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Abstract: Tropical forests are disappearing at unprecedented rates, but the drivers behind this
transformation are not always clear. This limits the decision-making processes and the effectiveness
of forest management policies. In this paper, we address the extent and drivers of deforestation of the
Choco biodiversity hotspot, which has not received much scientific attention despite its high levels
of plant diversity and endemism. The climate is characterized by persistent cloud cover which is
a challenge for land cover mapping from optical satellite imagery. By using Google Earth Engine
to select pixels with minimal cloud content and applying a random forest classifier to Landsat and
Sentinel data, we produced a wall-to-wall land cover map, enabling a diagnosis of the status and
drivers of forest loss in the region. Analyses of these new maps together with information from illicit
crops and alluvial mining uncovered the pressure over intact forests. According to Global Forest
Change (GFC) data, 2324 km2 were deforested in this area from 2001 to 2018, reaching a maximum
in 2016 and 2017. We found that 68% of the area is covered by broadleaf forests (67,473 km2) and
15% by shrublands (14,483 km2), the latter with enormous potential to promote restoration projects.
This paper provides a new insight into the conservation of this exceptional forest with a discussion of
the drivers of forest loss, where illicit crops and alluvial mining were found to be responsible for 60%
of forest loss.

Keywords: tropical humid forests; Landsat; sentinel; deforestation; Google Earth Engine;
biodiversity hotspot

1. Introduction

Tropical forests are known as significant reservoirs of carbon and play an important role to
reduce the negative impacts of climate change as indicated by the project for Reducing Emissions from
Deforestation and forest Degradation (REDD+). Tropical forests also sustain a large number of species
and therefore are essential for biodiversity conservation [1–3]. Despite the importance of the Pacific
forests of northern South America in terms of carbon storage [4] and outstanding biodiversity [2,5],
important knowledge gaps remain about the status and trends of forest loss in this region, mainly
caused by the absence of wall-to-wall forest monitoring programs [6–8]. Preserving natural ecosystems
requires a timely identification of priority forest areas for conservation and restoration that can provide
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ecosystems services and that at the same time, are undergoing great pressure [9]. In particular, areas
associated with armed conflicts have been related to forest fragmentation due to legal and illegal
land uses, including perennial crops, cattle ranching, mining, selective logging and illicit crops [10].
Therefore, information on the status and change of natural ecosystems is essential for implementing
conservation policies in light of emerging challenges associated with sociopolitical events.

The future conservation of sensitive ecosystems in Colombia is a source of concern, given the
latest sociopolitical events related to the signature of peace agreements with illegal armed groups [8,11].
The government estimates that because of the peace agreement with the Revolutionary Armed Forces
of Colombia (FARC), a major Colombian rebel group, agriculture will increase from 25,000 ha in the
last three years to more than 1 million ha in the near future [12].

There are also unexpected results associated with the peace process because of changes in territorial
control [13] by illegal groups which frequently finance themselves with revenues from illicit crops and
alluvial mining, creating negative impacts in the form of deforestation and damage to ecosystems [14].
Unfortunately, official land cover maps are not regularly updated in the country, constraining the
information available to make informed decisions.

Forest degradation constitutes an increasing pressure for conservation of biodiversity in Colombia’s
Pacific Coast and their protected areas [15], due to several drivers of forest loss [4,16] that include land
tenure, illegality, and law enforcement [17]. However, the magnitude of the transformation associated
with each driver is unknown and therefore quantifying such relations is imperative. This paper aims
to: (i) generate a spatially continuous land cover map in an area of high cloud cover persistence;
(ii) combine land cover and Global Forest Change (GFC) data [18] to identify the influence of land
cover in forest loss, and iii) analyze forest loss in terms of alluvial mining and illicit crops.

2. Materials and Methods

2.1. Study Area

About half of the world’s tropical forests are located in South America. The Amazon Basin forest,
Brazilian Atlantic forest and Pacific forest (Ecuador, Colombia, Panama and Costa Rica) are the largest
continuous ecoregions of forest in the continent [19]. The Pacific ecoregion is located in the intertropical
convergence zone (ITCZ) with altitude gradients varying from the coastal tropical forests to the high
Andean páramos located 3000 masl. This area (Figure 1) is a biodiversity hotspot due to high levels of
biological endemism [2]. The area is characterized by persistent cloud cover and is considered as one
with the largest annual precipitation globally.

The main rivers are the Patía, San Juan, Baudó, and Mira, flowing towards the Pacific Ocean;
and the Atrato River flowing towards the Caribbean Sea. The climate of this tropical rain forest
has a short or absent dry season [19] where 55% of the study area has precipitation values of over
5000 mm/year [20]. Under these conditions, the main continental ecosystems are “terra firme” forests
as well as coastal vegetation forming mangroves [21,22], coastal marsh ecosystems [23], and wetland
forests [4]. There are also transformed areas, including large extensions of industrial plantations to the
north and to the south of the study area, as well as other land uses including cattle grazing, growing
coca crops, commercial logging and alluvial gold mining.

The 99,852 km2 of the study area (Figure 1b) intersects four departments: Chocó, Valle del
Cauca, Cauca and Nariño. These departments recognized collective land rights for Afro-Colombian
(52,225 km2), and indigenous groups (17,973 km2) through a land reform that took place in the 1990s.
According to the law, these collective lands are imprescriptible, inalienable and indefensible [24].
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Figure 1. (a) Optical satellite image composite of the Pacific coast of Colombia (RGB NIR-SWIR-RED);
black lines are the political boundaries of the departments. (b) Location of Colombia in South
America; gray polygons are the limits of the study area. Appendix A has additional information of
additional layers.

2.2. Data and Pre-Processing

Monitoring land cover/land use and determining drivers of biodiversity loss using optical remote
sensing is challenging in the context of humid/pluvial forests due to the high or permanent cloud
cover [13,14]. To overcome this limitation, we used both optical and synthetic aperture radar (SAR) data
for the land cover classification that included information from Landsat-8, Sentinel-2 and Sentinel-1.
The GFC database [15] was associated with the updated land cover map in order to analyze the fate of
deforested pixels (Figure 2).

Modern Earth Engine computing capabilities enable us to select the best land cover observations
from Landsat and Sentinel satellites, minimizing invalid observations due to clouds’ persistence.
The time series of optical data helped to identify observations free from clouds during a given period,
while the use of active SAR datasets helped to overcome such limitations given their ability to penetrate
clouds and haze and their lower sensitivity to atmospheric conditions [25–27]. We built optical and
radar mosaics for the study area (the size of Portugal) and then performed land cover classification and
validation through the implementation of a random forest algorithm [28] using the R programming
environment [29].

Data from optical and SAR sensors were fused for the forest and land cover mapping [30].
Given the frequent cloud cover in the area, we included four optical sensors (Landsat 8 OLI, Landsat 7
ETM+ and Sentinel 2-A/B MSI). Several years of optical data acquisitions (2014–2018) were required
to obtain a cloud and shadow free composite [31]. Radar wavelengths from Sentinel 1 C-band was
also included to complement optical composites. We used the massive computational capabilities
of Google Earth Engine (GEE) to access and process multiannual composites [32]. A shuttle radar
topography mission (SRTM) layer was also added to the spectral data because it increases classification
accuracy [31].
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2.2.1. Analysis and Processing of Sentinel-1

The Sentinel satellite mission is composed of a constellation of two satellites: Sentinel-1A
(launched in 2014), and Sentinel-1B (launched in 2016). These satellites operate with a C-band sensor at
a frequency of 5.4 GHz at four polarizations (VV, HH, VV+VH and HH+HV) and a 12-day revisit time.
After analyzing the presence of data gaps and speckle, the ascending orbit with VV polarization was
selected as an explanatory image band; cross-polarization (HV or VH) is known to result in weaker
backscatter [33]. All available images from 2014–2018 were selected in order to obtain the median VV
backscatter coefficient (σ◦) in dB. Time series of SAR data are commonly used to minimize speckle and
remove extreme backscattering values that usually constitute noise. The C-band is sensitive to the
scattering elements and their electromagnetic characteristics, with forests producing high backscatter
(scattering radiation towards the SAR sensor) while grassland or water bodies scatter more incident
radiation away from the SAR sensor. Sentinel-1 data were processed using the GEE platform based on
the COPERNICUS/S1_GRD database. Available observations were filtered to select ascending passes
with VV polarization, and the median backscattering per pixel was selected as the radar metric for
classification. We assigned to each pixel the median backscattering during the four-year time period as
an input for the classification process. The median has been proven to be a more robust metric against
extreme values than the mean [34–36].
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2.2.2. Landsat 7-8 and Sentinel-2

Clouds affect the usefulness of optical pixels and a time series is required to select the best
observations by filtering clouds and cloud shadows [37]. The GEE cloudScore principles were applied
to Landsat and Sentinel data [38], including the analysis of solar geometry to detect shadows; once these
low quality pixels were filtered a median reducer was used for compositing. Top of atmosphere (TOA)
reflectances of the Red, NIR, SWIR1 and SWIR2 bands were selected with a 30 m output resolution in
order to match the lower resolution of Landsat data (Table 1). Spectral integration of these multiple
satellite systems is feasible and discussed in the scientific literature [38–40].

Table 1. Band centers for Landsat 7 ETM+, Landsat 8 OLI and Sentinel 2 MSI, in nanometers, adapted
from Pahlevan et al. [41].

Sensor Red NIR SWIR1 SWIR2

ETM+ 661 835 1648 2206
OLI 655 865 1609 2201
MSI 664 843 1613 2200

2.2.3. Training and Validation Data

Training and validation data were produced through a random stratified design. Strata consisted
of the classes considered in the corine land cover (CLC) classification maps for Colombia in 2011 [42].
The number of points sampled within each stratum was proportional to the extent of the stratum in the
study area. This resulted in the collection of 9708 interpreted points associated with eight land cover
classes. Observed and interpreted points were randomly divided into two groups of 6796 points (70%)
for training and 2912 points (30%) for validation (Table 2).

Table 2. Visually interpreted points used to train the random forest classifier and validate the resulting
land cover map using the international geosphere biosphere programme (IGBP) classes.

Class Points Train Validate

Bare soil 895 621 274
Cropland 845 610 235
Grassland 429 297 132

Broadleaf forest 2816 1969 847
Shrubland 2552 1799 753

Wetland forest 786 541 245
Wetland grassland 636 429 207

Water Bodies 749 530 219

We assigned a land cover class to each sampled point through field observations using a hand-held
GPS GARMIN Map 78 from 2016 to 2018 and through the interpretation of high-resolution images
and the official land cover map. Fieldwork was concentrated near the Atrato River due to security
restrictions, emphasizing the proper identification and image interpretation of areas affected by alluvial
mining, shrublands, and industrial crops. Only large-scale plantations such as banana or oil palm were
interpreted as the cropland class. Small-scale agriculture or dispersed crops were not differentiated due
to the ambiguous/mixed spectral response. Two additional classes were included from official maps:
urban-build-up and páramos. Páramos are high Andean ecosystems located in Peru, Ecuador, Colombia
and Venezuela. Colombia has an official delimitation of these ecosystems given their importance in
terms of water supply and their high levels of biological endemism [43–45].

2.3. Classification and Accuracy Assessment

The random forest algorithm was used to classify remote sensing data (Red, NIR, SWIR1, SWIR2,
Sentinel-1 and SRTM) into eight land cover classes (Table 2). Explanatory variables were obtained from
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Landsat 8, Sentinel-1, Sentinel-2 and the SRTM. Random forest classification is a supervised algorithm
based on ensemble learning.

Ensemble learning combines the outcomes of different iterations of the same algorithm to improve
prediction power. Random forests are comprised by multiple decision trees that are created using
a subset of random samples from the training set based on attributes of the dataset of interest.
Each decision tree produces a result for each pixel that is considered as a vote. The final prediction for
each pixel corresponds to the most voted class among all the decision trees [28,46]. For this application,
we used the Random Forests package [47] implemented in the R computing environment. The model
was parameterized to run 500 trees using a random selection of variables in each split equal to the
square root of the total number of predictors. The accuracy of the resulting land cover map was
assessed by using the validation data and the statistics of the confusion matrix.

The land cover classification legend corresponded to the IGBP classes [48]. Finally, this land
cover map was overlaid with the forest loss pixels identified by the GFC [18] in order to determine the
current land cover condition of deforested pixels from 2001 to 2018.

2.4. Ancillary Data

We used estimates of forest loss from GFC. This dataset is available in GEE as Hansen Global
Forest Change v1.6. All pixels labeled as forest loss from 2001 to 2018 were selected. To increase our
understanding of the role of the drivers of forest loss in the magnitude of the deforestation we included
two of the most relevant drivers: illicit crops and alluvial mining, which are highly related to the
economy of local communities [49]. The World Drug Report of the United Nations Office for Drugs
and Crime (UNODC) [50,51] estimated that 69% of the global coca bush crops are located in Colombia,
with an extension of 1461 km2 in 2016 from which 577 km2 (39.5%) are located in the Pacific coast.

Spatial explicit layers at 1-km2 grid available from UNODC reports were combined with deforested
pixels using zonal statistics. Appendix A provide web links that point to layers showing areas under
the influence of alluvial mining and illicit crops; these drivers of forest loss were treated as zones
within the map algebra syntaxes in order to calculate statistics of forest loss. In addition, each class
from the land cover map derived from Section 2.3 was treated as a zone in order to associate each forest
loss pixel to the current land cover class.

3. Results

This study used all the available images of Landsat-8 and Sentinel-2 from January 2014 to
December 2018 for the study area. The classified land cover map had an overall accuracy of 82%
(Table 3). The accuracy results represent a strong agreement despite the limited number of observable
pixels available and the large temporal compositing method required in these humid-pluvial forests.

The main land cover is broadleaf forest, covering 67,473 km2 (Table 4), equivalent to 68% of
the area, followed by shrubland class, covering 14,483 km2,equivalent to 15% of the area (Figure 3).
These two classes cover a sum of 81,956 km2. Wetland broadleaf forests and wetland grasslands are
also significantly represented classes with 7282 km2 and 4355 km2 respectively (Table 4). The largest
wetland is associated with the Atrato River flowing into the Caribbean Sea, followed by the large coastal
mangroves along the Pacific coast. Grasslands are mainly located to the north, dedicated to cattle
grazing, while shrubland includes natural regeneration of abandoned lands, shifting agriculture [52]
and illicit crops [53]. Grasslands and shrublands were the most challenging classes to classify due to
the different stages of natural regeneration, resulting in low accuracy values (Users’ Accuracy 74% and
73% respectively) (Table 4). Shifting agriculture, natural regeneration and coca crops were included in
the shrubland class since these highly fragmented mosaics were not spectrally distinct. Coca crops are
highly fragmented and mixed with shifting agriculture and pastures; based on UNODC [54] more
than 60% of coca is grown in small plots (average 0.96 ha). Additionally, large-scale producers scatter
illicit crops in the landscape to avoid aerial/terrestrial reconnaissance, resulting in a mosaic of natural
forests with small and dispersed cultivated fragments.
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Table 3. Confusion matrix from the random forest classification using IGBP classes. The number of
validation points is 2912, and the number of agreement points is 2401, with an overall accuracy of 0.82.
Users’ Accuracy (UA) and Producers’ Accuracy (PA) is presented for each class.

Class 1 2 3 4 5 6 7 8 Total UA

1 Barren 238 0 16 3 7 0 1 6 271 0.88
2 Cropland 2 210 0 3 8 1 1 0 225 0.93
3 Grassland 11 1 86 0 18 0 0 0 116 0.74
4 Broadleaf Forest 0 2 1 702 151 8 2 3 869 0.81
5 Shrubland 14 19 28 126 555 4 9 2 757 0.73
6 Wetland Forest 0 2 0 12 9 229 11 1 264 0.87
7 Wetland Grassland 6 1 1 1 3 3 179 5 199 0.90
8 Water Bodies 3 0 0 0 2 0 4 202 211 0.96

Sum 274 235 132 847 753 245 207 219

PA 0.87 0.89 0.65 0.83 0.74 0.93 0.86 0.92

Table 4. Land cover extent using IGBP classes of the Pacific coast of Colombia.

Land Cover Km2 %

Barren 321 0.32
Cropland 854 0.86

Grasslands 1177 1.19
Broadleaf Forest 67,473 68.30

Shrubland 14,483 14.66
Wetland Forest 7282 7.37

Wetland Grassland 4355 4.40
Water Bodies 2121 2.14

Build up 46 0.04
Páramos 671 0.67

Bare soils included classes such as degraded lands due to poor agricultural practices, exposed
gravel/sediments from riverbeds and abandoned mining sites [55]. Detection of mining sites is
challenging because their reflectance is similar to other classes such as bare soils (barren) occurring
naturally, sediment bar depositions along the rivers, or bare soil from agricultural activities
before planting.

Industrial crops are banana and oil palm plantations in the north and south of the study area,
respectively. These industrial croplands are related to the construction of channels that drain the excess
of surface water [56]. This land use represents less than 1% of the total area with an extent of 854 km2.
Another important agricultural land use is cattle grazing on grasslands, with an extent of 1177 km2

established by clearing natural forests, which is a common practice in the neotropics [57]. A major
limitation for cattle are the high levels of precipitation. As expected, water bodies have an important
extent (2121 km2) in this pluvial environment; rivers and wetlands are fed by watersheds that reach
the Páramos class (671 km2).
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Figure 3. (a) Land cover classes’ extent for the Pacific region with a zoom into the Quito River tributary
of the Atrato River, as an example of deforestation due to mining activities. (b) Sentinel C-band (2018).
(c) temporal composite Landsat7-8/Sentinel-2 (d) ALOS PalSAR L-band (2018), and (e) ALOS PalSAR
2007. RFDI stands for radar forest degradation index and HH, HV, VV, VH are different polarizations
of radar images. See Appendix A for web mapping functionality.

The total deforested pixels from 2001 to 2018 was equivalent to an area of 2324 km2. Each deforested
pixel was related to the current land use in order to track the fate of deforested pixels over this time.

The largest extent of deforestation (annual and total) from 2001 to 2018 was related to the shrubland
class with a total of 1915 km2 (Table 5), followed by wetlands (206 km2), grasslands (108 km2) and
cropland (56 km2). From 261 km2 pixels as deforested pixels in 2017, 225 km2 are currently under the
shrubland class (Table 5). Finally, deforested areas connected to grasslands were higher than deforested
pixels connected to cropland, indicating that deforested pixels are more likely to become grasslands
than industrial plantations.
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Table 5. Land cover classes (2018) associated with annual deforestation estimated by Hansen et al. [18]
from 2001–2018 in square kilometers.

km2 Barren Cropland Grasslands Shrubland Wetlands Water Bodies Páramo Total

01 1.0 3.1 8.1 133.2 2.0 0.4 0.5 148.3
02 0.7 1.2 4.4 89.8 2.0 0.4 0.1 98.5
03 0.4 0.7 3.0 32.8 1.0 0.1 0.1 38.1
04 1.8 5.8 21.1 189.2 7.0 0.7 0.5 226.0
05 0.7 1.7 7.6 64.8 2.0 0.3 0.1 77.2
06 0.9 3.3 6.3 117.2 3.0 0.3 0.3 131.2
07 1.4 2.3 6.7 90.8 3.0 0.4 0.4 105.0
08 0.9 3.8 5.5 110.2 4.0 0.3 0.1 124.8
09 1.7 6.9 6.9 143.6 4.0 0.5 0.2 163.8
10 2.3 4.1 6.1 106.1 3.0 0.6 0.1 122.4
11 1.6 1.3 2.7 63.9 2.0 0.4 0.1 72.0
12 2.1 5.5 8.8 134.3 6.0 0.8 1.2 158.6
13 0.6 2.4 2.9 54.3 4.0 0.1 0.5 64.8
14 3.8 1.9 5.9 69.2 4.0 0.9 0.2 86.0
15 2.6 1.7 5.4 59.9 3.0 0.8 0.1 73.5
16 1.7 2.9 4.0 148.6 123.0 0.6 0.3 281.1
17 1.6 4.8 2.3 225.0 27.0 0.9 0.2 261.6
18 0.1 3.0 0.3 81.6 6.0 0.1 0.1 91.3

Total 26 56 108 1915 206 9 5 2324

Based on UNODC delimitation, areas under the influence of alluvial mining, illicit crops or both,
include 25,609 km2 of the study area. Forest loss where mining occurs sum to 140 km2, while forest
loss where illicit crops occur sum to 1181 km2, and forest loss where both drivers occur sum to 77 km2.
Both drivers were present during the 2001–2018 period. Similar patterns of the drivers of forest loss
(Figure 4) are partially due to the fact that areas of illicit crops and alluvial mining overlap, indicating
their coexistence in this biodiversity hotspot. A major change in this pattern was found for 2018 when
forest loss increase was associated mainly with illicit crops.
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Figure 4. Annual extent of forest loss from the Global Forest Change (GFC) database associated to
areas under the influence of illicit crops and alluvial mining identified in 2016 by the United Nations
Office for Drugs and Crime (UNODC).
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From the 282 km2 deforested in 2016 in the Pacific region (Figure 5), 70% of mining activity
was related to alluvial mining along the Atrato River, where heavy-duty machinery (excavators and
dredges) is used for vegetation removal and soil extraction. Degradation due to alluvial mining is
clearly interpreted from optical composites or radar images (Figure 3), where more than 100 km of
riparian vegetation was removed from both sides of the Quito River. The shrubland class occupied
14,483 km2, (see Table 4), which includes abandoned crops, abandoned pastures, and slash and burn
plots. A major use of this class also includes illicit coca crops, which reached a maximum of 656 km2 in
2017 [58].Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 16 
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Figure 5. Patterns of total coca crops estimated by the United Nations Office on Drugs and
Crime [51,53,58] and Hansen et al. [18] estimated deforestation.

4. Discussion

Official land cover maps are not regularly updated in Colombia, making it difficult to monitor
land cover change and the drivers of change. For instance, the most recent official map of land cover at
the national level uses Landsat images ranging from 1999 to 2011 [42]. This and other previous studies
have attempted to derive land cover maps based on the use of a limited number of images in areas
where cloud cover is frequent. In this study, we overcame this limitation by generating a cloud-free land
cover map for the Pacific region of Colombia using all optical data available for the years 2014–2018.
Then, by harmonizing this data with other datasets (GFC, UNODC), we were able to quantify and
provide understanding of drivers of forest change. However, caution must be taken as the uncertainty
of the current land cover increases as the number of years included in the composite increases.

The sample design used for the collection of reference data for land cover classification and
validation can greatly influence the robustness of accuracy estimates. In order to minimize any bias in
accuracy estimates associated with the collection of training and validation data, both the location of
the reference points and their subsetting into training and validation were performed through random
sampling. However, we did not test for spatial autocorrelation between sampling locations, which
could further influence accuracy estimates [59]. Although autocorrelation between calibration and
validation data might occur, we do not see any reason to believe that autocorrelation might substantially
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influence accuracy estimates or the overall trends. Forest cover is the most abundant class and is the
one with the highest likelihood to express strong spatial autocorrelation. We calculated the distance
between training and validation points of the most important class, the forest class; from 1969 training
points 102 are within 100 m of validation points, 542 are within 500 m of validation points and 820 are
within 1000 m of validation points. The rest, 1149 training points have a distance above 1 km from the
validation points. In absence of a rigorous assessment, we advise caution about the potential influence
of autocorrelation in some of the results obtained here.

Forests and wetland forests, corresponding to 67,473 km2 (68%) and 7282 km2 (7%) of the total
area, indicate that large extents of forests remain intact in this biodiversity hotspot. But intensive
land use, where native vegetation has been completely removed are present to the north as cattle
grazing (1% of the area) and to the south as industrial cropland (1% of the area). The number of
deforested pixels that belong to the current grassland class were two fold those from croplands during
the study period, but after 2017 the number of deforested pixels associated to the cropland class
was larger than the deforested pixels associated to grasslands, indicating a possible change in the
trend of these deforestation drivers. Annual deforestation values are especially high from 2006 to
2011, a period in which environmental protection agencies of the Pacific reported that 58.4% of the
national timber was produced from natural stands [60]. It is also important to note the large effect
that deforestation had during 2016–2017 on wetlands (Table 5), especially in 2016 when 123 km2 were
deforested. Meyer et al. [4] estimated that from 97,024 km2 of “terra firme” forests, 71,715 km2 are
intact forests, 11,475 km2 have light degradation, 9234 km2 have moderate degradation and 4599 km2

have severe degradation.
A total of 2324 km2 were identified as forest loss in the period 2001–2018, where the shrubland

class was associated with the highest forest loss, followed by wetlands and grasslands. However, one
of the limitations of this study is the inability to track changes of land use after coca crop establishment.
A major challenge of tracking this driver of forest loss is the poor spectral separability between coca
fields and other land cover types such as natural regeneration or agricultural mosaics. Additionally,
this crop is highly dynamic as it involves leaf harvesting, replanting, abandonment and migration to
forest areas due to eradication policies.

The degradation of wetlands is a major concern given that it is a drug exit corridor [61]; cocaine has
been historically trafficked from Colombia to the United States through Central America and Mexico
via the Pacific Ocean where rivers are natural corridors facilitating connectivity between cropping
areas and distributors.

Based on UNODC reports and GFC forest loss, we estimate that about 25% of the study area is
directly affected or under the influence of illicit crops or alluvial mining and that 60% of forest loss was
associated with these two drivers. These results suggest that alluvial mining and illicit crops cause
more than half of the forest loss during the study period and that land use dedicated to industrial
croplands may be gaining importance over cattle grazing.

The large increase in coca crops extent from 2013 to 2018 was accompanied by the largest increase
in deforestation between 2016 and 2017 (Figure 5). However, this region became an important coca
producer since 2002. In 2001, UNODC found that the Putumayo and Caquetá departments, which
drain to the Amazon River, had the largest amounts of illicit crops in Colombia, but these illicit crops
followed a sharp decrease from 2001 to 2012 due to the drug eradication policy (Rincón-Ruiz et al.
2016). Coca crops in the neighboring department of Nariño in the Pacific region, gained importance
during 2002 right after 40.000 ha were eradicated from Putumayo and Caquetá [54].

Colombia is one of the main gold producers in Latin America. The National Mining Agency
estimated a national production of 61,805 kg during 2016, with 348 km2 (42%) of alluvial mining located
in the collective territories of the Pacific coast [62]. The spatial extent of areas under the influence
of alluvial mining and illicit crops are available from UNODC reports. The important extent of
deforestation connected to barren land from 2014 to 2017 is likely associated with alluvial gold mining
(Table 5). Negative effects of mining operations include water ponds and barren lands resulting after
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vegetation removal. A major military and police operation against illegal mining in the department of
Chocó during 2018 [63] coincided with a drastic reduction in deforested pixels associated with this
driver (Figure 4). There is a large presence of alluvial mining in collective Afro-Colombian territories,
especially along the Quito River. Radar data allowed identification of areas affected by alluvial mining
while optical data allowed identification of barren lands and ponds left after gold mining (Figure 3).
Illicit crops and alluvial mining are dispersed over the study area, however, concentration of coca crops
is found in Cauca and Nariño, while alluvial mining is concentrated mostly in the Chocó department.
Collective territories of El Cantón de San Pablo and Nóvita were the most affected, with degraded areas
of 44 and 48 km2 respectively [62], which is aggravated by the use of mercury in artisanal and small
scale mining [64,65]. Vélez et al. [66] found that land titling programs were an important strategy to
reduce deforestation rates, however, Afro-Colombian collective territories are heavily affected by this
land use, while indigenous reserves are almost not affected [62]. See Appendix A to access available
layers of the project web server.

The spatially continuous land cover map, with its assessment of accuracy, enable us to determine
that approximately 75% of the study area is covered by forests. Despite the persistent cloud cover of
humid/pluvial forests, we were able to determine land cover classes and associate each class to forest
loss from 2001 to 2018, improving our understanding of the fate of forest loss pixels after disturbance,
and forecasting the drivers of further deforestation. We also found that more than half of forest loss is
due to the combined effect of alluvial mining and illicit crops, providing more information to decision
makers and conservationists about the magnitude of deforestation associated with the main drivers of
forest loss.

5. Conclusions

Remote sensing is the only alternative enabling the identification of deforestation and land cover
conversion in remote areas, where access for field interviews or data collection is constrained by social
conflicts and illegal activities. In addition to commercial logging and the increase of the agricultural
frontier, this area has been severely affected by alluvial mining and illicit crops. All these drivers
combined led to different levels of degradation in the Chocó region. The large extent of shrublands is a
result of misuse of this exceptional ecosystem, but it also reflects the ability of this ecosystem to recover
from disturbance. Additionally, the shrubland class offers an opportunity for restoration or for the
implementation of activities that can reduce further pressure over forests.

In this study, we demonstrate that the Hansen deforestation map can be combined with other data
sources to identify drivers of forest loss beyond the generic “increase of agricultural frontier”. There was
cumulative deforestation of 2324 km2 from 2001 to 2018, with a trend toward faster deforestation
(positive slope). The condition of deforested pixels from 2001 to 2018 based on the current land use
increases our understanding of the fate of forests following disturbance. Determining the location and
condition of deforested pixels is important in terms of conservation policies. Current conditions of
deforested pixels have implications in terms of the degree of degradation of the land and the ecological
strategies for restoration. In addition, it affects the cost of the land, from the low cost of degraded lands
due to overgrazing to the high cost of lands dedicated to industrial crops.

Our results are valuable to understand the consequences of policy and trade on forest conversion
to other land uses including the use of natural resources, restoration, and the price of commodities,
such as the demand for cocaine or gold. This study can inform similar analysis in other countries with
areas affected by illicit coca crops and mining such as Peru, Bolivia, and more recently Ecuador.
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Appendix A

Spatial data is deposited in a web server. See references for the map layers source. The functionality
of the map server includes scale control. Vector layers have buffers to enhance presentation. Each layer
is presented separately as a web service. Please accept the use of Adobe Application when asked by
your web browser.

https://geomatica.udem.edu.co/flexviewers/PACIFICO/index.html
The layout of the web server has the options “More” and “Basemap” this functionality allows for

the display of the following layers:
More

Study area
Illicit crops UNODC
Alluvial mining UNODC
AfroColombian and Indigenous Territories.

Basemap
Hansen et al. (2013), Forest loss
Land cover
Sentinel-1 VV
Landsat/Sentinel-2
Cloud persistence
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