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Abstract: Deep neural networks are currently the focus of many remote sensing approaches related to
forest management. Although they return satisfactory results in most tasks, some challenges related
to hyperspectral data remain, like the curse of data dimensionality. In forested areas, another common
problem is the highly-dense distribution of trees. In this paper, we propose a novel deep learning
approach for hyperspectral imagery to identify single-tree species in highly-dense areas. We evaluated
images with 25 spectral bands ranging from 506 to 820 nm taken over a semideciduous forest of the
Brazilian Atlantic biome. We included in our network’s architecture a band combination selection
phase. This phase learns from multiple combinations between bands which contributed the most for
the tree identification task. This is followed by a feature map extraction and a multi-stage model
refinement of the confidence map to produce accurate results of a highly-dense target. Our method
returned an f-measure, precision and recall values of 0.959, 0.973, and 0.945, respectively. The results
were superior when compared with a principal component analysis (PCA) approach. Compared to
other learning methods, ours estimate a combination of hyperspectral bands that most contribute
to the mentioned task within the network’s architecture. With this, the proposed method achieved
state-of-the-art performance for detecting and geolocating individual tree-species in UAV-based
hyperspectral images in a complex forest.

Keywords: high-density object; data-reduction; band selection; convolutional neural network;
tree species identification

1. Introduction

The rapid development of lightweight sensors, associated with the market availability of unmanned
aerial vehicles (UAV), has contributed to the development of techniques for fast and accurate acquisition
of surface information [1]. In forest monitoring, UAV-based images have become a powerful tool to
constantly monitor regional or local areas because UAVs offer advantages related to operational costs
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and flexibility in comparison to spaceborne and airborne platforms; this makes it possible to capture
images by UAVs with a higher temporal resolution and also below cloud cover [2]. In the last years, UAV
platforms have been widely used for investigating forest health and monitoring [3], biodiversity [4],
resource management [5], above-ground biomass [6], identification and quantification [7,8], among
others. The data acquisition with high-spatial and high-spectral resolutions in these areas provides
valuable information to identify and also monitor tree species. However, this task can be challenging
when evaluating individual trees in a scene, because adjacent branches and leaves can hinder individual
tree recognition and affect their spectral signatures [9].

Up until recently, feature extraction in hyperspectral data was performed with conventional
and machine learning algorithms like the random forest (RF), decision trees (DT), support vector
machine (SVM), artificial neural networks (ANN), k-nearest neighbor (kNN), among others [10–13].
The performance of these techniques has been evaluated in several studies and, for vegetation analysis,
some achieved interesting results with a combination between them and remote sensing data [14–16].
As for forested areas, algorithms like the RF were used to identify species in a tropical environment
with multitemporal and hyperspectral data acquired with a UAV platform [17]. Another study
investigated the integrated use of LiDAR (Light Detection And Ranging) and hyperspectral data with
the aforementioned algorithms to classify tree species in a mixed coniferous-deciduous forest in Maine,
United States of America [18]. Still related to machine learning, a study was able to characterize
seedling stands in UAV-based imagery with the RF [19]. These researches demonstrate the potential of
artificial intelligence for dealing with this type of remote sensing data.

A recent review in forest remote sensing from UAV-based images showed that only 7% of the
reviewed studies applied hyperspectral sensors in their analysis [2]. In the same study, the authors
estimated that just 5% of the revised documents did make use of the spectral information of their data.
For the individual tree detection and classification, a study was able to provide accuracies up to 95%
using only shallow learners (i.e., conventional machine learning algorithms) and a combination of
point-clouds with hyperspectral data [10]. Another paper adopted object-based classification models
like SVM and kNN to map mangrove species in hyperspectral and digital surface models achieving the
best accuracy of almost 89% with SVM [20]. One study used the SVM algorithm to identify bark beetle
damage at an individual level with hyperspectral data from UAV and aircraft finding accuracies up to
93% [21]. As for more robust methods, convolutional neural networks (CNN) based approaches were
recently applied to classify tree species using hyperspectral and RGB images [22,23]. Nezami et al. [22]
achieved 97.6% of accuracy in detecting the three tree species most common in Finish forests using
CNN with hyperspectral, RGB, and structural data. Sothe et al. [23] showed accuracies of almost 84%
in detecting tree species in Brazilian ombrophilous forest with CNN and hyperspectral images only.

When dealing with hyperspectral imagery, a high-complexity of the targets is to be expected.
The parametric or conventional machine learning algorithms may not be the most suitable option
depending on the object or scene characteristics. Recently, some researches started to implement
deep learning in the remote sensing field [22,24,25]. Deep learning is a machine learning approach
with hierarchical data representation and its architecture can consist of convolution, deconvolutions,
pooling layers, fully-connected layers, encode and decode schemes, activation functions and others [26].
Recently, deep learning-based methods are quickly gaining momentum in remote sensing approaches
involving image segmentation and classification, change and object detection [27]. Generally, deep
learning provided more accurate results when compared to traditional or shallow methods in situations
in which a significant amount of data is available [23,28].

Deep neural networks have been applied in environmental studies, some of which included
single-tree species identification. Recently, published studies investigated state-of-the-art networks
like YOLO v3 [29], RetinaNet [30], and Faster-RCNN [31] to detect and segment tree-species in RGB
imagery [32,33]. A modified version of the VGG16 model [34] was implemented in [35] to identify
tree health status. Another research combined LiDAR and RGB images in a self-supervised RetinaNet
to detect individual tree-crown [36]. A similar approach used LiDAR and multispectral data from
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WorldView-2/3 to classify urban tree species with the Dense Convolutional Network (DenseNet)
method [37]. Nevertheless, RGB and multispectral sensors cannot provide a similar amount of spectral
information as hyperspectral sensors. This type of spectral heterogeneity can significantly contribute
to tree-species differentiation [17].

Although the previously mentioned studies were able to return satisfactory performances for
most tasks regarding tree detection, some challenges related to hyperspectral data are still faced by
the remote sensing community. One of which is known as the Hughes phenomenon; also called the
curse of dimensionality. This issue is often persistent, more specifically when dealing with small
sample sizes [38]. The high dimensionality of data could be problematic even for deep neural networks
because an increased number of features may decrease its performance, as it introduces noise and
sparsity in the feature space [39]. When applying a CNN, which is one of the most commonly used
deep learning architectures for image and pattern recognition [40], data dimensionality reduction
approaches are sure to be expected. For this purpose, either a principal component analysis (PCA) or
mutual information is normally used [41].

In many environments, hyperspectral data can deliver highly detailed views of objects according
to their response to the analyzed spectral band. In many cases, it is common to use a band selection step
to identify the bands that best characterize the object of interest [42]. A PCA [43] is a common example
of a band selection technique widely used in data analysis [11,44,45]. The PCA is a linear scheme for
reducing the dimensionality of high-dimensional data [46]. Still, PCA learns to reduce the spectral
bands without considering the target position such as individual trees or any other information in a
supervised manner. Therefore, with the growth in data volumes due to the large increase of spectral
bands, more efficient methods are needed.

Another challenge related to remote sensing images of forested areas comes from the high density
of their environment. Most of the spectral divergences between trees and non-trees pixels are important
because the brighter pixels are often recognized as the tree-crown, while darker pixels are viewed
as indicative of their boundary [47,48]. In highly-dense areas, this type of differentiation could be
difficult, even for deep neural network-based approaches as some of them rely on bounding-box [32,49].
In this manner, in a previous study, we developed a CNN based method to deal with highly-dense
vegetation [50]. In this study, however, we evaluated the performance of a primary version of our
network to identify citrus-trees in an orchard. This method, implemented with data captured by a
multispectral sensor in the UAV platform, significantly outperformed object detection methods based
on bounding-box estimation like RetinaNet and Faster-RCNN.

The aforementioned challenges still impose problems for UAV hyperspectral data processes and
we intend to fill part of this gap in the forest environment context. In this paper, we propose a novel
deep learning method for hyperspectral imagery to detect and geolocate single-tree species in a tropical
forest. Our approach was constructed to cope with a highly-dense scene while implementing a strategy
to deal with the Hughes phenomenon. Differently from a PCA, which is considered a pre-processing
step, we aim to estimate a combination of hyperspectral bands that most contribute to the mentioned
task within the network’s architecture. For this, we included this band selection phase as the initial
step of our network. The phase learns from multiple combinations between bands which contributed
the most for the tree identification task. This is followed by a feature map extraction and a multi-stage
model refinement of the confidence map to produce an accurate result of the tree geolocation in a
highly-dense scene. The rest of the paper is organized as follows: Section 3 describes in detail the
method adopted; Section 4 presents and discusses the results, and; finally, Section 5 summarizes the
main conclusions.
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2. Materials and Methods

2.1. Study Area

To assess the proposed method, we used a transect area inside a forest fragment known as Ponte
Branca (Figure 1). The Ponte Branca fragment is composed of a submontane semideciduous forest,
which is part of the Black-Lion-Tamarin Ecological Station, in the countryside of the western region of
the São Paulo state, in Brazil. The area has been protected by governmental laws since 2002 [51,52] and
suffered illegal logging until the end of the 1970s [53]. From the 1970s to the 2000s, forest degradation
was noticed in the northern part of Ponte Branca [54], where the transect is located. In the transect area,
more than 20 tree species were encountered [17,53,54]. These species are considered as pioneers and
secondaries tree species, with their majority considered within the primary degree of a regeneration
state [17,54].
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(d) Ponte Branca forest fragment.

From the tree species present in this area, Syagrus romanzoffiana is one key species since it is one
of the most common palm trees in the Brazilian Atlantic forest [55]. Palm trees can be considered
as a key species in tropical forests because of its abundance of fruits and seeds and its importance
for contributing to the forest structure [56,57]. Syagrus romanzoffiana is an evergreen tree, tolerant to
shadows, with great potential to be used for fauna restoration and conservation [58]. As Syagrus
romanzoffiana blooms and produces fruits almost the entire year [55,59], it can be related to animal
dispersion. Its fruits are consumed by at least 60 different vertebrate species [60]. Among the frugorive
animals, there are crab-eating, raccoons and mainly, tapirs [55,61]. Besides, Syagrus romanzoffiana
density can be related to the successional stage of forests in the area. According to the Brazilian
Ministry of the Environment [58], there is a higher number of Syagrus romanzoffiana samples in early
secondary forests than in late secondary forests. In this manner, this tree species can be used as an
indicator of forest regeneration. Aside from that, a higher frequency of Syagrus romanzoffiana indicates
that the Atlantic forest in the initial stage of regeneration, where a lower frequency indicates a more
preserved forest.
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2.2. Image Acquisition

The images that composed the dataset used were acquired on 16 August 2016, 01 July 2017, and
16 June 2018. They were acquired during the winter and dry season using a Rikola hyperspectral
camera (Senop Oy, Oulu, Finland). The Rikola camera was onboard a UX4 UAV quadcopter (Nuvem
UAV, Presidente Prudente, Brazil). This camera produces 25 spectral bands ranging from 506 nm to
820 nm, which were acquired over a transect area, depicted in Section 2.1 (Figure 1, Table 1). Each
image datacube is acquired by the two CMOS sensors of the camera, both with 5.5 µm of pixel size and
frame format with 1017 pixels × 648 pixels.

Table 1. Spectral setting of the Rikola camera. λ represents the central wavelength and FWHM is the
full width at half maximum. Both values in nanometers (nm).

Band λ/FWHM Band λ/FWHM Band λ/FWHM Band λ/FWHM Band λ/FWHM

1 506.22/12.44 6 580.16/15.95 11 650.96/14.44 16 700.28/18.94 21 750.16/17.97
2 519.94/17.38 7 591.90/16.61 12 659.72/16.83 17 710.06/19.70 22 769.89/18.72
3 535.09/16.84 8 609.00/15.08 13 669.75/19.80 18 720.17/19.31 23 780.49/17.36
4 550.39/16.53 9 620.22/16.26 14 679.84/20.45 19 729.57/19.01 24 790.30/17.39
5 565.10/17.26 10 628.73/15.30 15 690.28/18.87 20 740.42/17.98 25 819.66/17.84

The flights were conducted 160 m high above the ground with a speed of 4 m·s−1, providing
images with a ground sample distance (GSD) equal to 10 cm, and forward and side overlaps higher
than 70% and 50%, respectively. After the image acquisition, the dark current correction was performed
with a dark image acquired before the flight campaign. In sequence, geometric processing was carried
out in the Agisoft PhotoScan software (version 1.3) (Agisoft LLC, St. Petersburg, Russia) using initial
interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) from the global
position navigation (GPS) receiver of the camera. Additionally, during the bundle block adjustment
process, three ground control points (GCPs) were used for each flight. The geometric process was
carried out for the bands centered at 550.39 nm, 609.00 nm, 679.84 nm, and 769.89 nm of each dataset,
being the remaining ones estimated by the method developed in [62,63]. The following products were
created during this process: refined EOPs and IOPs; a sparse point cloud and a digital surface model
(DSM) of the area.

In a subsequent step, we used the EOPs, IOPs, sparse point cloud and DSM of the area
for the radiometric block adjustment. This step is based on the methodology developed by
Honkavaara et al. [62,64] and aims to reduce illumination differences among images and to correct
them from the Bidirectional Reflectance Distribution Function (BRDF) effects. The radiometric process
was carried out in the radBA software [62,64] and uses common points among the images, the Sun
position (i.e., the Sun zenithal and azimuthal angles), and the incident and reflected angles of each
pixel. As the final product, we obtained the orthomosaics of each year radiometrically corrected.
Moreover, the empirical line [65] was applied to transform the digital numbers (DN) into reflectance
factor values. The empirical line parameters were calculated using three radiometric reference targets
colored in light-grey, grey and black. More details about radiometric block adjustment can be seen
in [17,62,64,66]. It is worth noting that from now on the hyperspectral orthomosaic will be referred to
as hyperspectral image.

2.3. Proposed Method

The proposed CNN method takes a hyperspectral image as input and computes the individual
tree positions. The hyperspectral image has 25 bands with w × h pixels each. The tree identification and
location are modeled as a 2D confidence map estimation, following the procedures related in [50,67].
The confidence map is a 2D representation of the likelihood of a tree occurring in each pixel of the
image. First, the hyperspectral images go through a band learning process before extracting the feature
map. This allows the method to improve its accuracy by learning the best band combination for
the trees detection. We included the Pyramid Pooling Module (PPM) [68] that uses global and local
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information to improve the estimation of the confidence map. Besides, we implemented a multi-stage
prediction that refines the confidence map to a more accurate prediction of the center of the trees.

Figure 2 presents our approach for tree detection and geolocation. The method starts with a
band-learning module that is responsible for learning m new bands from the hyperspectral image
(Figure 2b). Additionally, a feature map (Figure 2c) is extracted using the output volume of the
band-learning module. This feature map obtains global and local neighborhood information when
passing through the PPM (Figure 2d). The volume is then processed by a Multi-Stage Module (MSM)
(Figure 2e) with T stages to refine the tree detection. Finally, we obtain the trees’ positions (Figure 2f) at
the end of the method.
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Figure 2. Proposed method for tree detection. The first module (b) is responsible for learning m bands
from the input image (a). The initial part (c) obtains a feature map from the input image and it is
enhanced by the PPM (d). The resulting volume is used as input to the MSM (e). The T stages refine
prediction positions until trees (f) are detected.

The following sections detail the main modules of the proposed method: Section 2.3.1 shows
the band learning module; Section 2.3.2 presents the feature map and its enhancement with the PPM
module; The refinement of the confidence map by the MSM and the obtaining of the tree positions are
presented in Section 2.3.3.

2.3.1. Band Learning Machine Module

To improve the band selection process of our network, we propose an end-to-end band learning
module. This module receives a hyperspectral image with w × h pixels and 25 bands and learns m
filters with size 1 × 1 × 25 to generate an output image with dimensions w × h × m. Figure 3 illustrates
an example of the application of the last filter, represented by the yellow color. Each filter is convolved
through the input image (Figure 3a) with a stride of 1 pixel, creating a corresponding output volume
(Figure 3c). During training, each filter has its weights adjusted to detect the bands that have more
influence on the single-tree detection task. In this way, the layers that have more response in detecting
objects will be enhanced, while the others will be discarded in the process.
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2.3.2. Feature Map Extraction

The feature map is extracted using a CNN (Figure 2c), based on the VGG19 method [34], from the
hyperspectral image learned in the previous step (Section 2.3.1). Our CNN has eight convolutional
layers composed of 64, 128 and 256 convolutional filters with size 3 × 3 to consider spatial information.
After the second and fourth convolutional layers, we reduce the spatial volume size in half using the
max-pooling layer with a 2 × 2 window. In each convolutional layer, we applied a Rectified Linear
Units (ReLU) function.

To characterize global and local information from the image, we adopt the PPM [68]. This module
aims to make our method invariant to scale, which is important for detecting trees at different scales
and even growth stages. The PPM module (Figure 2d) receives the feature map and applies four
branches with max-pooling layers, resulting in four volumes with resolutions of 1 × 1, 2 × 2, 3 × 3, and
6 × 6. The general level, shown in orange shown in Figure 2d, creates a feature map that describes the
global context of the image while the other branch divides the feature map into subregions to better
characterize the local information. The features of each branch are upsampled to the same size as the
input feature map and are concatenated with the input feature map to form an improved description
of the image.

2.3.3. Tree Localization

The tree’s positions are located using a refined confidence map obtained by the MSM (Figure 2e).
The MSM estimates a confidence map from the feature map obtained in the last module (see Section 2.3.2)
and is composed of T refinement stages. The first stage contains three layers with 128 convolutional
filters of 3 × 3 size, one layer with 512 convolutional filters of 1 × 1 size, and the last layer with a single
convolutional filter that corresponds to the confidence map C1 of the first stage.

The T–1 final stage refines the positions predicted in the first stage, forming hierarchical learning
of the trees’ positions. In a stage t ∈ [2, 3, ..., T], the prediction returned by the previous stage Ct−1 and
the feature map from the PPM module is concatenated and used to produce a refined confidence map
C1. These stages have, in total, seven convolutional layers: five layers with 128 filters of 7 × 7 size; and
one layer with 128 filters of 1 × 1 size. The last layer has a sigmoid activation function so that each pixel
represents the probability of the occurrence of a tree (with values between [0, 1]). The remaining layers
have a ReLU activation function. Additionally, the use of the improved feature map at the entrance
of each stage allows multi-scale features, obtained from global and local context information, to be
incorporated into the refinement process.

Later, to avoid the vanishing gradient problem during the training phase, we adopted a loss
function at the end of each stage as shown in the following Equation (1).
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ft =
∑

p
‖Ĉt(p) −Ct(p)‖

2
2, (1)

where Ĉt and Ct are, respectively, the ground truth and the refined confidence maps of the location p at
stage t. The general loss functions are given by:

f =
∑T

t=1
ft, (2)

To train our approach, a confidence map Ĉt is generated as the ground truth for each stage t using
the annotations of the trees. The ground-truth confidence map is generated by placing a 2D Gaussian
kernel at the labeled tree centers. The Gaussian kernel has a standard deviation σt that controls the
spread of the peak. Our approach uses different values of σt for each stage t to refine the tree prediction
during each stage. The σ1 of the first stage is set to a maximum value σmax while the σT of the last
stage is set to a minimum value σmin. The σt for each intermediate stage is equally spaced between
[σmax, σmin]. During the early phase of our experiment, the usage of different σ helped to refine the
confidence map, improving its robustness.

The tree’s locations are then obtained from the last stage CT of the MSM module. For the tree
location we estimate the peaks (local maximum) of the confidence map by analyzing the 4-pixel
neighborhood of each given location of p. Thus, p = (xp, yp) is a local maximum if CT(p) > CT(v) for
all the neighbors v, where v is given by (xp ± 1, yp) or (xp, yp ± 1). An example of the tree location
from the confidence map peaks is shown in Figure 4.
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Figure 4. Example of the tree localization from a refined confidence map.

To avoid noise or low probability of occurrence of the positions p, a peak in the confidence map
is considered as an object only if CT(p) > τ. For this, we set a minimum distance δ to prevent the
detection of objects very close to each other. After a preliminary experiment, we used δ = 1 pixel and
τ = 0.35.

2.4. Experimental Setup

The images were split into patches with 256 × 256 pixels without overlapping. The patches were
randomly divided into training, validation and testing sets, in a proportion of 50%, 25%, and 25%,
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respectively. Figure 5 shows the images used to extract the training, validation and test sets in each year
(2016, 2017, and 2018) and Table 2 shows the number of samples. It is noted the different number of
samples for each year because of slight differences in the images acquisition. For training, we initialized
the first part weights of our network with pre-trained weights on ImageNet and applied a stochastic
gradient descent optimizer with a moment of 0.9. The validation set was used to adjust the learning
rate and the number of epochs, reducing the risk of overfitting in our method. After the adjustments,
the learning rate was set to 0.001 and the number of epochs was set to 100. The proposed approach
was implemented in Python on Ubuntu 18.04 operating system and used the Keras-Tensorflow API.
The workstation used for both training and testing has an Intel (R) Xeon (E) E3-1270\@3.80 GHz CPU,
64 GB memory and an NVIDIA Titan V graphics card, that includes a 5120 CUDA (Compute United
Device Architecture) cores and 12 GB of graphics memory. Lastly, to evaluate the performance of the
approaches, we adopted three metrics: precision, recall, and f-measure [69]. They were calculated for
the 311 tree samples (Table 2) which were not used in the previous steps.
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Table 2. Number of training, validation and test samples used in each experiment.

2016 2017 2018 Total

Training 106 174 175 455
Validation 81 112 112 305

Test 79 116 116 311

3. Results

3.1. Validation of the Parameters

We first evaluate the influence of the proposed method parameters using only the validation
images and reported the average f-measure of the three years. Parameters σmin, σmax and the number
of stages, responsible for the refinement task in the density map prediction, were evaluated in the
data displayed in Figure 6. From the f-measured shown in Figure 6a, σmin = 1 obtained the best
result. Smaller values in this graphic represent a small spread of the density maps’ peak around the
center of the trees, thus impairing their detection. On the other hand, higher values of σmin in the last
stage of our method returns a large spread that can cover more than one tree per area. In this sense,
only one tree would be detected instead of two, as an example. As shown in Figure 4, σmax may be
larger since it determines the density map of the first stage that is refined in the subsequent stages.
This parameter can be situated between 2.8 and 3.2, although the best value in the experiment was 3
(Figure 6b). The number of stages n ranged from 2 to 8 as shown in Figure 6c. We found that n = 6
achieved the highest overall f-measure. In this manner, the refinement step of our network used the
following parameters: σmin = 1, σmax = 3, and n = 6.
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The input images in the experiment have a total of 25 spectral bands. Our method can detect
how many of them contributed effectively to the tree detection task. We then evaluated the proposed
convolutional layer for learning m linear band combinations in Figure 7. The experiment showed
that the number of band combinations m = 5 reached the best f-measure of 0.939 against 0.892 when
considering all the 25 spectral bands. The data shows that adding more linear combinations does
not improve the results. These results confirm that the proposed layer appropriately combines which
bands should be considered while avoiding the correlation and the scarcity that hinder most deep
learning methods.
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Figure 8 shows an example of the m = 5 linear band combinations. As displayed, these 5 new
bands highlighted in blue the target of interest. The point in red represents the labeled ground-truth.
The values range from 0 (yellow) to 1 (blue), and our object of interest presents the highest values.
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3.2. Band Analysis

To determine the robustness of the band selection module as an initial step of our network,
we performed a comparison with our network baseline (i.e., every step beyond the feature map
extraction, Figure 2) and different inputs. One input consisted of all the 25 spectral bands, whereas the
other input was composed of spectral bands obtained through a PCA approach. It is also important to
emphasize that the results of this section were obtained from the test images, whereas the parameters
of the methods were estimated from the validation set. Additionally, the PCA contained 99. 27% of the
total information.

Table 3 displays the overall precision, recall, and f-measure for the test images in the different
scenarios described in the previous paragraph. By analyzing the precision values, it is evident that
the baseline of our method in conjunction with the PCA spectral bands returned higher values when
in comparison with the baseline plus all 25 bands. These precision values indicate that they do not
have many false positives (i.e., do not detect trees incorrectly). When the recall values are analyzed,
the proposed method with the band selection module is better than both approaches. This indicates
that the proposed method detects most trees while others fail to detect them in the same manner.

Table 3. Comparative results between the proposed method and PCA in the test images.

Method Precision Recall F-Measure

Baseline + 25 bands 0.898 0.881 0.889
Baseline + PCA (5 bands) 0.979 0.871 0.921

Proposed method 0.973 0.945 0.959

When considering the f-measure, viewed as the harmonic mean of precision and recall, it is
observed that the use of all 25 bands was exceeded by the PCA (from 0.889 to 0.921). Compared to
the baseline with the 25 spectral bands, the proposed method using five linear band combinations
significantly improved the f-measure; from 0.889 to 0.956. Besides, the supervised reduction of bands
proposed here proved to be superior to the PCA method, with an increase of 3.8% in f-measure (from
0.921 to 0.959) and 7.4% in recall (from 0.871 to 0.945).

Figure 9 shows a qualitative view of the results of tree detection for the test images obtained in
the 2016 and 2018 years. In Figure 9, detected trees have a yellow circle (meaning true-positive) while
undetected trees have a red circle (false-negative). The yellow dots indicate incorrect detection by both
methods (false-positive). By implementing all bands, the network returned the worst results due to the
redundancy of spectral information; corroborating with the Hughes phenomenon. The PCA improved
the detection of trees (Figure 9b) although it failed to detect a portion of them, which explains the low
recall values when compared to the proposed method. As showcased here, the proposed method was
able to detect the majority of trees correctly (Figure 9c).
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method for the 2016 and 2018 images. The yellowish trees were correctly detected, while the redder
ones were undetected.

4. Discussion

The methodological contribution of our CNN based method is evident when comparisons, both
quantitatively and qualitatively, are made (Figure 9 and Table 3). The implementation of a band
selection module within our network’s architecture not only reduces the amount of noise provoked
by the dimensionality of hyperspectral data but also achieved better performance in the proposed
task. A comparison with the PCA method, which is a common practice to reduce the number of bands
needed, demonstrates the importance of adopting a method that considers the spectral information of
the labeled object to select the right number of bands. This feature is not a common procedure for
deep neural networks to consider within their architectures, and future methods could benefit from
the module proposed here.

Concerning the high-density scene, the remaining process of our network already proved to
be effective against other conditions [50]. Nonetheless, this was the first time that we have used a
heavily-dense forested environment and hyperspectral data. The PPM module and the MSM stage
refinement are important phases since they produce a high-quality density map containing the object’s
location. This returns high predictions even when trees are located near each other. In this sense,
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these modules are important as they enable our method to predict both overlapping and isolated trees
(Figure 9c).

Bearing the results of the proposed network baseline in the detecting Syagrus romanzoffiana, it is
highlighted the high f-measure value achieved (0.959 as shown in Table 3). This palm tree is essential to
forest regeneration [58] and its accurate identification can improve the monitoring of forest successional
stages. Additionally, Syagrus romanzoffiana identification can be applied to fauna studies, such as the
one related to tapirs monitoring since this mammal is one of the main consumers of this palm tree
fruits and spread its seeds by the feces, contributing to the tree species dissemination [55,61].

Moreover, besides the developed method, the Syagrus romanzoffiana characteristics may assist
this tree species identification. Results from Miyoshi et al. [17] showed the higher reflectance factor
of this tree species when compared with the other seven tree species belonging to the transect area,
especially in the near-infrared region of the electromagnetic spectrum. In this region, the vegetation
response is mainly affected by the leaf’s cell structure [70] and is an important region to tree species
identification [71,72]. Beyond that, there is the unique crown spatial distribution of Syagrus romanzoffiana.
Its crown shape is like a star, while the other tree species has umbrella, oval, broad, or irregular shapes
among others, not counting the difference in the existence of different layers in these crowns [17].

Lastly, when comparing the results with different researches that applied deep learning, it is
noticed that they are consistent with ours. Sothe et al. [23] showed a better performance of CNN than
SVM and RF when identifying tree species from the ombrophilous dense forest. Safonova et al. [24]
found values of f-measures up to almost 93% when applying data augmentation and CNN in RGB
images. Furthermore, Nezami et al. [22] also achieved high precision and recall values (i.e., higher than
0.9) when identifying three tree species using a 3D-CNN. Using the Residual Neural Network (ResNet)
and RGB images acquired with UAV over three years, Natesan et al. [73] achieved an average f-measure
value of 80% to identify three types of pine trees. The use of deep learning in RGB images is also shown
by Santos et al. [32] achieving an average precision of 92% in Dipteryx alata tree species identification.
These accuracies demonstrate that our method, with an f-measure equal to 0.959 (Table 3), was also
able to return state-of-the-art performance for the detection of tree species in a forest environment.

5. Conclusions

In this paper we presented a novel deep learning method, based upon a CNN architecture,
to deal with high dimensionality data of hyperspectral UAV-based images to detect single-tree species.
Our approach was constructed with a band selection feature in its initial step. This implementation
within the network proved to be appropriate to deal with high dimensionality and was superior when
compared with the baseline method considering all the 25 spectral bands and the PCA approach.
Our CNN architecture is also followed by a feature map extraction and a multi-stage model refinement
of the confidence map. The constructed architecture considers the possibility of every pixel in the image
to be correspondent with an actual tree-species. This was important to produce accurate results in a
highly-dense scene. The proposed method returned a state-of-the-art performance for detecting and
geolocating trees in UAV-based hyperspectral images, with an f-measure, precision and recall values
equal to 0.959, 0.973, and 0.945 respectively. Differently from other current deep neural networks, our
method estimates a combination of hyperspectral bands that most contribute to the mentioned task
within the network’s architecture. The approach demonstrated here is important to deal with forest
environment monitoring while providing accurate identification of single-trees.
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