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Abstract: This study simulates annual net primary production (NPP) of forests over peninsular Spain
during the years 2005–2012. The modeling strategy consists of a linked production efficiency model
based on the Monteith approach and the bio-geochemical model Biome-BGC. Recently produced
databases and data layers over the study area including meteorological daily series, ecophysiological
parameters, and maps containing information about forest type, rooting depth, and growing stock
volume (GSV), were employed. The models, which simulate forest processes assuming equilibrium
conditions, were previously optimized for the study area. The production efficiency model was used
to estimate daily gross primary production (GPP), while Biome-BGC was used to simulate growth
(RG) and maintenance (RM) respirations. To account for actual forest conditions, GPP, RG, and RM

were corrected using the ratio of the remotely-sensed derived actual to potential GSV as an indicator
of the actual state of forests. The obtained results were evaluated against current annual increment
observations from the Third Spanish Forest Inventory. Coefficients of determination ranged from
0.46 to 0.74 depending on the forest type. A simplified dataset was produced by applying regular
increments in air temperature and reductions in precipitation to the original 2005–2012 daily series
with the goal of covering the range of variation of the climate projections corresponding to the
different climate change scenarios reported in the literature. The modified meteorological series were
used to simulate new GPP, RG, and RM through Biome-BGC and corrected using GSV. Precipitation
was confirmed as the main limiting factor in the study area. In the regions where precipitation was
already a limiting factor during 2005–2012, both the increment in air temperature and the reduction
in precipitation contributed to a reduction of NPP. In the regions where precipitation was not a
limiting factor during 2005–2012, the increment in air temperature led to an increment of NPP. This
study is therefore relevant to characterize the growth of Spanish forests both in current and expected
climate conditions.

Keywords: forest; NPP; Monteith; Biome-BGC; Spain

1. Introduction

The signature of the Kyoto Protocol has renewed interest in the study of forests. Forests act as
potential carbon sinks for the mitigation of climate change impacts, but in turn, they are also affected
by climate. Specifically, Mediterranean forests are very sensitive to climate change effects. According
to [1], an increment of annual mean air temperature of 3–4 ◦C and a reduction of annual precipitation
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of 20% would lead to a decrease in photosynthesis and a decline of biomass accumulation during the
current century. In this context, the net primary production (NPP) of terrestrial ecosystems is a variable
that can reflect these changes, and its monitoring becomes key to apply the needed adaptation and
mitigation actions. NPP is a function of gross primary production (GPP), the flux of carbon fixed by
plants through photosynthesis, minus plant autotrophic respiration (RA), the flux of carbon released
back to atmosphere due to internal plant metabolism. Therefore, NPP quantifies the flux of carbon
stored by plants in their structure.

Three main methods used for the estimation of vegetation carbon fluxes and storage are
(1) field measurements, (2) remote sensing, and (3) bio-geochemical modeling, which are all briefly
described below.

(1) Field measurements are the most accurate and are usually considered as the reference. The
eddy covariance (EC) technique allows the estimation of net ecosystem carbon exchange (defined as
NPP minus heterotrophic respiration) and total respiration from spectral and micrometeorological
continuous measurements [2]. However, it is a site-specific method that only accounts for several
hundreds of squared meters around the measurement site. For its best functioning, the required local
conditions include flat upwind terrain and lack of horizontal air mass movements. Thus, it is not
particularly useful for the study of spatial patterns. Forest inventories (both at regional and national
scales) provide periodic estimates of forest attributes such as volume and biomass [3], from which
carbon storage can be estimated and categorized by forest type, species, and for different administrative
units (e.g., province, region, and state). This methodology can be applied at large scales, but it is
expensive to implement in terms of invested resources and time [4]. For example, in the particular case
of the study area (peninsular Spain, see Section 3), only one national inventory is performed every
10 years [5].

(2) Remote sensing data derived from measurements of radiation reflected or emitted by the Earth’s
surface, which are available over extensive areas, allow carbon fluxes and storage to be estimated [6,7].
Several efforts to estimate GPP have recently been made in the study area [8–10] using the Monteith
approach [11], but the estimation of NPP is more problematic due to the difficulty in the estimation of
RA [12,13]. Optical data for the estimation of carbon storage are available at a suitable frequency and
globally, but they suffer from saturation of the signal and the conditions of the atmosphere [4]. Radar
data are not affected by atmospheric conditions but also suffer from signal saturation, and the complex
processing needed for their use is problematic in topographically rugged areas [14].

(3) Bio-geochemical models such as Biome-BGC [15,16] can simulate vegetation processes
(including carbon fluxes and storage) and have been recently applied in Mediterranean regions
with success [17–19]. These models, however, require a large amount of input data, which can be
classified into ecophysiological parameters and drivers (site physical data and meteorological time
series). Moreover, Biome-BGC assumes that the considered ecosystem is in equilibrium with its
surroundings, and its outputs must be corrected to account for actual ecosystem conditions. Such
correction can be carried out by the use of growing stock volume (GSV) [20], which is the volume over
bark of all living trees with a diameter at breast height (DBH) ≥ 75 mm [21].

Previous studies have produced the data needed to use bio-geochemical models in the study
area despite the difficulty of obtaining them at a spatially distributed level. The methodology for the
production of the principal daily meteorological series (minimum and maximum air temperature,
precipitation, and incoming solar radiation) by means of ordinary kriging and artificial neural networks
(ANN) was developed in [22,23]. Uncertainties of 0.93 ◦C, 1.94 mm, and 3.16 MJ m-2 d-1 were
respectively obtained for air temperature, precipitation, and incoming solar radiation. Other required
meteorological daily series (day length, daylight air temperature, humidity) can be obtained through
the use of microclimate simulation models, such as MT-CLIM [24]. Ecophysiological parameters for
the main vegetation types in Mediterranean areas were set by [17] taking into account the typical
water stress effect. Soil texture maps (with standard deviation generally below 4%, although it can
rise to ~100% in mountainous terrain) [25], land cover maps (with geometrical error ≤ 3 m) [26], and
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digital elevation models [27] are also available for the study area. A rooting depth map was obtained
as a result of a calibration of Biome-BGC in the study area [19]. The rooting depth is the depth at
which plants are able to grow roots [15] and is a crucial input in Biome-BGC for the simulation of
the site water balance. A GSV map with RMSE = 64 m3 ha-1 was produced for the study area from a
combination of remote sensing and forest inventory data [28].

Following the previous research efforts described above, and based on the capacity of NPP to
track the changes in vegetation due to the climate change, the objectives of the present study were:
(1) to apply a modeling strategy to assess forest annual NPP at the peninsular Spain scale using
remote sensing and ancillary data and (2) to simulate forest annual NPP in future climate conditions
(increases in air temperature and reductions in precipitation). The modeling strategy consisted of the
combination of remote sensing and bio-geochemical modeling (Monteith approach and Biome-BGC)
driven by information layers currently available over peninsular Spain and mostly derived from remote
sensing data. It was applied to the five main forest ecosystems in the study area and validated against
forest inventory observations. The simulation of future NPP was based on Biome-BGC simulations
using meteorological time series modified on the basis of future climate scenarios.

2. Modeling Strategy

To assess forest NPP, a modeling strategy (schematically summarized in Figure 1) that combines
two models was applied (for the description of the data involved in the calculation of the different
variables, see Section 3.3). The first model was a Monteith-like production efficiency model optimized
for the study area [8], which was used to calculate annual forest GPP at 1-km spatial resolution from
daily estimates. The model was driven by photosynthetically active radiation (PAR), the fraction of
PAR absorbed by the vegetation canopy (f APAR), precipitation, and air temperature:

GPP = εmax

N∑
i=1

PARi fAPAR,iεW,iεT,i (1)

where the subindex i refers to the day of year, while N is the number of days in the year. The maximum
light use efficiency εmax was set as 1.2 g MJ−1. PAR was calculated as 46% of incident global solar
radiation [29]. f APAR was computed according to the Roujean and Bréon algorithm [30]. Red (ρRED)
and near-infrared (ρNIR) reflectances were first calculated from bidirectional reflectance distribution
function (BRDF) parameters k0, k1, and k2 for an optimal angular geometry in the solar principal plane.
f APAR was calculated as a linear function of the renormalized difference vegetation index

RDVI = (ρNIR − ρRED)/(ρNIR + ρRED)1/2 (2)

εW is the water stress coefficient (CWS) as used in [31] that accounts for short-term water stress

CWS = (PRE/PET + 1)/2 (3)

where precipitation (PRE) and potential evapotranspiration (PET, calculated from air temperature and
incoming global solar radiation through the Jensen-Haise equation [32]) are accumulated for 60 days.
εT is the TMIN_scalar used in the MOD17 algorithm [33] to account for thermal stress caused by low
temperatures: a linear ramp function of daily minimum air temperature with thresholds depending on
the vegetation type.

The second model was Biome-BGC [15,16], a bio-geochemical model that, based on daily
meteorological data, site information (i.e., soil, vegetation, and site conditions) and parameters
describing the ecophysiological features of the vegetation, is able to simulate fluxes and storage of
water, carbon, and nitrogen at different spatial scales in terrestrial ecosystems. In particular, Biome-BGC
identifies a quasi-equilibrium condition (the so-called climax) with the local ecoclimatic situation, thus
quantifying the initial amounts of all carbon and nitrogen pools. Version 4.2 is available at the Numerical
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Terradynamic Simulation Group (NTSG) website (http://www.ntsg.umt.edu/project/biome-bgc.php)
and was used together with a set of ecophysiological parameters calibrated for the considered forest
types [17]. More information on the use and setup of Biome-BGC in the study area can be found in [19].
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Figure 1. Flowchart of the modeling strategy to assess annual forest net primary production (NPP)
described in Section 2. Input data (with yellow background) are described in Section 3.3. Input data
with purple borders were derived from remotely sensed data. The quality assessment is described in
Section 4.1.

NPP is the difference between GPP and RA, with RA equal to the sum of growth (RG) and
maintenance (RM) respirations. Since Biome-BGC assumes that the considered ecosystem is in
equilibrium with its surroundings, its outputs must be corrected to account for actual ecosystem
conditions. Note that Equation (1) estimates the GPP of all vegetation growing in each pixel. Therefore,
it also must be corrected to account only for forest GPP. The correction applied in the present study
was based on the distance to climax of the ecosystems concept [34], from which it is deduced that ratios
of actual to potential tree cover or GSV are representative of the ecosystem development status or, in
other words, its distance to climax [20]. The correction to the simulated carbon fluxes was carried out
following the methodology explained in [20]:

NPP = f (GPP − RG) − v RM (4)

where GPP is estimated by Equation (1), while f and v are, respectively, the ratios of actual to potential
tree cover and GSV and are calculated as follows:

f = (1 − e−v LAI)/(1 − e−LAI) (5)

and
v = 50 GSV ρ C/σ (6)

where LAI (m3 m−3) and σ (g m−2) are annual maximum leaf area index and dead stem carbon
simulated by Biome-BGC, ρ is the basic wood density, C is a biomass expansion factor, and the 50 factor
accounts for the transformation from carbon mass to dry mass (2 kg kg−1) and for unit conversion
to m3 ha−1.

http://www.ntsg.umt.edu/project/biome-bgc.php


Remote Sens. 2020, 12, 1356 5 of 19

3. Study Area and Data

3.1. Peninsular Spain

Peninsular Spain, located between −10◦ and 3◦ longitude and between 36◦ and 40◦ latitude, is a
heterogeneous and large region of Southwestern Europe. The climate ranges from Atlantic to semiarid
following a NW−SE gradient. Annual precipitation ranges from more than 2000 mm to less than
200 mm following the same gradient. The elevation ranges from sea level to 3479 m. These features
favor the existence of a great range of different ecosystems [35,36].

Human activity has also had an impact in the study area [37], resulting in a great heterogeneity in
Spanish forest types and characteristics. Of the total area, 55% is covered by wooded lands, while 37%
is covered by tree species [38]. Spanish forests can be grouped into five main types, i.e., evergreen
broadleaved forest (EBF), low-altitude deciduous broadleaved forest (LDBF), high-altitude deciduous
broadleaved forest (HDBF), low-altitude evergreen needleleaved forest (LENF), and high-altitude
evergreen needleleaved forest (HENF) [19]. Quercus ilex is the most widespread broadleaved tree
species (total broadleaves occupy 46% of the tree-covered area), while Pinus halepensis is the most
widespread needleleaved one (total needleleaves occupy 34% of the tree-covered area).

3.2. Reference Forest Observations

Spanish forests’ field data were derived from the third Spanish Forest Inventory (NFI3), performed
during 1997–2007 [38]. A total of 92,340 plots distributed in a regular 1 km × 1 km grid were surveyed
in the study area. Each plot consists of four concentric circular subplots with 5 m, 10 m, 15 m, and 25 m
radii. Trees with 75 mm ≤ DBH < 125 mm, 125 mm ≤ DBH < 225 mm, 225 mm ≤ DBH < 425 mm, and
DBH ≥ 425 mm were measured respectively in each subplot at a breast height of 130 cm. For each of
the five forest types considered in the present study, a subset of NFI3 plots was selected considering
the spatial and species homogeneity and the availability of site information. Specifically, only NFI3
plots with Quercus ilex, Quercus robur, Fagus sylvatica, Pinus pinea, and Pinus nigra were selected for
EBF, LDBF, HDBF, LENF, and HENF, respectively. In addition, it was imposed that the 9 pixels in a
3 × 3-pixel window of a forest type map (see Section 3.3) centered in each plot presented the same
forest type (except for LDBF—at least 3 of 9—and LENF—at least 8 of 9—due to plot availability). For
each plot, GSV and current annual increment (CAI) observations of the four subplots were added to
obtain values representative of the whole plot. Table 1 summarizes the data used per forest type.

Table 1. Summary information about the used third Spanish Forest Inventory (NFI3) plots per forest
type. Growing stock volume (GSV) and current annual increment (CAI) are averaged for all plots.

Forest Type Species Number of Plots GSV (m3 ha−1) CAI (m3 ha−1 a−1)

EBF Quercus ilex 266 45 1.06
LDBF Quercus robur 182 122 4.10
HDBF Fagus sylvatica 255 197 4.57
LENF Pinus pinea 122 71 2.97
HENF Pinus nigra 307 100 3.52

3.3. Data Used for the NPP Modeling

Most datasets used for the current NPP modeling were produced during previous research
exercises. The SIOSE (Land Cover and Use Information System of Spain) land cover database
was provided by©Instituto Geográfico Nacional through http://www.siose.es/web/guest/descargar.
It consists of a cartographic scale 1:25000 polygon database generated by photointerpreting and
digitalizing reference data, which included SPOT5 and Landsat-5 TM images together with local
ground ancillary data [26,39]. The land cover data contains the percentage of surface occupied by each
of the present classes in each polygon. With the help of the global 3 arc second digital elevation model
from the Shuttle Radar Topography Mission [27] (downloaded from http://edcftp.cr.usgs.gov/pub/data),

http://www.siose.es/web/guest/descargar
http://edcftp.cr.usgs.gov/pub/data


Remote Sens. 2020, 12, 1356 6 of 19

the original legend of the land cover data was regrouped into the five forest types mentioned in Table 1
using an 800-m threshold to separate low- and high-altitude classes [19]. The resulting forest type map
is shown in Figure 2a.

Daily ground measurements of precipitation, and minimum and maximum air temperature were
provided by the Spanish Meteorological Agency (www.aemet.es) from ~400 meteorological stations
distributed throughout the study area. Ordinary kriging was used to interpolate these data and obtain
daily 1-km spatial resolution maps during the 2005–2012 period. These maps were used as inputs
in MT-CLIM [24] to simulate daylength, daylight average partial pressure of water vapor, and daily
average air temperature. Version 4.3 of the code was used and is available at the NTSG website
(http://www.ntsg.umt.edu/project/mt-clim.php).

Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 20 

 

were calculated from Landsat spectral reflectances including time metrics, texture metrics, and 
vegetation indices. The most important predictors were identified by means of a guided regularized 
random forests algorithm (e.g., [43,44]) and used to generate the GSV map. Google Earth Engine [45] 
was used for data management. Detailed methods on the production of this map can be found in [28]. 
The 30-m spatial resolution GSV map was aggregated to 1-km spatial resolution (Figure 2c) for 
coherence with the other datasets used in the present study. 

 Figure 2. Cont.

www.aemet.es
http://www.ntsg.umt.edu/project/mt-clim.php


Remote Sens. 2020, 12, 1356 7 of 19Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 20 

 

 

Figure 2. (a) Forest type map of peninsular Spain. OSA, NC, EBF, LDBF, HDBF, LENF, and HENF 
refer respectively to out of the study area, non-classified, evergreen broadleaved forest, low altitude 
deciduous broadleaved forest, high altitude deciduous broadleaved forest, low altitude evergreen 
needleleaved forest, and high altitude evergreen needleleaved forest. (b) Average annual (period 
2005-2012) forest gross primary production (GPP) obtained using Equation (1). (c) Forest GSV 
produced as summarized in Section 3.3 [28] and aggregated at 1-km spatial resolution. 

4. Data Processing 

4.1. Simulation of Forest NPP in Current Condition 

The NPP modeling strategy described in Section 2 was applied at a spatial resolution of 1 km 
and a daily temporal scale for the study period (2005-2012) using the inputs described in Section 3. 
In Equation (4), two GPPs were used: the one estimated by the production efficiency model (GPPPEM, 
Figure 2b) and the one simulated by Biome-BGC (GPPBGC) [19], which also simulated RG and RM. In 
Equation (6), the GSV map and the data reported in Table 3 [46] were used. 

Table 3. Basic density (ρ), biomass expansion factor (C), and stem carbon allocation ratio (D) for the 
calculation of potential GSV and CAI [46]. 

Forest type ρ (Mg m−3) C (m3 m−3) D 
EBF 0.70 1.45 0.47 

LDBF 0.69 1.33 0.45 
HDBF 0.61 1.36 0.45 
LENF 0.53 1.53 0.42 
HENF 0.38 1.31 0.42 

The NPP estimated by the two methods was assessed for the pixels containing the NFI3 plots 
indicated in Table 1. For each of these pixels, a reference annual NPP was calculated from NFI3 CAI 
as 

NPPNFI3 = 50 CAI ρ C / D (7) 

Figure 2. (a) Forest type map of peninsular Spain. OSA, NC, EBF, LDBF, HDBF, LENF, and HENF refer
respectively to out of the study area, non-classified, evergreen broadleaved forest, low altitude deciduous
broadleaved forest, high altitude deciduous broadleaved forest, low altitude evergreen needleleaved
forest, and high altitude evergreen needleleaved forest. (b) Average annual (period 2005–2012) forest
gross primary production (GPP) obtained using Equation (1). (c) Forest GSV produced as summarized
in Section 3.3 [28] and aggregated at 1-km spatial resolution.

SEVIRI products LSA-201 (downward surface shortwave flux estimated every 30 min, MDSSF)
and LSA-203 (daily downward surface shortwave flux, DIDSSF) [40] for the period 2007–2012 were
acquired from the LSA-SAF server (http://landsaf.meteo.pt). The images were reprojected to a regular
longitude/latitude 1-km spatial resolution grid. MDSSF was used to calculate DIDSSF when it was
unavailable. Incoming global solar radiation was obtained by applying ANN to the abovementioned
air temperature and precipitation maps [22] and was used to fill DIDSSF gaps and to calculate DIDSSF
for the years 2005 and 2006. To apply the gap-filling procedure, a relationship was used between the
two datasets, which were previously validated [22,23].

The main ecoclimatic features of the five Spanish forest types derived from the datasets exposed
above are summarized in Table 2.

Table 2. Descriptive information of the forest types considered in the present study 1.

Forest Type h (m) T (◦C) Rg (MJ m−2) PRE (mm) PET (mm)

EBF 584
(335)

14.53
(1.97)

5725
(666)

711
(300)

1193
(235)

LDBF 520
(186)

12.73
(0.97)

4863
(524)

1084
(307)

910
(139)

HDBF 1099
(205)

11.48
(1.19)

5272
(420)

850
(267)

936
(118)

LENF 484
(223)

14.38
(1.68)

5586
(635)

714
(360)

1153
(209)

HENF 1198
(290)

12.53
(1.54)

5742
(348)

604
(183)

1089
(165)

1 h is the elevation from sea level, T is the average mean annual air temperature, Rg is the average annual
incoming global solar radiation, PRE is the average annual precipitation, and PET is the average annual potential
evapotranspiration. Averages refer to the period considered in the present study (2005–2012) and were calculated
from the datasets described in Section 3.3. Standard deviations are expressed between brackets.

http://landsaf.meteo.pt
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MODIS products MCD43A1 and MCD43A2 [41] for the period 2005–2012 were retrieved from
the online Reverb, courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center,
USGS/Earth Resources Observation and Science Center, Sioux Falls, South Dakota (reverb.echo.nasa.
gov). MCD43A1 is a 500-m spatial resolution 8-day composite containing the BRDF parameters
k0, k1, and k2. f APAR was computed through the methodology reported in [30] from the BRDF
parameters contained in MCD43A1 images (see Section 2), which were previously reprojected to a
regular latitude/longitude 1-km spatial resolution grid. A noise-reduction and gap-filling method
dependent on the quality of the measurements [42] was applied, and the 8-day f APAR was linearly
interpolated to obtain daily images.

Soil texture (clay, sand, and silt content) maps [25] were downloaded from the European
Soil Database (http://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties) and
reprojected to regular longitude/latitude 1-km spatial resolution grids comprising the study area.

A 1-km spatial resolution rooting depth map was obtained from a calibration of Biome-BGC in the
study area. Daily GPP was first calculated using a production efficiency model optimized for the study
area [8] in four sites where EC towers were placed. Several daily GPP series were also simulated using
Biome-BGC for the same sites and varying the rooting depth. Both series were compared, and the
optimum rooting depth was chosen as the one that resulted in the minimum root mean square error
between them. After ascertaining that this methodology improved the accuracy of GPP simulated
using Biome-BGC by comparing to EC-derived GPP, the methodology was extended to the whole
study area and the rooting depth map was obtained. Detailed methods on its production can be found
in [19]. Note that rooting depth used by Biome-BGC does not indicate depth to bedrock. Instead, it
refers to an effective soil depth defined as the depth at which plants are able to grow roots [15].

A 30-m spatial resolution GSV map was obtained from the combination of around 50000 NFI3
plot-level GSV estimations and a multitemporal Landsat dataset (~8000 Landsat-5 TM and Landsat-7
ETM+ scenes covering the study area and the NFI3 period, 1997–2007). A total of 805 predictors were
calculated from Landsat spectral reflectances including time metrics, texture metrics, and vegetation
indices. The most important predictors were identified by means of a guided regularized random
forests algorithm (e.g., [43,44]) and used to generate the GSV map. Google Earth Engine [45] was used
for data management. Detailed methods on the production of this map can be found in [28]. The 30-m
spatial resolution GSV map was aggregated to 1-km spatial resolution (Figure 2c) for coherence with
the other datasets used in the present study.

4. Data Processing

4.1. Simulation of Forest NPP in Current Condition

The NPP modeling strategy described in Section 2 was applied at a spatial resolution of 1 km and a
daily temporal scale for the study period (2005–2012) using the inputs described in Section 3. In Equation
(4), two GPPs were used: the one estimated by the production efficiency model (GPPPEM, Figure 2b)
and the one simulated by Biome-BGC (GPPBGC) [19], which also simulated RG and RM. In Equation
(6), the GSV map and the data reported in Table 3 [46] were used.

Table 3. Basic density (ρ), biomass expansion factor (C), and stem carbon allocation ratio (D) for the
calculation of potential GSV and CAI [46].

Forest Type ρ (Mg m−3) C (m3 m−3) D

EBF 0.70 1.45 0.47
LDBF 0.69 1.33 0.45
HDBF 0.61 1.36 0.45
LENF 0.53 1.53 0.42
HENF 0.38 1.31 0.42

reverb.echo.nasa.gov
reverb.echo.nasa.gov
http://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-soil-properties
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The NPP estimated by the two methods was assessed for the pixels containing the NFI3 plots
indicated in Table 1. For each of these pixels, a reference annual NPP was calculated from NFI3 CAI as

NPPNFI3 = 50 CAI ρ C/D (7)

D being the stem carbon allocation ratio (Table 3), and the 50 factor accounting for both the unit
conversion to m3 ha−1 and the transformation from carbon mass to dry mass (2 kg kg−1). Annual NPP
was calculated for the same locations following the methodology reported in Section 2, but GSV from
NFI3 was used instead of the GSV map to test the modeling strategy in the best possible conditions.
The calculated NPP was compared to NPPNFI3 by means of the following statistics calculated by forest
type: coefficient of determination (R2), mean bias error (MBE), and root mean square error (RMSE).

4.2. Simulation of Forest NPP in Future Condition

The simulation of GPP, RG, and RM through the use of Biome-BGC (as indicated in Section 4.1) was
driven by different daily precipitation and minimum and maximum air temperature datasets, which
led to different daylight average partial pressure of water vapor, and daily average air temperature
through the use of MT-CLIM.

A large dataset of future climate projections over the study area is available through https:
//www.adaptecca.es. It contains, among others, projections of daily maximum and minimum air
temperature and precipitation for different climate change scenarios (RCP 4.5 and RCP 8.5) at both
spatial and station levels. However, they are obtained from different models resulting in big differences
among the produced datasets. Moreover, the spatial resolution of the spatialized projections (11 km) is
too coarse compared to the one used in the present study (1 km), while projections at station-level
are restricted to the locations where meteorological stations from the Spanish Meteorological Agency
are placed. Furthermore, climatic projections generally present great uncertainties [47], especially for
precipitation. Therefore, to address the range of variation of the climate projections corresponding to
the different climate change scenarios (e.g., no mitigation, soft mitigation, and hard mitigation) that can
be found in the literature, a simplified dataset of possible future changes in meteorological variables
(i.e., daily precipitation and maximum and minimum air temperature) was generated for use in the
present study.

The original 2005–2012 series were taken as reference and the same variation was applied to
each value in each series. In the case of air temperature, absolute increments (∆T) of 1 ◦C, 2 ◦C, 3 ◦C,
and 4 ◦C were applied to both minimum and maximum series. In the case of precipitation, relative
variations were applied in the form of reductions (δPRE) of 10%, 20%, 30%, and 40% of its reference
value. These variations were chosen to take into account climatic projections over the study area from
both global and regional climatic models for different CO2 emission scenarios [47]. The four modified
air temperature series, the four modified precipitation series, and the reference series were combined
to obtain 24 new 8-year sets of simulated daily GPP, RG, and RM through Biome-BGC. Finally, the
corresponding NPP series were calculated for each set using Equation (4) fed with the same GSV as in
the current condition, i.e., from the GSV map.

5. Results

5.1. NPP in Current Condition

The assessment of estimated NPP per forest type is illustrated by the scatterplots in Figure 3.
The largest NPPNFI3 explained variance amongst forest types was obtained for EBF with almost 70%
(R2 = 0.69); ~60% (R2 = 0.60, R2 = 0.62, and R2 = 0.59 respectively) was obtained for LDBF, HDBF, and
LENF; and slightly less than 50% (R2 = 0.46) for HENF. Small scattering was observed for EBF except
for a great NPPNFI3 plot, which was heavily underestimated. A general overestimation, more notable
for great NPP values, was also observed. LDBF and HDBF exhibited similar behavior: estimates
generally followed the 1:1 line until around 300 g m−2 a−1, where scattering appeared (more for LDBF),

https://www.adaptecca.es
https://www.adaptecca.es
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and they saturated at around 700 g m−2 a−1. LENF presented a constant underestimation, but with
small scattering. HENF exhibited more scattering than LENF, but estimates followed the 1:1 line until
around 200 g m−2 a−1, where saturation appeared.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 20 
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The accuracy statistics resulting from the NPP assessment are reported in Table 4. The greatest
difference between the two NPPEST to explain the NPPNFI3 variance was found for LENF with
10 percentage points (pp) (from R2 = 0.59 with GPPPEM to R2 = 0.49 with GPPBGC). Around half this
difference was found for EBF, LDBF, and HENF (respectively from R2 = 0.69, R2 = 0.60, and R2 = 0.46
with GPPPEM to R2 = 0.74, R2 = 0.56, and R2 = 0.51 with GPPBGC), while only 2 pp were found for HDBF
(from R2 = 0.62 with GPPPEM to R2 = 0.60 with GPPBGC). More of the NPPNFI3 variance was explained
for broadleaved forests than for needleleaved forests independently of the used GPP. According to the
calculated MBE, NPP was overestimated in broadleaved forests but underestimated in needleleaved
forests. In addition, the MBE obtained for HDBF and LENF was an order of magnitude greater than for
the rest of the forest types. RMSE was high for all forest types compared to their corresponding mean
NPPNFI3 values (114 g m−2 a−1, 418 g m−2 a−1, 421 g m−2 a−1, 287 g m−2 a−1, 209 g m−2 a−1 respectively
for EBF, LDBF, HDBF, LENF, and HENF).
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Table 4. Statistics resulting from the comparison between estimated (NPPEST) and reference (NPPNFI3)
NPP. NPPEST was calculated using Equation (4). NFI3 GSV was used in Equation (6). GPPPEM was
estimated using Equation (1). GPPBGC was simulated using Biome-BGC.

Forest Type
R2 MBE (g m−2 a−1) RMSE (g m−2 a−1)

with
GPPPEM

with
GPPBGC

with
GPPPEM

with
GPPBGC

with
GPPPEM

with
GPPBGC

EBF 0.69 0.74 60 45 100 78
LDBF 0.60 0.56 64 20 150 150
HDBF 0.62 0.60 120 140 160 190
LENF 0.59 0.49 −170 −180 210 230
HENF 0.46 0.51 −66 −75 140 140

Figure 4a,b show, respectively, the average annual forest NPP calculated using Equation (4) with
GPPPEM and with GPPBGC. The spatial pattern was the same in both cases: NPP was larger in the NW
and decreases towards the SE, except in the most southern and the most eastern (this one located in the
north too) regions, where NPP was also great. NPP calculated with GPPBGC was generally smaller
than NPP calculated with GPPPEM. Table 5 summarizes the basic statistics of the mentioned GPPs
and their corresponding NPPs per forest type. GPPPEM maxima are greater than GPPBGC maxima for
broadleaved forest, but the opposite relationship occurred for needleleaved forests. GPPPEM means
were greater than GPPBGC ones for all forest types. NPP maxima and means exhibited a similar
behavior. However, these differences do not seem very relevant, especially the differences in the
mean values.
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Figure 4. Average annual forest NPP obtained through the modeling strategy presented in Section 2:
(a) using GPP estimated using Equation (1); (b) using GPP simulated using Biome-BGC; (c) using GPP
simulated using Biome-BGC, ∆T = +2 ◦C, and δPRE = –20%.

Table 5. Minimum (min), maximum (max), mean, and standard deviation (std) of the different average
annual GPP products and their corresponding NPPs involved in the estimation of annual NPP per
forest type. GPPPEM was estimated using Equation (1). GPPBGC was simulated using Biome-BGC. All
values are expressed in g m−2 a−1.

Forest Type
GPPPEM GPPBGC

Min Max Mean Std Min Max Mean Std

EBF 128 1778 916 308 13 1495 828 243
LDBF 310 1762 1229 202 201 1611 1156 220
HDBF 1 1785 1049 254 174 1729 1003 312
LENF 7 1876 864 311 0 1909 784 284
HENF 4 1592 774 220 205 1681 773 256

Forest Type
NPP with GPPPEM NPP with GPPBGC

Min Max Mean Std Min Max Mean Std

EBF 8 876 181 168 12 470 143 110
LDBF 36 832 418 138 17 788 385 134
HDBF 4 661 232 128 14 679 218 134
LENF 1 197 149 116 7 495 123 87
HENF 1 549 125 84 9 583 123 87

5.2. NPP in Future Condition

Simulated annual forest NPP in possible future scenarios of climate change presents a spatial
pattern similar to that exhibited during 2005–2012 (Figure 4a,b). This is shown in Figure 4c, where the
average annual forest NPP calculated using Equation (4) with GPPBGC, ∆T = +2 ◦C, and δPRE = –20%
for the corresponding 8-year period is represented. However, it can be appreciated how the regions
that already presented great (or small) NPP in Figure 4a,b present even greater (or smaller) NPP in
Figure 4c. The basic statistics of Figure 4c are summarized in Table 6. A comparison of Table 6 with
NPP with GPPBGC in Table 5 illustrates that minima are all practically the same; maxima are greater in
Table 6 for all forest types; means are greater in Table 6 except for HENF, for which it is smaller; and
standard deviations are greater in Table 6 for EBF, LDBF, and LENF, while they are nearly equal for
HDBF and HENF.

Figure 5 shows the variation of annual forest NPP with air temperature increments (∆T) and
precipitation reductions (δPRE) for a single pixel of each forest type. The main eco-climatic features
of the selected pixels together with their geographic coordinates are summarized in Table 7. The
pixels were selected for the sake of homogeneity and representativeness: at least a 5 × 5-pixel window
(7 × 7 for HENF) with the same forest type surrounding each pixel was imposed, and they are also
representative of the main eco-climatic features of each forest type (Table 1). In the case of EBF, the
surface is nearly flat and only slight decreases in NPP due to increases in air temperature were found.
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NPP in LDBF was strongly reduced when both an increment of air temperature of at least 2 ◦C and
a reduction of precipitation of at least 30% were combined, but a softer reduction in NPP was also
observed when precipitation was reduced by 40% independently of the variation in air temperature.
NPP in HDBF did not present any significant change due to increments in air temperature nor to
reductions in precipitation. NPP in LENF was slightly but consistently decreased as precipitation was
reduced. HENF presented a dependence of NPP with precipitation too, but the reduction in NPP due
to reductions in precipitation was stronger than in the case of LENF.

Table 6. Minimum (min), maximum (max), mean, and standard deviation (std) of the average annual
NPP obtained as explained in Section 4.2 with ∆T = +2 ◦C and δPRE = −20% per forest type. All values
are expressed in g m−2 a−1.

Forest Type Min Max Mean Std

EBF 14 875 197 218
LDBF 17 1136 564 204
HDBF 15 696 220 133
LENF 7 772 215 179
HENF 8 622 104 84

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 20 

 

pixels were selected for the sake of homogeneity and representativeness: at least a 5 × 5-pixel window 
(7 × 7 for HENF) with the same forest type surrounding each pixel was imposed, and they are also 
representative of the main eco-climatic features of each forest type (Table 1). In the case of EBF, the 
surface is nearly flat and only slight decreases in NPP due to increases in air temperature were found. 
NPP in LDBF was strongly reduced when both an increment of air temperature of at least 2 °C and a 
reduction of precipitation of at least 30% were combined, but a softer reduction in NPP was also 
observed when precipitation was reduced by 40% independently of the variation in air temperature. 
NPP in HDBF did not present any significant change due to increments in air temperature nor to 
reductions in precipitation. NPP in LENF was slightly but consistently decreased as precipitation was 
reduced. HENF presented a dependence of NPP with precipitation too, but the reduction in NPP due 
to reductions in precipitation was stronger than in the case of LENF. 

  

  

 

 
 

  

Figure 5. Variations of annual forest NPP due to possible changes in daily air temperature (ΔT) and 
precipitation (δPRE) caused by future climate change. One case representative of each forest type is 
shown. 

  

Figure 5. Variations of annual forest NPP due to possible changes in daily air temperature (∆T) and
precipitation (δPRE) caused by future climate change. One case representative of each forest type
is shown.



Remote Sens. 2020, 12, 1356 14 of 19

Table 7. Descriptive information of the forest sites selected for Figure 5.

Forest
Type

LAT
(◦)

LON
(◦)

h
(m)

T
(◦C)

Rg
(MJ m−2)

PRE
(mm)

PET
(mm)

EBF 43.6161 −7.9821 225 13.75 4514 1366 856
LDBF 42.6964 −2.4732 679 12.43 4855 743 921
HDBF 42.7946 −2.0714 1135 12.47 5098 1018 962
LENF 40.3303 −6.0982 574 13.91 5984 811 1220
HENF 41.8304 −2.9821 1160 10.37 5513 676 923

LAT is latitude, LON is longitude, h is the elevation from sea level, T is the average mean annual air temperature,
Rg is the average annual incoming global solar radiation, PRE is the average annual precipitation, and PET is
the average annual potential evapotranspiration. Averages refer to the period considered in the present study
(2005–2012) and were calculated from the datasets described in Section 3.3.

6. Discussion

6.1. NPP in Current Condition

The present study focuses on the use of a modeling strategy for the simulation of annual forest
NPP over peninsular Spain through the combination of a production efficiency model, which was
used for the estimation of annual forest GPP, and the bio-geochemical model Biome-BGC, which was
used to simulate GPP, RG, and RM. Both models were previously optimized for their application in
the study area [8,19] and were driven by a combination of remote sensing observations and ground
meteorological data. The modeling strategy described in [20] was developed to overcome one of
Biome-BGC’s limitations, i.e., the assumption of the considered ecosystem to be in equilibrium with
its surroundings (climax conditions), through the correction of Biome-BGC’s outputs to account for
actual conditions of the considered ecosystem and through the use of a production efficiency model for
the estimation of GPP. However, other limitations of Biome-BGC and the production efficiency model
must be taken into account to evaluate the obtained results. The space where the models are applied is
divided into cells and the simulations take place individually in each cell without interaction with
other cells during the functioning of the models. Therefore, the spatial relationships and variations
observed in the outputs of the models are provided by the ones already present in their inputs. This is
important when interpreting the spatial patterns presented in Figure 4. Furthermore, both models
assign a single ecosystem functional type (in the case of the present study, a forest type) to each cell
and assume that it is homogeneous independently of the spatial resolution at which the models work
and that it does not change through time. This affects light use efficiency in the production efficiency
model and the ecophysiological parameters in Biome-BGC, but it is also relevant to interpret the results
of NPP simulation in future condition because the possibility of the current forest type being replaced
by another ecosystem is not contemplated. Only the current forest type reactions to possible variations
in air temperature and precipitation due to climate change were therefore analyzed.

The two different GPP sources, i.e., the one estimated through the production efficiency model
(GPPPEM) and the one simulated using Biome-BGC (GPPBGC), that are involved in the calculation of
NPP were validated against daily EC-derived GPP from different ecosystems (forest included) in a
previous study [19]. Coefficients of correlation between 0.64 and 0.86 and between 0.52 and 0.75 were
respectively obtained for GPPPEM and GPPBGC, while RMSE ranged from 0.7 g m−2 d−1 to 1.7 g m−2 d−1

and from 0.9 g m−2 d−1 to 1.8 g m−2 d−1. In the present study, new datasets (e.g., the respirations
simulated using Biome-BGC and the GSV map) with their own uncertainty were incorporated into
the calculation of NPP, which was assessed through an indirect validation against a reference NPP
(NPPNFI3) calculated from CAI observations derived from forest inventory measurements.

The strength of this approach is to combine the directly derived GPPPEM with all respirations and
allocations simulated by the bio-geochemical model Biome-BGC. However, actual NPP is difficult to
predict due to the numerous factors and human-induced disturbances affecting it [48]. In the current
case, i.e., in all applications over large areas, the modeling approach must be based on easily collectable
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and available information otherwise its applicability is missed. Additionally, the accuracy of the NPP
estimates is also strictly dependent on the quality of the drivers utilized, among which GSV is one of
the most important [49].

GSV from NFI3 was currently used instead of the GSV map to evaluate the modeling strategy in
the best possible conditions. As expected, greater relative errors were obtained for NPP than for GPP.
Some differences in the results obtained among the five forest types can be appreciated. The greatest
R2 and smallest errors were obtained for EBF, while the smallest R2 and greatest errors were obtained
for HENF. This is in agreement with the results obtained in Italy by [49], who tested a similar NPP
modeling approach against reference CAI data collected by the Italian National Forest Inventory. They
also found a clear NPP underestimation for Mediterranean pines, which can be partly attributed to a
suboptimal parameterization of the coefficients reported in Table 3. However, there is no conclusive
indication that one GPP should be preferred over the other. Therefore, the use of GPPBGC in the
calculation of NPP in future condition is justified.

6.2. NPP in Future Condition

Some tests were firstly performed using the scenarios from AdapteCCa (https://www.adaptecca.es)
data as inputs in Biome-BGC for some sites where station-level AdapteCCa data obtained with the
same model were available. Daily GPP and respirations were simulated for 2006–2100. However,
unexpected extreme (i.e., both very high and very low) carbon fluxes values were obtained. This,
together with the abundance of different models that provide different climate projections and their
high uncertainty, led to the decision of generating a simplified dataset of possible future changes in
meteorological variables trying to cover most of the climatic projections (both from different models
and for different scenarios). This simplified dataset was elaborated by applying variations to a reference
dataset that was previously used in the simulation of GPP by both the production efficiency model
and Biome-BGC [19], the daily precipitation and maximum and minimum air temperature for the
2005–2012 period, so different sets of 8-year periods were produced instead of a long time series as in
the case of AdapteCCa. Thus, the results presented in Section 5.2 might approximately correspond
to different 8-year periods over the present century depending on whether any actions are taken to
mitigate climate change and how intense their application is.

Still, the generation of the abovementioned 8-year datasets presents some important limitations.
First, there are some limitations regarding the direction of the modifications applied to the reference
period. Both global and regional climatic models predict increment in air temperature in the study
area for the different emission scenarios. Therefore, only increments in temperature were considered.
Whereas in the case of precipitation, an increase is also expected globally, but regional models predict
reductions in annual precipitation over the study area. Therefore, only reductions in precipitation were
considered. Second, there are limitations regarding the temporal variation of the applied modifications.
While climatic models usually provide, for example, different variations for winter and summer within
the same year, the datasets generated in the present study were produced by applying the same
modification to each value in the series, that is, a regular variation. Regarding the spatial variation,
which is especially relevant in the case of precipitation, it is provided by the spatial variation of the
reference series itself.

Other limitations of the current approach are due to the use of a bio-geochemical model, which
can be suboptimal for the simulation of future climatic conditions. Biome-BGC respirations are actually
simulated using a Q10 function of air temperature [50], which however does not account for the
possible response and adaptation of vegetation to high air temperature [51]. The consideration of
stable GSV for driving the NPP modeling strategy in future condition is also disputable but can be
justified by the unpredictable dependence of this forest attribute on human activities (tree cutting and
thinning operations, wildfires of arson origin, etc.).

When comparing the annual forest NPP shown in Figure 4b (reference period 2005–2012) and
Figure 4c (∆T = +2 ◦C and δPRE = –20%), it can be appreciated how NPP is greater in Figure 4c in

https://www.adaptecca.es
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the regions where it was already great in Figure 4b and smaller in Figure 4c in the regions where
it was already small in Figure 4b, that is, it presents a more extreme variation in Figure 4c. This
is supported by the statistics reported in Tables 5 and 6: maxima and standard deviations of NPP
are greater in Table 6 (corresponding to Figure 4c, ∆T = +2 ◦C, and δPRE = –20%). The increment
of NPP in already very productive regions (mostly the north of the study area) may be caused by
the increment in air temperature and the water not being a limiting factor. On the other hand, the
reduction of NPP in already scant productive regions (mainly the SE of the study area) may be caused
by the reduction in precipitation and water already being a limiting factor during 2005–2012. From
Figure 5 it can be appreciated how, although no significant changes are found in annual NPP for EBF
nor HDBF, precipitation is the main factor responsible for NPP reductions in the rest of the forest types
(LDBF, LENF, and HENF).

7. Conclusions

The current research was aimed at investigating the NPP dynamics of Spanish forests both in the
current and expected climate conditions. The analysis was conducted using an integrated modeling
approach applied at high spatial and temporal resolutions (i.e., 1 km2 and daily) in order to grasp the
most relevant variations that characterize this highly heterogeneous Mediterranean country.

The main conclusions that can be drawn from the experiment are:

1. When applied in current climate conditions, the integrated modeling approach is capable
of reproducing the general NPP variability of broadleaved forests in Spain (R2 > 0.60) but
underestimates the NPP of needleleaf forests.

2. When applied in future climate conditions, the approach produces results that can be explained
considering the ecoclimatic features of the present forest types. NPP increases are predicted
for more temperate-humid forests, while decreases are predicted for forest already subject to
water limitation.

All these results contribute to the understanding of the behavior and the risks of Mediterranean
ecosystems in the context of expected climate variability. However, they are affected by the limitations
in model functioning and the datasets used. Therefore, future research will focus on improving the
model capacity to simulate NPP in warmer and drier climate conditions and identifying more plausible
future scenarios.
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