodes represent
the pose of each point cloud and edges denote each pairwise registration (transformation of pairs
points cloud) with sufficient mutual overlap. An example of a graph structure is shown in Figure 5.
The variables Xi ∈ X denote point clouds and the each pairwise registration Ti j ∈ T are represented
by transformation parameters Mi j (rotation) and ti j (translation) between the point clouds Xi and X j,
respectively, with j, i ∈ {0, 1, 2, . . . , n}.
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• Global refinement of rotation parameters
The rotation parameters are globally refined (R j) using our previous work [26], as follows:

R j = Mi jRi (18)

where Ri represents the 3D rotation matrix from node Xi to the node X0 (reference) and Mi j denotes the
3D rotation matrix from Xi to X j with j and i = 0, 1, 2,. . ., n (see Figure 4). Using quaternions, Equation
(18) can be rewritten as follows:

R j = Mi jRi − ∆i j (19)

where Ri represents the 3D rotation matrix from node Xi to the node X0 (reference) and Mi j denotes
the 3D rotation matrix from Xi to X j and ∆i j is the residual error, with j, i ∈ {0, 1, 2, . . . , n}. Thus,
Equation (19) is rewritten as follows: [

Lqi j

]
Q j −Qi = Ei j (20)

where
[
Lqi j

]
is a 4 × 4 matrix associated with left product of the quaternion

.
qi j, Qi, Q j and Ei j are 4

× 1 vectors that represent the quaternions
.̂
qi,

.̂
q j and εi j, respectively. Equation (20) can be rewritten

as follows:
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ΩΨ =



[
Lq01

]
−I
...
0
−I

−I[
Lq02

]
...
0
0

· · ·

· · ·

. . .
· · ·

· · ·

0
0
...[

Lqn−1.n

]
0

0
0
...
−I[

Lqn0

]





Q0

Q1
...

Qn−1

Qn


=



E0

E1
...

En−1

En


= E, (21)

where Ω represents a 4n× 4m matrix formed by partial derivatives with respect to all components of Q j,
Qi is the column vector 4n× 1 formed by concatenation of all matrices Qi and Q j, n is the number of the
nodes and m denotes the number of the edges on the graph. Then, the total least square method [38]
can be used to estimate the matrix Ψ (or Rr), as follows:

ΨTΩTΩΨ = ETE→ min, (22)

Thus, the matrix Ψ that minimizes the Equation (22) is the eigenvector corresponding to the
smallest eigenvalue of the matrix ΩTΩ. To obtain

.̂
qi it is essential to normalize each Qi. As this solution

is direct, it does not require initial approximations.
• Proposed global refinement of translation parameters
By combining a pair of point clouds, a difference Rrti between two sensor poses xi and x j can be

obtained, as follows:
Rrti j = xi − x j (23)

where Rr represents the globally refined rotation parameters, ti j is the 3D translation vector from node

Xi to X j, xi is a column matrix that represents the 3D position of the node Xi with x0 =
[

0 0 0
]T

and x j is a column matrix that represents the 3D position of the node X j. As described, the translation
parameters can be estimated from plane correspondences:

uT
jkti j = dik − d jk (24)

where uT
jk denotes the normal vector from segmented plane π jk ∈ X j and d jk its perpendicular distance

from the origin, and dik the distance from the origin to plane πik ∈ Xi. Multiplying Equation (24) by
uT

i jkRT
r and substituting it into Equation (23) yields:

dik − d jk = uT
jk0RT

j

(
xi − x j

)
(25)

For each pair of point clouds within the network, the proposed method calculates the residual
errors based on plane-to-plane correspondences. As the Equation (25) is linear with respect to the
sensor positions x1, x2,. . ., xn and assuming that dik − d jk is the vector of observations and uT

jk is the

normal vector for all plane-to-plane correspondences, respectively, the solution
(
xi − x j

)
can be globally

refined using the least squares method (LSM). Thus, the set of liner equations Ax + v = l can be formed
to estimate the sensor positions, where A is the coefficient matrix containing the partial derivatives in
Equation (25), l is the vector of constants containing d− d′ for all plane-to-plane correspondences and v

is the residual vector. The least-squares solution for
(
xi − x j

)
can be obtained as: ˆ(

xi − x j
)
=

(
ATA

)−1
ATl.

Please note that the proposed method has been adapted to use plane parameters to estimate x2,. . .,
xn, instead of feature points as used by [15]. To obtain a solution, at least four pairs of corresponding
planes are needed. Fortunately, this is not a major issue in urban environments, since a large number
of planar surfaces are available.
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4. Experiments and Results

First, the plane matching method is evaluated in terms of matching success rate (SR), by simply
counting the number of correctly matched planes over all pairs of point clouds and the matching time
(MT). Its performance also is compared to the K-4PCS registration algorithm [6], which is available
in the point cloud library (PCL) [39]. Secondly, the global refinement method is evaluated in terms
of mean registration accuracy. The residual root means square errors (RMSE) before and after global
refinement are calculated based on the plane-to-plane distances between the corresponding planes.
The performance of the proposed global refinement method is evaluated by comparison with three
other approaches. The first is a combination of iterative closest point algorithm [1] and the global
refinement method proposed by Lu and Milios [15]. The second approach is the global registration
using our pipeline but omitting the global refinement of the rotation parameters. The third approach is
the global registration proposed by Theiler et al. [14]. The first approach is available in the point cloud
library (PCL) [39], while the source code from the third approach can be found in [40].

4.1. Pre-Processing Data

For all the datasets, the outliers were detected and removed using the statistical outlier removal
algorithm. With the removal of the outliers, the number of points contained in the point clouds was
reduced by 25%. Basically, this step of the method removes from the data sample all points outside
the interval µk ± α·σk. In this paper, the values assumed for the variables µk = 0.050 m (mean distance
between neighbouring points) and α = 0.10 (restriction factor) were determined empirically and were
those that best represented the expected sampling of the object on the surface. The surface planes were
extracted with RANSAC algorithm using a distance threshold 0.01 m, and 100 iterations. Figure 6
shows an example of the segmented planes for pairs of point clouds obtained by using the RANSAC
algorithm. As can be seen, ground planes could not be correctly classified because small inclinations
exist due to the different ground levels in all scanned regions. However, this issue does not affect the
performance of the matching algorithm.
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The planes were classified and segmented into horizontal and vertical planes, with their normals
and perpendicular distances calculated with respect to the origin. The errorxy and errorz threshold
values were respectively 0.15 and 0.01 m for Patio batel and Lape datasets, while for the Royal exhibition
building dataset, the value 0.01 m was used for errorxy and errorz.
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4.2. Experimental Evaluation

4.2.1. Plane Matching Evaluation

As previously mentioned, we tested our plane-based matching algorithm against the K-4PCS
algorithm proposed by [6]. For the tests conducted with K-4PCS, we used the following matching
algorithm and parameter settings: 3D scale feature transform (SIFT) algorithm for keypoints detection,
and voxel size τ = 50 mm, respectively. Table 2 shows the results obtained with both our plane-based
matching algorithm and the K-4PCS method. For the “Patio batel” dataset, a sufficiently large number
of corresponding planes was obtained for the pairs of point clouds containing salient structures.
For these pairs of point clouds, the method achieves high SR (>80%). The SR is generally high
for point clouds with large overlap (about 40%). The lower SR for a few of the pairs is due to the
smaller overlap (30%) and the high degree of symmetry of planar surfaces in the scene, which reduces
the chance for finding correct matches. Table 2 also shows the metric accuracy of the estimated
transformation parameters represented by the root mean square error between true correspondences
(RMSER). The RMSER obtained with the K-4PCS algorithm is about 0.60 m, while our method achieved
a RMSER around 0.40 m. Probable reason for a large RMSER value found is the lower overlap between
the pairs of point clouds. Note also that both algorithms use plane correspondences, instead of targets.
Thus, to improve the pairwise registration accuracy is necessary to apply the global refinement.

Table 2. Evaluation of our proposed plane-based matching algorithm and K-4PCS algorithm.

K-4PCS Proposed Plane-Based Matching Algorithm

Dataset
#Mean

extracted
keypoints

Mean SR
(%)

Mean
MT (s)

Mean of
RMSER

(m)

# Mean
corresponding

planes

Mean
SR (%)

Mean
MT (s)

Mean of
RMSER

(m)

Patio Batel 16.840 98.90 995 0.60 ± 0.31 19 84.4 200 0.38 ± 0.15

Lape 13.850 95.82 789 0.49 ± 0.24 9 75.5 101 0.25 ± 0.11

Royal Building 25.742 99.67 1045 0.28 ± 0.21 35 95.2 127 0.16 ± 0.07

For the “Lape” dataset, the proposed plane matching has been carried out with the optimal
parameters, errorxy and errorz, set to 0.15 m and 0.01 m, respectively. From the test area, nine evenly
distributed corresponding pairs of planes were found, which indicates a matching success rate above
75% (see Table 2). The reason for the moderate success rate is the high number of parallel planes
discarded by the proposed plane matching algorithm to avoid shift errors. For the “Royal building
exhibition” dataset, the optimal parameters are set to 0.01 m for both the planimetric and altimetric
values. This setting is based on the overlap area between the point clouds: where for larger overlaps
smaller values for the parameters are used. As can be observed, the reference and target point clouds
are well registered. The mean SR for both the experiments is around 95%, as shown in Table 2. However,
some failed cases with a large degree of scene symmetry occur. The results of the successful cases reveal
that our proposed plane matching algorithm works well. For plane pairwise registration methods,
the translational errors are larger than rotational errors due the estimate of normal vectors. Errors
of orientation from normal vectors should produce large translation errors. For these experiments,
the results reveal that the pairwise registration obtains an RMSE higher than 0.3 degrees and 0.2 m
for the rotation error and translation error, respectively. As can be observed in Table 2, the K-4PCS
achieve highest matching SR; however, the matching time is considerably higher. Examples of the
results obtained with our proposed pairwise registration method can be seen in Figure 7.



Remote Sens. 2020, 12, 1127 14 of 19
Remote Sens. 2020, 11, x FOR PEER REVIEW 19 of 19 

 

 
Figure 7. Detailed views of registered pairs of point clouds. Pairwise registration results of the “Patio 
Batel” dataset (a)-(c), “Lape” dataset (d)-(f), and “Royal building exhibition” dataset (g)-(i). . 

4.2.2. Global Refinement Evaluation 

As previously mentioned, for comparisons with state-of-the-art research, the renowned global 
refinement approach presented by [15] and the approach of Theiler et al. [14] are introduced. The 
results of the 3D globally consistent point clouds obtained with the proposed method can be seen in 
Figure 8.  

 
(a)                           (b)                         (c) 

Figure 8. 3D globally consistent point clouds obtained with the proposed method: (a) “Patio batel” 
dataset, (b) “Lape” dataset, and (c) “Royal exhibition building” dataset. 
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4.2.2. Global Refinement Evaluation

As previously mentioned, for comparisons with state-of-the-art research, the renowned global
refinement approach presented by [15] and the approach of Theiler et al. [14] are introduced. The results
of the 3D globally consistent point clouds obtained with the proposed method can be seen in Figure 8.
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Figure 9 shows the mean residual RMSE obtained for each dataset using the proposed method and
the baseline approaches. The RMSE values shown that the proposed global refinement method achieves
more accurate results than both the method of [15] and omitting the global refinement of the rotation
parameters. It can also be seen that scans with more geometric constraints (plane correspondences with
other scans) are registered more accurately after global refinement. The lowest registration accuracy is
obtained for sensor poses III and VIII which have fewer corresponding planes.
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Figure 10 shows the RMSE value of the registration before and after the global refinement.
As expected, the proposed global refinement method significantly reduces the misalignments. After the
global refinement we achieved accuracies better than 8 cm, that is close to the expected measurement
accuracy of the scanning device.

Remote Sens. 2020, 11, x FOR PEER REVIEW 19 of 19 

 

Figure 9 shows the mean residual RMSE obtained for each dataset using the proposed method 
and the baseline approaches. The RMSE values shown that the proposed global refinement method 
achieves more accurate results than both the method of [15] and omitting the global refinement of the 
rotation parameters. It can also be seen that scans with more geometric constraints (plane 
correspondences with other scans) are registered more accurately after global refinement. The lowest 
registration accuracy is obtained for sensor poses III and VIII which have fewer corresponding planes.  

 
Figure 9. Comparison of proposed method with three approaches. 

Figure 10 shows the RMSE value of the registration before and after the global refinement. As 
expected, the proposed global refinement method significantly reduces the misalignments. After the 
global refinement we achieved accuracies better than 8 cm, that is close to the expected measurement 
accuracy of the scanning device. 

 
Figure 10. The RMSE of the registration point clouds before and after the global refinement. 

4.3. Discussion 

Figure 10. The RMSE of the registration point clouds before and after the global refinement.



Remote Sens. 2020, 12, 1127 16 of 19

4.3. Discussion

The proposed point cloud registration algorithm involves three prerequisite algorithms, including
outlier removal, plane segmentation, and plane-based matching. The complexity of the proposed
algorithm is centred on the plane-based matching algorithm. In practice, by calculating θ using the dot
product of the two normal, only internal angles are verified, because such a process is limited to the
interval from 0 to 180 degrees, producing ambiguity between the angles. However, a normal vector
can be rotated from −180 to 180 degrees, that is, internal angles and external angles should be verified.
To overcome this limitation, we use complex numbers to find the angle between the normal vectors of
each pair of candidate planes referencing to the point at which this plane is rotated. Using complex
numbers helps to avoid ambiguity between the angles through an analysis of the quadrants (see
Equation (11)). Note also that we constraint the sign of the parameter d to be positive to orient all u
towards the viewpoint. Using complex numbers to calculate the rotation angles between adjacent
non-parallel vertical planes, we can decrease the number of mathematic operations comparisons with
matrix operations. For the plane-based matching algorithm, plane extraction and manual setting of
parameters is mandatory, as these arguments reduce the number of false positives and the number
of candidate features. A close inspection of false-positive detection step revealed that the proposed
plane-based mathing algorithm can reduce the number of false positives about 79%. As expected, failure
cases are caused by the symmetry of the scenes, which are often in the indoor areas. As limitations
of the plane-based scheme, we can point out the requirement for horizontal and vertical planes.
Although surface planes are abundant in urban scenes, the behavior of the proposed strategy is not
consistent for forest environments and under occlusion or very low overlap. The pairwise registration
performance is better with high valid overlapping area such as for indoor environments. However,
indoor environments remind us that parallel planes will increase the risk of failure for the proposed
plane matching algorithm. In light of the proposed plane-based matching algorithm a minimum
of three non-parallel pairs of correct plane correspondences must be found at the matching step.
Fortunately, this is not a major issue in man-made environments (e.g., cities) and indoor environments
that can be used in several applications, such as indoor navigation, infrastructure inspection, façade 3D
modelling, cultural heritage documentation, mapping, augmented reality, 3D modelling of industrial
objects, and others. With respect to the matching performance, as the rotation of the TLS is around z
axis, the horizontal planes are less influenced by rotation of the TLS, while vertical planes are influenced
by the rotation of the TLS. Thus, we assume that horizontal planes are those whose normal vectors and
the z axis form an angle smaller than 3 degree and vertical planes are those whose normal vectors and
the z axis form an angle larger than 89 degree. This is essential for reducing the search space, and for
the optimization of the matching performance. As a direct consequence of the TLS scans, different
plane parameters may be obtained from different views. As a result, the plane-based registration is
influenced by the plane extraction accuracy. The d parameter is defined as a function of the u (normal
plane) and point coordinates, while the precision of plane fitting is dependent on both the noise level
of the points and the choice of the coordinate system, as presented by [28]. Since the estimation of
translation parameter (t) in the plane-based solution is dependent on the d parameter of the noisy
planes, a solution is normalized point coordinates to improve the estimate of d parameter in plane
fitting, and consequently uses the variance of d in plane fitting to improve the estimate of translation
parameters (t) during the pairwise registration solution. However, this has not been tested, and is left
for future work.

Compared with other global refinement methods, our method is a closed-form solution and refines
both rotational and translational parameters. From our point of view, the refinement of the rotations is
essential for the correct refinement of the sensor positions. Thus, as previously mentioned, we first
refine the rotations using the approach indicated by [26], while the TLS positions are corrected with our
plane-to-plane refinement method. In practice, the pairs of point clouds with lowest overlapping point
clouds present worst results for the pairwise registration task and the alignment is not good enough
to be refined by our method. To disambiguate the pairwise transformations, geometric constraints
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should be added in the pose-graph optimization. Moreover, pairs of point clouds that lack salient
structures, and contain more occlusions and vegetation present the largest errors. Although our global
refinement method is compatible in terms of accuracy compared to the state-of-the-art, it is much faster,
corresponding to 55% less computation time, as can be seen in see Figure 11.
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5. Conclusions

In this paper, we presented a framework for automatic marker-less registration of multiple
terrestrial laser scanner point clouds. First, we introduced a plane-based matching scheme that relies on
a new parametrization using complex numbers to find the correspondence between pairs of segmented
planes. The RANSAC algorithm is used to segment plane surfaces in TLS data. The segmented planes
are then classified into vertical and horizontal planes, and their correspondences are obtained using
our proposed plane-based matching algorithm. The key novel aspect of our plane-based matching
algorithm is the multiplication of complex numbers based on analysis of the quadrants to avoid the
ambiguity in the calculation of the rotation angle formed between normal vectors of adjacent planes.
It also is able to reduce the number of mathematic matrix operations during the correspondence
task. Secondly, we formulated the global fine registration as a graph-based formulation adapted
for plane-to-plane correspondences. The main characteristic of this proposed solution is that the
refinement of TLS positions by treating the 3D points and their corresponding surface normal as
observations. By globally refining the rotation parameters and the translation parameters, TLS position
can be accurately obtained. Since our global registration method is non-iterative, multiple point clouds
can be quickly registered. In our results, we demonstrated the potential of our method in registering
point clouds of outdoor and indoor urban environments with reasonable overlapping. Future work
involves conducting additional experiments using dataset of different sources, i.e., photogrammetry
and RGB-D data. In addition, the loop closing detection can be executed automatically.
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