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Abstract: In the late 1990s, the exotic plant Spartina alterniflora (S. alterniflora), was introduced to
the Zhangjiang Estuary of China for tidal zone reclamation and protection. However, it invaded
rapidly and has caused serious ecological problems. Accurate information on the seasonal invasion
of S. alterniflora is vital to understand invasion pattern and mechanism, especially at a high temporal
resolution. This study aimed to explore the S. alterniflora invasion process at a seasonal scale from 2016
to 2018. However, due to the uncertainties caused by periodic inundation of local tides, accurately
monitoring the spatial extent of S. alterniflora is challenging. Thus, to achieve the goal and address the
challenge, we firstly built a high-quality seasonal Sentinel-2 image collection by developing a new
submerged S. alterniflora index (SAI) to reduce the errors caused by high tide fluctuations. Then,
an object-based random forest (RF) classification method was applied to the image collection. Finally,
seasonal extents of S. alterniflora were captured. Results showed that (1) the red edge bands (bands 5,
6, and 7) of Sentinel-2 imagery played critical roles in delineating submerged S. alterniflora; (2) during
March 2016 to November 2018, the extent of S. alterniflora increased from 151.7 to 270.3 ha, with
an annual invasion rate of 39.5 ha; (3) S. alterniflora invaded with a rate of 31.5 ha/season during
growing season and 12.1 ha/season during dormant season. To our knowledge, this is the first study
monitoring S. alterniflora invasion process at a seasonal scale during continuous years, discovering
that S. alterniflora also expands during dormant seasons. This discovery is of great significance
for understanding the invasion pattern and mechanism of S. alterniflora and will facilitate coastal
biodiversity conservation efforts.

Keywords: Spartina alterniflora; invasion process; growing season; dormant season; Sentinel-2 imagery

1. Introduction

Spartina alterniflora (S. alterniflora) was introduced to China from North America in 1979 for the
purpose of stabilizing seashore, reclaiming tidal land, and improving soil quality [1]. However, during
the past three decades, S. alterniflora has been aggressively invading native coastal vegetation with an
invasion rate of 137 km2 per decade [2]. According to recent studies, S. alterniflora posed a great threat to
many native communities and coastal environments by competing with native plants, altering feeding
habitats of shorebirds in open mudflats, and transforming characteristics of native species [3–5]. With
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increasing awareness of the negative impacts of S. alterniflora, local and central governments are paying
close attention to managing S. alterniflora invasion. Comprehensive management relies on detailed
continuous information of S. alterniflora distributions, especially at a high temporal resolution [6].
However, obtaining such information is a great challenge due to the high spatiotemporal variation of
S. alterniflora in complex coastal environments [1].

Remote sensing has been shown as a viable tool in monitoring dynamics of invasive plants [7].
Landsat imagery with moderate spatial resolution (30 m) has been widely used in mapping S. alterniflora
invasions [7–9]. However, due to Landsat’s spatial resolution, spatial details of newly colonized
S. alterniflora patches were usually omitted. In the past two decades, high-resolution satellite images,
such as those of WorldView-2/3, SPOT-5/6, and Gaofen-1/2, have been used to monitor S. alterniflora
changes [4,6,10,11]. However, all these images are commercial products, which are costly and make
it difficult to guarantee long-term regular observations [12,13]. In recent years, Sentinel-2, which
gives continuity to the multispectral fine-resolution optical observations, has received more and
more attention in vegetation monitoring [14,15]. With Sentinel-2, it is possible to capture a detailed
spatiotemporal process of a vegetation community, because it carries a state-of-the-art sensor of
13 spectral bands and a 2–5 day re-entry cycle [16]. The visible and near-infrared (NIR) bands have
finer spatial resolution (10 m) than other medium-resolution satellite images. In addition, compared to
commonly used high-resolution satellite images, such as WordView-2/3, SPOT-5/6, and Gaofen-1/2,
Sentinel-2 has more detailed spectral information (three red edge bands and 1 narrow NIR band).
These bands are essential to increase the capability of vegetation detection. Accordingly, Magnus
Persson et al. found the classification accuracy of common species over a mature forest was improved
by using Sentinel-2 imagery in central Sweden [17]. Grabska et al. showed that the use of the Sentinel-2
time series instead of single date imagery significantly improved forest tree species mapping by
approximately 5%–10% of overall accuracy [18]. Furthermore, David et al. (2017) highlighted that
wavelength regions in red edge bands, narrow NIR, and short-wave infrared reflectance (SWIR) are
characterized by a sharp increase in vegetation reflectance, while water shows strong absorption in
these spectral ranges [19]. Wang et al. (2018) and Jia et al. (2019) suggested using these spectral bands
and derived indices in Sentinel-2 imagery for accurately mapping the extent of coastal and aquatic
vegetation [20,21]. Their results showed that the freely accessed 10 m spatial resolution Sentinel-2
imagery has made it possible to implement robust and efficient monitoring of S. alterniflora invasions.

For years, various remote-sensing-based methodologies have been employed to monitor the
extents of S. alterniflora [2,11,22–24]. Recently, machine learning algorithms, including support
vector machines (SVM), random forest (RF), and K-nearest neighbor (KNN), have been used to map
S. alterniflora [25–28]. However, most of these studies were conducted with pixel-based classification
method; spatial characteristics, such as shape and texture, which are important to improve classification
accuracy, were not applied to identify S. alterniflora. In contrast, the object-based image analysis
(OBIA) fully considers texture, shape, and geometric features, so that more accurate and robust
results are obtained than those of pixel-based method [29–31]. The OBIA can effectively address the
“salt-and-pepper” effect and reduce within-class spectral variation. Therefore, in recent years, more and
more studies have introduced OBIA and machine learning algorithms to delineate S. alterniflora [2]. For
example, SVM is based on the principle of support vector classifier, a linear classifier. It was developed
by using different kernel functions to solve nonlinear problems, which also leads to the training process
of SVM usually being more time-consuming [32]. In contrast, RF algorithm has unique advantages in
remote sensing classification. As a kind of ensemble learning classification algorithm, RF algorithm
not only addresses the problem of overfitting found in previous machine learning algorithms such
as SVM, but also can be successfully used to select and rank the variables with the greatest ability
to discriminate between the target classes [33]. In remote sensing image classification, the use of RF
algorithm has received increasing attention due to the excellent classification results obtained and the
speed of processing [26,27,34]. The combined method has greatly contributed to monitoring invasion
processes of S. alterniflora [4].
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Although there have been studies in the past to monitor the distribution of S. alterniflora, results
that contain accurate and timely interpretation of these relatively small patches have been rare, due
to the lack of full consideration of tidal conditions [35–37]. S. alterniflora are periodically submerged
by the rising tides, especially in regions with high tidal fluctuations and newly colonized lower
S. alterniflora patches [37,38], as this species is found in near-shore zones. Ideally, it is better to use
images acquired during low tides; however, such data are difficult to obtain due to the uncertainties of
local instantaneous tidal conditions during the predetermined times that satellites pass over. Unlike
terrestrial ecosystems, S. alterniflora is difficult to monitor because of the uncertainties caused by periodic
inundation of local tides, especially in regions with high tide fluctuations [39,40]. Thus, the aims of this
study are to (1) remove the influence of tidal fluctuations to build a high-quality seasonal Sentinel-2
image collection; (2) accurately map seasonal status and distributions of S. alterniflora by Sentinel-2
images and combined method (machine learning algorithm and OBIA); (3) analyze S. alterniflora
invasions at a seasonal scale. This study aims to identify the advantages and potential of Sentinel-2
imagery in mapping of S. alterniflora and provide a more effective monitoring method for intertidal
vegetation changes. The seasonal invasion process of S. alterniflora detailed by this study will provide
a new perspective for ecologists and environmental managers to understand the invasion mechanism
of S. alterniflora.

2. Materials and Methods

2.1. Study Area

The study area is the core zone of Fujian Zhangjiang Estuary Mangrove National Nature Reserve,
which has an area of 2.5 km2 and is located in the estuary of Zhangjiang River, Yunxiao County,
Fujian Province, China (117◦24′07”–117◦30′00′′E, 23◦53′45′′–23◦56′00′′N; Figure 1). This reserve was
listed as a national nature reserve in 2002 and added to the Wetlands of International Importance
(Ramsar site No. 1726) in 2008. Zhangjiang Estuary has a semidiurnal tide type with 0.43 m minimal
tidal range, 4.67 m maximal tidal range, and 2.32 m annual mean tidal variation. The region has
a monsoon-influenced marine subtropical climate, with temperature varying from 0.2 to 38.1 ◦C and
precipitation varying from 1348 to 2493 mm. The study area is characterized by native species of
Avicennia marina, Aegiceras corniculatum, and Kandelia obovate. S. alterniflora has been invading this
region since the early 1990s, now, it is a common species with the largest area in the reserve [41].

Figure 1. Location of study area and spatial distributions of ground survey points.
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According to the phenological characteristics of S. alterniflora, we divided each year into the two
seasons of growing season and dormant season [42]. The growing season is from March to October,
and the residual months (November–February) are defined as the dormant season [43].

2.2. Sentinel-2 Imagery and Ground References

Cloud-free Sentinel-2 imagery was downloaded from the website of Copernicus Sentinels Scientific
Data Hub (https://scihub.copernicus.eu/) and was delivered orthorectified with top-of-atmosphere
reflectance in Universal Transverse Mercator (UTM) projection with the World Geodetic System (WGS
84). The Sentinel-2 mission is comprised of two satellites, Sentinel-2A and Sentinel-2B. Both carry
a state-of-the-art MultiSpectral Instrument (MSI) sensor which offers 13 spectral bands, spanning
from the visible, through the NIR and red edge, to the SWIR. They have great potential for various
applications of earth observation [44]. Bands acquired at 60 m (coastal aerosol band 1, water vapor
band 9 and cirrus band 10) spatial resolution are dedicated primarily for detecting atmospheric features
and were therefore excluded from the analysis [16]. Table 1 lists the general characteristics of the
Sentinal-2 imagery.

Table 1. General characteristics of Spectral bands for the Sentinel-2 MultiSpectral Instrument
(MSI) sensors.

Sentinel-2 MSI Bands Central Wavelength (nm) Bandwidth (nm) Spatial Resolution (m)

Coastal aerosol (Band 1) 443 20 60
Blue (Band 2) 490 65 10

Green (Band 3) 560 35 10
Red (Band 4) 665 30 10

Vegetation red edge (Band 5) 705 15 20
Vegetation red edge (Band 6) 740 15 20
Vegetation red edge (Band 7) 783 20 20

Near-infrared (Band 8) 842 115 10
Narrow near-infrared (Band 8A) 865 20 20

Water vapor (Band 9) 945 20 60
Cirrus (Band 10) 1380 30 60

Short-wave infrared reflectance
(SWIR)1 (Band 11) 1610 90 20

SWIR2 (Band 12) 2190 180 20

To monitor seasonal invasion process of S. alterniflora, we downloaded cloud-free level 1C
(radiometric and geometric corrections) Sentinel-2 images from the beginning of growing seasons
(February 2016, March 2017, March 2018) and the dormant seasons (December 2016, November 2017,
November 2018) over Zhangjiang Estuary from 2016 to 2018. Detailed information and tidal levels of
these images are presented in Table 2. Geometric and radiometric corrections with subpixel accuracy,
such as spatial and orthorectification registration on a global reference system, were made by the
Level-1C product. In the toolbox of Sentinel Application Platform (SNAP), the atmospheric correction
(converting top-of-atmosphere reflectance into top-of-canopy reflectance) of the Sentinel-2 image was
performed using the atmospheric correction tool of SEN2COR (version 2.05.05). After atmospheric
correction, bands with 60 m spatial resolution (Bands 1, 9, 10) were abandoned. All other bands
had a resampled pixel size of 10 m × 10 m to standardize different spatial resolutions of bands in
Sentinel-2 images.

Ground surveys were conducted in November 2016, November 2017, and November 2018.
The location of each sampling point was measured by a global positioning system (GPS). To collect
enough samples, unmanned aerial vehicle (UVA) flights were also used to access muddy areas. In total,
306, 301, and 301 samples were collected in 2016, 2017, and 2018, respectively. These samples contained
103, 102, and 106 points of S. alterniflora in 2016, 2017, and 2018, respectively. Two-thirds of the ground
survey points were randomly selected as training samples, and the others were assumed as validation

https://scihub.copernicus.eu/
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samples. A confusion matrix that contained producer’s accuracy, user’s accuracy, overall accuracy,
and Kappa coefficient was used to measure the accuracy of S. alterniflora delineation results.

Table 2. Descriptions of selected Sentinel-2 images and instantaneous tide levels.

Mission Observation Date Transit Time Transit Tidal Height/m Tidal Level

Sentinel-2A 7 February 2016 10:49:02 0.22 low
Sentinel-2A 13 December 2016 10:46:52 2.57 high
Sentinel-2A 13 March 2017 10:45:41 −1.16 low
Sentinel-2B 10 November 2017 10:47:39 −1.45 low
Sentinel-2B 10 March 2018 10:35:39 0.06 low
Sentinel-2A 23 November 2018 10:48:19 −1.67 low

2.3. Building a Submerged S. alterniflora Index (SAI)

As shown in Table 2, there is a high tide (2.57 m) image in the Sentinel-2 image collection because
low-tidal cloud-free images did not exist in November 2016. According to our field surveys, large areas
of S. alterniflora could be submerged during high tide levels. In order to remove tide influences and
build a high-quality seasonal Sentinel-2 image collection, we developed a new vegetation index that
could help to extract submerged S. alterniflora from water background.

Figure 2A shows the spectral reflectance curves of the typical land cover types in Sentinel-2 image,
namely submerged S. alterniflora, exposed S. alterniflora, mangrove forest, and water. The water surfaces
characteristically showed strong absorptions in the NIR (770–890 nm) and SWIR (1600–2370 nm) spectra.
The exposed S. alterniflora and mangrove forest showed typical spectral reflectance of green vegetation,
with reflection valleys at approximately 675 nm, a sharp reflectance increase at approximately 700 nm,
and high reflection in the NIR band (770–890 nm) [45]. In addition, there was a reflectance peak in the
spectral regions of about 810–830 nm, even in the curves of vegetation located below the water surface
(Figure 2). This peak results from the competing effects between the chlorophyll reflectance plateau
and the absorption effects of water located within submerged vegetation and in the surrounding
water background [46]. By comparing the submerged S. alterniflora reflectance curve and the water
reflectance curve, we developed a new vegetation index called submerged S. alterniflora index (SAI).
The SAI is defined as the average reflectance value of the four red edge bands above the linear baseline
constructed with red and SWIR bands. The SAI is calculated as follows:

SAI = [(ρλ1 − ρBλ1) + (ρλ2 − ρBλ2) + (ρλ3 − ρBλ3) + (ρλ4 − ρBλ4)]/4 (1)

ρBλi = ρ2190 + (ρ665−ρ2190) ×
2190− λi

2190− 665
(2)

where ρλ is the reflectance of the central wavelength of λ, and i ranges from 1 to 4. λ1, λ2, λ3, and λ4
represents the center wavelengths of bands 5, 6, 7, and 8A, respectively. ρBλi is the baseline reflectance
in λi. ρ665 and ρ2190 are the reflectance values of bands 4 and 12, respectively. To extract S. alterniflora
from water, we calculated the SAI of the high-tidal image (acquired in 13 December 2016; Figure 2B).
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Figure 2. The submerged S. alterniflora index (SAI) and submerged S. alterniflora pixels. (A) Spectral
reflectance curves of mangrove forest, exposed S. alterniflora (E S. alterniflora), submerged S. alterniflora
(S. alterniflora), and water in Sentinel-2 image, and baseline of establishing SAI. (B) SAI of the high-tidal
Sentinel-2 image. (C) A field photo of S. alterniflora.

2.4. Multiscale Optimal Segmentation

In this study, eCognition Developer version 9.2 was used to conduct OBIA. Segmentation is the
most important process in OBIA and divides images into series of homogeneous and contiguous
pixels (image objects) regarding spectral or spatial characteristics [47]. Segmented boundaries that are
more highly consistent with real land patterns result in more accurate feature extraction results [48].
In order to obtain the optimal segmentation results, it is necessary to find the most appropriate
segmentation parameters.

To quantify the optimal segmentation scale for different objects in the image, the tool of Estimation
of Scale Parameter (ESP) was used in this study [29]. This tool determined whether the segmentation
effect was optimal by calculating local variance (LV) of image object homogeneity under different
segmentation scale parameters as the mean standard deviation of segmentation object layer, using the
rate of change (ROC) of LV to indicate the optimal segmentation scale parameters [31]. The (ROC) of
LV was calculated by the following formula:

Roc =
Li − Li−1

Li−1
× 100 (3)

where Roc is the rate of change of LV, Li is the mean standard deviation of the layer i object of the target
layer, and Li−1 is the mean standard deviation of the layer i− 1 object in the target layer.

In the ESP’s parameter settings, shape and compactness factors are the most important
parameters [49]. In combination with the shape of small patches of S. alterniflora, in this study,
the shape parameter was set to 0.15 and the compactness parameter was set to 0.5. This study selected
a series of scale parameters starting with 5, with the step size increasing by 1, to segment the image
and calculate the LV and ROC; the calculation was stopped when the scale parameter reached 100.
Figure 3A depicts changes in LV and ROC with increasing scale parameter. Optimal scale parameters
are indicated by dotted vertical lines for different land cover types. For six land cover types (mangrove
forest, S. alterniflora, intertidal mudflat, aquaculture pond, water, other), we selected the peaks as
marked in Figure 3A and performed segmentation using the corresponding scale parameters. In detail,
the ESP tool indicated a scale of 81 to remove effects of aquaculture pond and water on classification
accuracy of S. alterniflora. When the segmentation scale was set to 12, small patches of S. alterniflora
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were separated from mudflats and mangrove forests. Figure 3B,C shows the segmentation results of
two optimal scales.

Figure 3. The optimal segmentation scales for different objects. (A) Changes in local variance (LV) and
rate of change (ROC) with increasing segmentation scale. (B) Segmentation effects with scale parameter
of 81. (C) Segmentation effects with scale parameter of 12.

2.5. Random Forest Algorithm

RF algorithm is a powerful ensemble machine learning algorithm that is composed of a cluster of
decision trees [50]. The trees are created through bagging or bootstrap aggregating, which is an approach
for drawing training data subsets by selecting randomly resampled variables with replacements [27].
The original training samples are usually divided into in-bag samples and out-of-bag (OOB) samples.
Each bagging subset usually contains approximately two to three of the samples (in-bag samples) to
form a training set. The nonselected dataset (out-of-bag samples) is used to evaluate the RF algorithm
performance error. The OOB error is calculated to measure feature importance, which is estimated
using the out-of-bag (OOB) samples [51].

In classification process, the quality of input features was important for classification
performance [52]. Sentinel-2 offers multispectral bands that are very effective for monitoring vegetation
information. The complementarity between spectral and spatial features can improve the classification
results. In this study, original spectral bands, texture features, spectral indices, and geometry
features (Table 3) were selected as object features based on their previous performances in vegetation
studies [21,53]. The spectral features consisted of NIR indices, red edge indices, and SWIR indices.
The normalized difference vegetation index (NDVI) represents vegetation growth status [54,55].
The enhanced vegetation index (EVI), for example, enhances vegetation signals by adding blue bands
to correct soil background and aerosol scattering effects, which is suitable for areas with high leaf
area index values [56]. Detailed references for each index are listed in Table 3. Texture is an effective
representation of spatial relationship and contextual information [57,58]. Texture features comprised
homogeneity, contrast, entropy, and correlation, because gray level co-occurrence matrix (GLCM)
derived features are sensitive to texture boundaries [59]. In addition to the use of the input images and
adopted features, the geometry features have obvious impacts on the final classification results [52,60].
Variables were selected and optimized through the RF algorithm. The optimal number and the
importance of these features were obtained according to the OOB error. The OOB errors are shown in
Figure 4A. According to the curve in Figure 4A, it was observed that the inclusion of object features
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gradually decreased the OOB error rate until the first 13 features were used in the classification. At this
point, the curve stabilized at a minimum level and the OOB error value was 13.9%, reaching the lowest
point. OOB error became larger as new variables were added. That is, when the number of selected
features is greater than the first 13, the classification accuracy will decline. Thus, the top 13 features
were used to classify S. alterniflora.

Subsequent to optimizing the number of features, the relative importance of the input features was
measured. Figure 4B shows the importance of the top 13 features in classifying S. alterniflora. According
to Figure 4B, the most important feature was the reflectance of narrow NIR (band 8A). The second most
important feature was the reflectance of SWIR2 (band 12), followed by NIR (band 8). NDVIre2 index
derived from the red edge band (band 6) was ranked fourth. Additionally, NDVIre1 and NDVIre3
indices derived from the red edge bands (bands 5 and 7) were also important features. Thus, it is
proved that the red edge bands and their derived indices in Sentinel-2 imagery were important in
S. alterniflora classification.

Table 3. A list of features for S. alterniflora classification.

Object Features Formula for Sentinel-2

Spectral bands Individual Bands B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12

Conventional NIR
indices

DVI [61] B8− B4

CIg [62] (B8/B3) − 1

SR [61] B8/B4

NDVI [63] (B8− B4)/(B8 + B4)

EVI [64] (2.5× (B8− B4))/(B8 + 6× B4− 7.5× B2 + 1)

Red edge indices

CIre1 [65] B5/B3− 1

CIre2 [65] B6/B3− 1

CIre3 [65] B7/B3− 1

NDVIre1 [66] (B8− B5)/(B8 + B5)

NDVIre2 [66] (B8− B6)/(B8 + B6)

NDVIre3 [66] (B8− B7)/(B8 + B7)

MSRren [65]
(B8a/B5)−1
√
(B8a/B5)+1

SWIR indices
MDI1 [21] (B8− B11)/B111

MDI2 [21] (B8− B12)/B12

Geometry features

Density D =
√

n
1+
√

Var(X)+Var(Y)

Shape index SI = P
4×
√

A

Area –

Border length –

Length –

Length/width –

Width –

Texture information

Homogeneity [67]
∑Ng

i, j=1
GLCM(i, j)

1+|i− j|

Contrast [67]
∑Ng

i, j=1(i− j)2GLCM(i, j)

Entropy [67]
∑Ng

i, j=1(GLCM(i, j))2

Correlation [67]
∑Ng

i, j=1
{i× j}×GLCM(i, j)−{µx−µy}

σx×σy
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Figure 4. The optimal number and important features. (A) The out-of-bag (OOB) errors and (B) feature
importance of the top 13 features.

3. Results

3.1. Accuracy Assessment

Table 4 presents classification accuracies of S. alterniflora and other land covers. The overall
accuracies were 94%, 93%, and 92% at the beginning of the growing seasons in February 2016, March
2017, and March 2018, respectively. The overall accuracies were 95%, 93%, and 94% at the beginning of
dormant seasons in December 2016, November 2017, and November 2018, respectively. The minimum
value of Kappa coefficient is 0.89 on 10 March 2018, and the Kappa coefficients of other images are
higher than 0.90. Specifically, the overall accuracy of S. alterniflora classification of the high tide image
(13 December 2016) reached 95% with a Kappa coefficient of 0.93. The confusion matrix shows that our
classification results are in accordance with those obtained from the field surveys.

Table 4. Producer’s and user’s accuracies of S. alterniflora, and overall accuracies and Kappa coefficients
of classification results.

Time
Accuracy

Producer User Overall Kappa

7 February 2016 0.94 0.91 0.94 0.92
13 December 2016 0.93 0.95 0.95 0.93

13 March 2017 0.94 0.92 0.93 0.91
10 November 2017 0.94 0.91 0.93 0.92

10 March 2018 0.93 0.91 0.92 0.89
23 November 2018 0.92 0.94 0.94 0.91

3.2. SAI Image and the Distribution of S. alterniflora in the High Tide

Submerged S. alterniflora in the high tide Sentinel-2 image (acquired 13 December 2016) was
detected from the water background by SAI algorithm. As shown in Figure 2A, pixels of submerged
S. alterniflora have positive values in the SAI image. The distribution of S. alterniflora on 13 December
2016 (high tide) is shown in Figure 5. According to our spatial statistics, on 13 December 2016, the total
area of S. alterniflora was 174.8 ha in the high tide image, including 16.2 ha of submerged and 158.6 ha
of exposed S. alterniflora.

3.3. Temporal and Spatial Changes of S. alterniflora

Spatial dynamics of S. alterniflora from February 2016 to November 2018 are shown in Figure 6.
Large patches of S. alterniflora were mainly located in front of mangrove forests along the southern
coasts of Zhangjiang Estuary, while a number of small patches were located close to aquaculture ponds.
During 2016 to 2018, S. alterniflora patches were found to become more and more aggregated. Newly
colonized S. alterniflora clumps are observed among mudflats and mangrove forests.
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Figure 5. The distribution of S. alterniflora at high tide, including predicted S. alterniflora derived from
SAI (S. alterniflora) and the exposed S. alterniflora (E S. alterniflora).

Figure 6. S. alterniflora distribution maps of the Zhangjiang Estuary from February 2016 to November
2018. Band combination: R:G:B = Sentinel-2 Band 5:4:3.
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Temporal changes of S. alterniflora are shown in Figure 7. From 2016 to 2018, S. alterniflora increased
dramatically, at a rate of 39.5 ha/year (26.1%). Notable invasions of S. alterniflora are observed both
in growing seasons and dormant seasons (Table 5). During the growing seasons of 2016, 2017, and
2018, S. alterniflora increased by 23.1 ha (15.2%, from February to December 2016), 34.3 ha (18.1%, from
March to November 2017), and 37.0 ha (15.9%, from March to November 2018), respectively. During
the dormant seasons of 2016 to 2017 and 2017 to 2018, S. alterniflora increased by 14.7 ha (8.4%, from
December 2016 to March 2017) and 9.5 ha (4.2%, from November 2017 to March 2018), respectively.

Figure 7. Coverage area of S. alterniflora from the beginning of the growing season in 2016 to the
beginning of the dormant season in 2018.

Table 5. S. alterniflora change during growing season and dormant season from 2016–2018.

Stage Change of Area (ha) Change Rate (%)

Growing seasons 2016/02/07-2016/12/13 23.1 15.2
2017/03/13-2017/11/10 34.3 18.1
2018/03/10-2018/11/23 37 15.9

Dormant seasons 2016/12/13-2017/03/13 14.7 8.4
2017/11/10-2018/03/10 9.5 4.2

4. Discussion

4.1. Advantages of the Data and Methods

Since the late 1990s, monitoring S. alterniflora invasion has received extensive
attention [2,9,14,16,23,68]. According to literature review, the overall classification accuracies obtained
by this study (ranging from 92% to 95%) are much higher than those of previous research (Table 6).
There are two advantages of this study.

First, Sentinel-2 MSI, with fine spatial resolution (up to 10 m), multispectral images (13 bands), and
high temporal frequency (2–5 day revisit cycle), improved the capability of detecting S. alterniflora [20,69].
Due to the patchy and narrow pattern of S. alterniflora patches, S. alterniflora derived from 10 m spatial
resolution imagery must be more accurate than those from 30 m spatial resolution Landsat imagery.
Compared to other high-resolution imagery (for example, SPOT 5), Sentinel-2 imagery has many
more spectra bands (10 bands) that can be used in vegetation monitoring, with four red edge bands.
Several authors highlighted that separability among vegetation categories has been increased with
the introduction of red edge bands and narrow NIR [66,70–72]. In particular, some researchers have
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established indices based on the red band, NIR, and SWIR of remote sensing images to distinguish
floating vegetation from water background. One such index is the land surface water index (LSWI),
which was built based on the reflectance of NIR and SWIR and is widely used for the remote sensing
of surface water from space [73]. The floating algae index (FAI) was defined based on the reflectance of
a red band, SWIR, and NIR; it is used to characterize the intense blooms of cyanobacteria [46]. However,
these indices are not suitable for discriminating submerged vegetation from water, because there are
small variations in the reflectance of submerged vegetation which are suppressed by surrounding water.
Compared to these indices, the SAI is a more sensitive index for separating submerged S. alterniflora
from water, and it can reduce the impact of unexpected noises from a certain band by using three
red edge bands and a narrow NIR of a Sentinel-2 image, according to analysis in Section 2.3. Thus,
in this study, the SAI established by the red edge bands successfully extracted submerged patches of
S. alterniflora that were overlooked in other studies. Furthermore, repetition cycle of Sentinel-2 imagery
provides great opportunities in acquiring dense time series images, which are ideal for monitoring
seasonal invasions of S. alterniflora.

Table 6. Overall accuracy of S. alterniflora obtained from different sensors and classification methods.

Research Overall
Accuracy Study Area Data Source Classification Method

This study 92%–95% Zhangjiang Estuary Sentinel-2
Multiscale Optimal

Segmentation and Random
Forest (RF)

Wang et al., 2015 [4] 87.4% Yueqing Bay, China SPOT 6 Object-Based Image Analysis
(OBIA)

Wang et al., 2015 [4] 80%–90% Yueqing Bay, China Landsat TM Support Vector Machine
(SVM)

Liu et al., 2017 [11] 87% Zhangjiang Estuary SPOT 5 OBIA and Visual
Interpretation

Liu et al., 2017 [11] 86%–90% Zhangjiang Estuary Google Earth OBIA and Visual
Interpretation

Liu et al., 2017 [11] 87% Zhangjiang Estuary Google Earth and
Gaofen-1

OBIA and Visual
Interpretation

Ai et al., 2016 [74] 84.42% Chongming island Landsat 8 OLI Pan-sharpening and Classifier
Ensemble Techniques

Lin et al., 2015 [75] 87.71% Jiuduansha Wetland ZiYuan1 and ZiYuan3 Decision Tree Classification

Second, based on multiscale optimal segmentation model, we obtained better boundary
consistencies between the segmented image objects and real land cover types. Previously, most
studies used single-scale optimal segmentation model to identify the spatiotemporal distribution of
coastal ecosystems [22]. However, the spatial pattern of land cover in Zhangjiang Estuary is more
complex. S. alterniflora patches on the mudflats are patchy and fragmented, while the patches of
mangrove forest, water, and aquaculture pond are large and concentrated. Thus, a single segmentation
scale is not suitable for land cover delineation. The multiscale optimal segmentation model used in
our study gave different optimal segmentation scales for different land covers so that the classification
results were more accuarate.

4.2. New Findings of S. alterniflora Invasion Process

For the first time, we found that S. alterniflora invaded significantly during dormant seasons.
According to literature, when S. alterniflora entered into a new habitat, in addition to widespread
dispersal of seeds, it was able to use the rhizome diffusion to expand the population and enter new
pieces of habitat [76]. That means that, although S. alterniflora turns brown during dormant season,
it does not stop growing, because the roots are still developing [77]. Our discovery reaffirmed the
above knowledge on the S. alterniflora invasion mechanism. To our knowledge, this study is the first
attempt to monitor continuous S. alterniflora invasion at multiyear seasonal scales. Most previous
studies monitored the extent of S. alterniflora at a chosen day to represent S. alterniflora status for a year.
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In fact, S. alterniflora follows distinct growth states in different seasons. Thus, our high-temporal-scale
spatial dynamics information is of great significance to accurately reflect S. alterniflora invasion process
and reveal its potential invasion mechanism.

In addition, by comparing our results with other existing studies of the Zhangjiang Estuary,
we concluded that invasion of S. alterniflora has been largely accelerated. According to Liu et al.
(2017), the areal extent of S. alterniflora in Zhangjiang Estuary only increased by 3.42 ha from 2003 to
2012, while the invasion accelerated during 2012 to 2015 with an increasing rate of 18.25 ha/year [11].
Results of this study consistently showed that, from 2016 to 2018, the rate of S. alterniflora invasion was
39.5 ha/year. The accelerated invasion has also been found in coastal areas such as Beihai in Guangxi
province from 2009 and 2011 and Yueqing in Zhejiang province over the past 21 years [4,36]. Thus,
urgent efforts should be taken to manage S. alterniflora invasions.

4.3. Uncertainties

Satellite monitoring has become the major means to map the distribution of S. alterniflora by
comparing the spectral discrimination among S. alterniflora and other land cover types [2,4,8,23]. Due to
the uncertainties of local instantaneous tidal conditions during predetermined times that satellites
pass over, the extent of S. alterniflora may not fully exposed [6]. In this case, the spectral characteristic
of the submerged S. alterniflora will be altered and the effectiveness of spectral discrimination for
S. alterniflora will be weakened. Thus, high-tide stage can reduce the extent of S. alterniflora mapped
because submerged S. alterniflora will be confused with water [38]. In this study, the area of submerged
S. alterniflora was determined to be 16.2 ha, meaning that 9.3% of the total area of S. alterniflora is
lost due to tidal effects. Therefore, if tidal conditions are not taken into account in the mapping of
S. alterniflora, we believe that the monitoring of S. alterniflora will be inaccurate.

In this study, the submerged S. alterniflora was identified by SAI. However, SAI was derived based
on the reflectance peak of chlorophyll; as a result, other submerged vegetation and floating vegetation
(for example, algae) may be misclassified as S. alterniflora [46,78]. In this case, S. alterniflora may be
overestimated. In contrast, it was found that it was difficult to detect typical NIR peaks of vegetation
spectra depths of 0.5 m with high turbidity (50 nephelometric turbidity units) and 1 m with low
turbidity (0.5 nephelometric turbidity units), [79]. Hence, S. alterniflora submerged by high-turbidity
water may be underestimated.

In addition, S. alterniflora shows different spectral characteristics in different seasons, which
means that the characteristics of S. alterniflora may be confused with different vegetation in different
seasons [75]. For this study, in the dormant seasons, some S. alterniflora were completely withered.
Thus, it is difficult to separate S. alterniflora from surrounding mudflats, especially for the small clumps
(less than 100 m2) of newly colonized patches. Fortunately, with the production of higher resolution
image data, it is possible to solve these problems.

5. Conclusions

In this study, multiyear seasonal Setinel-2 imagery was combined with RF algorithm and OBIA
classification method and used to monitor the S. alterniflora invasion process at a continuous seasonal
scale during 2016 to 2018. To our knowledge, this is the first study to extract submerged S. alterniflora
from the water by developing an SAI derived from reflectance peaks between red edge bands, narrow
NIR, and SWIR2 in Sentinel-2 images to remove tide influences. Additionally, a multiscale optimal
segmentation was applied to delineate objects during OBIA classification.

Our results showed that: (1) The SAI provided an effective method to extract submerged
S. alterniflora from water and increased the overall accuracy of S. alterniflora mapping at high tide to
95%, with a Kappa coefficient of 0.93. (2) Sentinel-2 imagery and multiscale optimal segmentation
significantly improved the classification accuracies of S. alterniflora. (3) S. alterniflora dramatically
expanded in Zhangjiang Estuary during the period of March 2016 to November 2018, in which the
total area increased by 118.6 ha, accounting for 78% of the original areal extent. (4) S. alterniflora
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spread both in growing seasons and dormant seasons; the average growth rate was 31.5 ha/season
during growing seasons and 12.1 ha/season during dormant seasons. In addition, we concluded
that the invasion process of S. alterniflora has been largely accelerated by comparing to other existing
studies of Zhangjiang Estuary. Methods presented by this study bring great benefits to remote sensing
communities of coastal and aquatic vegetation studies. New findings about the S. alterniflora invasion
process will contribute to controlling invasion and protecting coastal ecosystems.
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