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Abstract: Very high-resolution remote sensing change detection has always been an important research
issue due to the registration error, robustness of the method, and monitoring accuracy, etc. This paper
proposes a robust and more accurate approach of change detection (CD), and it is applied on a smaller
experimental area, and then extended to a wider range. A feature space, including object features,
Visual Geometry Group (VGG) depth features, and texture features, is constructed. The difference
image is obtained by considering the contextual information in a radius scalable circular. This is to
overcome the registration error caused by the rotation and shift of the instantaneous field of view
and also to improve the reliability and robustness of the CD. To enhance the robustness of the U-Net
model, the training dataset is constructed manually via various operations, such as blurring the
image, increasing noise, and rotating the image. After this, the trained model is used to predict
the experimental areas, which achieved 92.3% accuracy. The proposed method is compared with
Support Vector Machine (SVM) and Siamese Network, and the check error rate dropped to 7.86%,
while the Kappa increased to 0.8254. The results revealed that our method outperforms SVM and
Siamese Network.

Keywords: change detection; deep learning; multiple features; radius scalable circular; very
high-resolution remote sensing

1. Introduction

With the urban expansion of China, the technology of change detection (CD) in urban areas has
become more and more important. Change detection techniques have great potential in the following
five fields [1,2]: (1) Scene change detection, detection and analysis of land use changes at the semantic
level; (2) Hyperspectral change detection, combined with the spectral mixing model, to analyze
change type without supervision, and realize sub-pixel change detection; (3) Improvement of the
method of classification change detection, making full use of the spatiotemporal correlation between
multi-temporal images, which can improve consistency of results of multi-temporal classification and to
improve accuracy of “from-to” change detection; (4) Multi-source and multi-resolution change detection,
which study the theories and methods of common change detection and use of multi-temporal remote
sensing data with different observation mechanisms and resolution; (5) Change Detection based on
deep learning, where the spectral/spatial consistent features of multi-temporal images were extracted
by deep learning neural networks, and the high precision results of change detection were obtained.

Change detection (CD) from multi-temporal remotely sensed images is one of the important
technologies for information processing [1]. CD has significant applications in various fields [1-8],
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such as land-use/cover change, deforestation, urban expansion, and disaster monitoring. It can also be
used for the identification of targets, such as bridges, ports, and military bases. In recent years, with the
enrichment of remote sensed image data sources, CD has developed rapidly, and various methods have
shown good application effects and potential in different fields. However, no method can be applied to
the vast majority of cases, and no detection algorithm is the most optimal. The development of robust
algorithms has always been the research focus in the field of CD [1,2,9]. There are numerous studies
on change detection. Du et al. (2012) proposed two methods of CD based on the information fusion
strategy: (i) weighted similarity distance in one-dimensional feature space, (ii) fuzzy set theory and
support vector machines (SVM) in multi-dimensional feature space [1]. Zhang et al. (2017) investigated
the CD with multi-temporal remote sensing images [2], and introduced three aspects: pre-processing,
thresholding, and accuracy assessment. Xiao et al. (2016) proposed a new framework combining
pixel-level CD and object-level recognition [4]. Thonfeldet, F. et al. (2016) proposed a method called
robust change vector analysis (RCVA) to reduce the errors generated by the sun’s position and sensor
viewing geometry [9]. However, RCVA sometimes cannot resolve the correspondence point-matching
problem very well in a rotating image. Zhang et al. (2017) built and trained a model based on
the Gaussian Bernoulli Deep Boltzmann Machine with a label layer to extract deep features [10].
They determined the changed and unchanged areas, considered the information of the neighborhood,
and thus reduced the registration error. However, this method was still based on the pixel-level
operation, and the result of CD was too fragmented to be satisfactory. K. Li et al. [11] proposed an
asynchronous feature tracking method based on line segments with the dynamic and active-pixel
vision sensors (DAVIS).

Our paper makes full use of the features, representing different information in multi-temporal
images [12-16], and introduces deep learning to excavate the features that are not easy to discover [14].
The dataset, combining the features of pix-depth—object [17], is used to train our model and predict
the experimental area and the extension of it. These multiple features can complement each other
for CD. The feature of the variance of the experimental area image is extracted by the Gray Level
Co-occurrence Matrix (GLCM). With the development of deep learning technology, various models,
such as LeNet, AlexNet, ZFNet, and NiN [18,19], have been used in the processing of remotely sensed
images. The depth feature in this paper was extracted by VGG (Visual Geometry Group) model.
U-Net has been a remarkable and the most popular deep network architecture, and it is introduced
into the change detection in this paper [18-32]. Neighborhood analysis is introduced to look for
the corresponding image points of two-time images (potentially distorted images) and to find their
difference [33-42]. The method of circle neighborhood analysis reduces the error of constructing the
difference image, and improves the precision of the U-Net.

2. Methodology

This paper proposes a CD framework, as shown in Figure 1, which performs the following steps.
First, it needs to complete some preprocessing, such as registration to reduce geometric errors and
radiometric correction to reduce errors caused by the difference of solar angles in different images.
This provides preprocessing work for CD. Second, a variety of methods are used to construct the
feature space, including a depth feature based on VGG convolutional networks, a texture feature based
on GLCM, and a segmented object feature. Third, the framework constructs the difference image
combining the three features and considers spatial-contextual information in an adaptive circular
neighborhood in order to search for the corresponding image points. This method can reduce the
errors by the difference of the sun’s position and rotation, shifting the image. Fourth, works for the
deep learning model—the principal component analysis (PCA) is applied to the differential images
of object features, VGG depth features, and texture features. The first of the principal components is
extracted from the different images, and then they are stacked to a new difference image. The dataset
used for training is built by segmenting the difference image for the U-Net model. To enhance the
robustness of the model, the difference image is segmented into 1000 small pictures of 256 x 256 pixels,
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which are used for other operations, such as rotation, adding noise, and blur. At the same time, it needs
to build the corresponding training labels. The training set, including the small pictures and labels,
is used to train the U-Net model. Fifth, the model is used to predict the changes in the experiment area

and to extend it. Sixth, the results of this paper are compared with SVM and Siamese Network. Finally,
the accuracy of the experimental results is evaluated.
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Figure 1. Flowchart of the proposed change detection framework.
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2.1. Feature Space Construction

2.1.1. VGG Depth Feature

The VGG was developed by the Visual Geometry Group of Oxford University. The architecture of
VGG is similar to AlexNet; however, VGG made some improvements based on AlexNet. The specific
improvements are as follows: (1) the replacement of the larger convolution kernel (11 X 11,7 X 7,
5 x 5) in AlexNet with several consecutive convolution kernels (3 x 3); (2) VGG has a very simple
structure, which uses the same convolution kernel size (3 X 3) and maximum pooling size (2 x 2) for
the entire network.

In this paper, the VGG-19 model is used to obtain a class of feature images. The texture details in
the convolutional layer of the VGG-19 are strongly invariant. It has 16 convolutional layers and five
pooling layers. According to the degree and size of the abstraction of features, it can be divided into
four layers: the shallow layer, middle layer, sub-deep layer, and deep layer [17]. The convolutional
layer deeply analyzes each piece sampled from the previous layer by the convolutional kernel to
obtain the features with a higher degree of abstraction. The pooling layer can convert a high-resolution
image to a lower one and reduce the parameters of the neural network. The VGG-19 selects the
convolution kernel of 3 X 3 to extract the peripheral information of each pixel. Although it requires an
increased number of iterations, the extracted features are more detailed and comprehensive. With the
increase of the depth of the model structure, more abstract high-level semantic features can be extracted.
This model has a good generalization ability on different datasets. The VGG-19 model trained in this
paper extracts 36 features.

2.1.2. Object-Based Feature

The object-based feature of CD has certain advantages, which can improve the efficiency of
detection and reduce the processing of trivial patches. Object-oriented image analysis has been applied
in the interpretation of images sensed remotely since the 1970s. Ketting and Landgrebe, by considering
the advantages of homogenous object extraction, proposed a segmentation algorithm called the
Extraction and Classification of Homogenous Objects (ECHO) in 1976. ECHO makes the homogeneous
pixel form objects of different sizes through image segmentation. The object-oriented image analysis
method divides the remotely sensed images into different homogeneous objects, each of which has
various attributes describing the spectrum, shape, structure, and texture. The spatial relationships
among these objects, such as adjacency and inclusion, as well as similar inheritance relationships in
object-oriented software development, are known. It analyzes the entity; not a single pixel. The entity
is a meaningful image object composed of multiple pixels. The object-oriented image analysis adopts
a rule of multi-level image segmentation to generate polygon objects with similar attributes at any
scale. Here, the fuzzy mathematics method (Faber and Forstner, 1999) is used to obtain each attribute.
The image object—the basic unit of information—is then extracted automatically.

In this paper, an edge-based segmentation algorithm is used for the four bands, and the full
Lambda schedule algorithm is utilized to partially merge over-segmentation fragments. The vector and
raster diagrams are generated as shown in Figure 5. The adjacent pixels of the image are aggregated
into a whole as a block of spectral elements. The image is segmented and classified by using the spatial,
textural, and spectral information of the high-resolution data. This mainly includes two steps: image
object construction and object classification.

2.1.3. Texture Feature

The texture is one of the most important features, providing a large amount of information for
image recognition and understanding. In [7], X. Pengfeng et al. claimed that the variance difference
between different ground objects is the largest. They applied GLCM to the raw image of four bands to
obtain variance features. The grayscale co-occurrence matrix and the value of texture features were
calculated on the sub-image formed by each small window. Subsequently, the value of the texture
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feature representing this window was assigned to the center pixel of the window to complete the texture
feature calculation of the first small window. After this, the window was moved by one-pixel-step on
the raw image to form another small window image, and the new co-occurrence matrix and the new
value of texture features was calculated. By analogy, a matrix of textured eigenvalues was formed to
be transformed into a texture feature image. Here, the size of the window should not be too large (e.g.,
9 x 9) as it increases the blurring and coarseness of the texture. Thus, this paper selected the small
window size of 3 x 3.

2.2. Constructing a Robust Difference Image

Due to the sun’s position and sensor viewing geometry, the identical ground areas of comparison
are not correctly represented by the corresponding pixels in the bi-temporal images, which results
in geometric distortions and misregistration. Accordingly, the expansion of the spurious changes
becomes more serious, especially for the rotation image. To resolve this issue, this paper improves the
RCVA\CVA method by including the analysis of pixels with position j, k in images x1(j, k) and x,(j, k)
as well as the pixels in adjacent circular neighbors. The robust difference images are calculated by
considering pixel circle neighborhood to subtract t1 from ¢2, and vice versa. The value of radius 7 is
adaptive. (Equations (1) and (2)):

Xaiffa(j k) = min {\/i (o5 (G, k) = (¢ (. 4)2}

(p=)+(g-k2<r L V=1

)

n
Xaifpp(j,k) = min J Y G0 - (< g)? 2
V= +@=k?<r | Vi=1

We calculated the minimum spectral difference for the circular neighborhood in multiple bands.
We found that the pixel x; in the circle with center (j, k) and radius r shows the least spectral variance
to x1(j, k). The pixel x, contains most of the corresponding ground information of x1(j, k). We compute
the lowest difference of each pixel in all bands in a moving circle window. In [9], only the square
neighborhood is considered. On the other hand, our paper designed the circular neighborhood without
direction, where 7 is scalable. This method not only minimized the shift of the instantaneous field of
view, but the rotation also. Figure 2 shows that the corresponding image points of the identical ground
(roof Angle) in the two images were deviated. Even if the images are rotated by an angle, the method in
our paper can still find the corresponding points in the circle neighborhood, enhancing the robustness.

Figure 2. Position deviation of the identical ground object in the red box.



Remote Sens. 2020, 12, 1441 6 of 19

To improve the robustness of the difference image, we compare xf,(j, k) with x4 (j, k) and obtain
the minor one as the difference image Mg (j, k):

M, _{ Xaif (oK), Xaif o < Xaiffa (G K) 3)
el Xaiffa(jo k), Xaif fa < Xaifpp(j, k)

In this way, the spectral change, by considering the circle neighborhood information, can
be obtained.

2.3. Change Detection Based on U-Net

The U-Net is based on the expansion and modification of the convolutional network. It consists of
two parts: (i) a contracting path to obtain context information, (ii) a symmetric expanding path for
precise location estimation.

The U-Net can train good models on small datasets, similar to the one used in this paper.
Furthermore, its training speed is very fast, providing satisfactory results in a short time.

The process for the U-Net is to cut, segment, rotate, add noise and other operations to expand
the number of samples to segment the label image. This is followed by finding out the relationship
between the training image and the corresponding label, and infinitely fitting to approximate this
relationship. Finally, the parameters of the model are obtained. We use binary labels, i.e., change and
no-change, and train a binary model. We make paddings for the pending image and fill an image with
zeros, which is named image A. The size of the pending image is expanded to an integer multiple of
256, and then it is cut with 256 steps, resulting in a dataset consisting of 256 x 256 images. These images
in the dataset are predicted by the model trained. After this, these predicted images are added to the
location in image A. Finally, the new, larger image procured is cut into the size of the original image.

3. Experiment

In our experiment, we construct object features, depth VGG features, and GLCM-based variance
texture features, all of which are derived from the aerial photographs of Yixing, Jiangsu Province,
China, in 2012 and 2015. Using the method elaborated in Section 2.2, we constructed the difference
images considering the circle neighborhood relation. SVM and Siamese Network were used to change
detection based on the difference images. We constructed the training dataset to train the U-Net model
and accordingly used the trained U-Net model to predict the test areas.

3.1. Data and Study Site

A portion of Yixing city, located in Jiangsu of China, is selected as the research area in this paper,
and the longitude and latitude of Yixing City is 31°0 7 /N — 31°37’N, 119°31"E — 120°03’E". The size of
the experiment area is approximately 137 m x 107 m (441 X 346pixels), as shown the yellow frame in
Figure 3. The size of the expanded experiment area is approximately 211 m X 203 m (628 X 678 pixels),
as shown the red frame in Figure 3. The two images in yellow frames are corresponded one by one,
the same as the two images in the red frames. The two pairs of experiment sites are not very far from
each other, so they have a lot of geographic similarities. They both are composed of several plants,
roads, buildings, etc. The images for the experiment were acquired separately, in 18 February 2012
and 30 April 2015. The acquired images are orthotic. Subsequently, the different time-phase images
are registered to make the registration error within one pixel. As seen in Figures 14 and 16, they are
the ground truth images, which are obtained by visual interpretation, on-the-spot investigation and
hand-drawn sketches.
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30 April 2015 ¢ 18 February 2012

1197 44°40°E 45'0°E

31° 1270°N

" AT40°E 119° 45" 20°E

Figure 3. Experiment area.

The data acquired by the sensor UCXPWAG00315131 are used in this study, including four spectral
bands: red, green, blue and near infrared. The spatial resolution is 0.31 m, and the gathering dates of
the data were 18 February 2012 and 30 April 2015, respectively.

3.2. Feature Space Construction Experiment

In this experiment, three methods were used to obtain object features, depth VGG features,
and texture features respectively. The original spectra images are shown in Figure 4, which have four
bands: R, G, B, and NIR. Figure 5a,b are respectively the segmented image of the experimental areas
in 2012 and 2015, while (c) and (d) are the corresponding vector images. We adopt Edge algorithm
to segment the image, and the scale level is 89.7. The Full Lambda Schedule algorithm is adopted to
merge the fragments, merge level = 59.6. However, there are still too many fragmentary patches in
segmentation, which requires the further combination of other features to detect the changes effectively.

(a) 2012year experimental area

(b) 2015year experiment area

Figure 4. Original spectra image.
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(a)2012year Object-based feature  (b) 2015 Object-based feature

(c) 2012year vector (d) 2015year vector

Figure 5. Object-based features and corresponding vectors.

The VGG feature is based on pixels. A total of 72 features were derived by the VGG using the
images taken in 2012 and 2015, i.e., 36 per each year. Five out of 36 VGG features are shown in Figure 6.

(b) Flvie convolutlonal features of VGG in 2015

Figure 6. Convolution features of the Visual Geometry Group (VGG).

There are nine scalar parameters based on GLCM; mean, variance, homogeneity, contrast, to name
a few. Our paper chooses the variance to derive the texture feature. In [3], by comparing the GLCM
scalar parameters of different ground objects in high-resolution remote sensing images, P. Xiao et al.
concluded that the variance differs the most. Considering this, we also chose GLCM variance to extract
the feature. Figure 7a,b shows the texture feature images of 2012 and 2015, respectively.
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(a)2012year texture feature (b)2015year texture feture

Figure 7. Texture feature.
3.3. Constructing the Difference Image

In this part of the experiment, principal component analysis (PCA) was adopted and performed on
the feature space. The first component of the principal component analysis was obtained, which contains
the main information as shown in Figure 8. In the Figure, (a), (c), and (e) are the first components of the
object feature, the VGG feature, and the texture feature, respectively, in 2012, whereas (b), (d), and (f)
are the first components of the object feature, the VGG feature, and the texture feature, respectively,
in 2015.

(c) PCA VGG feature in 2012

(e) PCA texture feature in 2012 (f) PCA texture feature in 2015

Figure 8. The principal components of features.
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Afterwards, a difference image was created by considering a circular neighborhood with a scalable
radius. Figure 9a is the difference image of the object, (b) is the texture difference image, (c) is the
VGG difference image, and (d) is the RGB image integrating (a), (b), and (c). Here, R channel: object
difference image, G channel: texture difference image, B channel: VGG difference image.

(c) difference image of VGG feature (d) layerstacking difference
image of three features

Figure 9. Difference images.

3.4. Constructing a Robust Training Set for U-Net

The difference image, Figure 9d, was divided, rotated, noise-increased, blurred, etc. to obtain a
rich training set. In this paper, 1000 samples were constructed in the dataset, all of which were small
pictures of 256 x 256 pixels, parts of which as shown in Figure 10a. In addition, two representative
pictures drawn from the 1000 samples are enlarged for a suitable display as shown in Figure 10b.
In Figure 10b, the left one is one of the fuzzy rotation pictures, and the right one is the picture added
with pepper and salt noises. Accordingly, the label training set was constructed. Moreover, the label
training set and image training set were one-to-one corresponding, and the labels had 1000 samples.
Figure 11 is the representative pictures drawn from the label training set, enlarged proportionally for
clarity of display. In Figure 11a,b, the black represents the no-change part, while the white represents
the change part. Figure 11 were corresponded to the Figure 10b, respectively.
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Figure 10. Training data.

Figure 11. Two representatives in 1000 labels.

3.5. Model Training and Prediction Experiment

The U-Net is separately trained with 100, 150, 200 and 250 samples, and the models obtained

are named as mod1-h5, mod2-h5, mod3-h5, and mod4-h5, respectively. As a representative shown
in Figure 12, the training effect with 250 samples is displayed, and the training epoch is equal to

40, whereas the training and verification accuracies are close to 1. When the Epoch is within 0-10,
the training and verification losses decrease rapidly, and stabilize when the Epoch exceeds 30.



Remote Sens. 2020, 12, 1441

12 0of 19

W,
"y

train_loss
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Figure 12. Track of loss/accuracy.

The four models trained were used for CD by binary prediction. The predicted results were
provided in Figure 13, and the models achieved an accuracy of 61.3823%, 64.5825%, 73.2012%,
and 92.3205% correspondingly compared to the truth ground model. The mod4-h5 showed the highest
accuracy with Kappa coefficient of 0.8254. As a representative, mod4-h5’s detailed pixel statistics and
some relevant parameters are shown in Table 1. The truth ground image is shown in Figure 14.

(c) binary prediction based on mod3-h5

(d) binary prediction based on mod4-h5

Figure 13. Predicted change image by four trained models.

Table 1. Evaluation parameters for Mod4-h5.

Class Commission Omission Commission Omission Overall Kappa
(Percent) (Percent) (Pixels) (Pixels) Accuracy % PP
No-change 7.29 15.87 3437/47,172 8247/51,982
Change 7.86

92.3205 0.8254
3.43 8247/104,973  3437/100,163
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Figure 14. Truth round image.

The accuracy increases with the increase of the training data number. However, after 250 samples,
this phenomenon lost its effect; thus, this paper uses 250 samples as the training data. We randomly
chose data sets constructed in Section 3.4 as validation data, any samples in the 1000 samples without
the 250 samples were used as training data.

3.6. Model Working on the Expanded Experimental Area for Testing

The expanded area predicted in this section is spatially not very far away from the experimental
area in Section 3.5, and the scope is expanded to more than double to test the scalability of the
trained model. If new parameters are trained with big training data for the model according to the
process above sections of this paper, a higher accuracy will be obtained. However, this section applies
to the trained model for the direct prediction of the expanded area without any additional work.
This approach saves time, reduces costs, simplifies the process, and thus provides an idea for the
extension of the method. Figure 15 shows the expanded experimental area, Figure 16 depicts the truth
ground of change detection. Figure 17 is the prediction results of the expanded area using the model
mod4-h5 trained in the previous sections.

Fy N 7 % \\ e
(a) expanded experimental (b) expanded experimental

area in 2012 year area in 2015 year

Figure 15. Expanded experimental area.
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Figure 17. Prediction results.

The pixel statistics of change detection of the expanded area are shown in Table 2. The overall
accuracy is relatively low, only 83.36%, as shown in Table 2. It can be seen that the model mod4-h5,
trained in a small area, has certain limitations. If the region selected for training is more spatially
related to the expanded experimental area, the similarity is higher, and the model obtained has more
generalization ability and can predict the expanded areas more accurately. Although the overall
accuracy of this section is only 83.36%, it greatly simplifies the detection process and improves the
predicting efficiency.
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Table 2. Result statistics for testing expanded area.

Predl;ilct%}:'ound Change No-Change The Total Aoc Zflf:lcl Commission Omission Kapoa
: (Pixels)  (Pixels) (Pixels) Y (Percent)  (Percent) PP
(Pixels) (Percent)
Change 195159 61894 257053
No-change 15066 190277 205343 83.36 24.08 717 0.67047
Total 210225 252171 462396

3.7. Method Testing on Public Dataset Comparing with SVM and Siamese Network

For the comparison of the proposed method with SVM and Siamese Network [43-45], the public
dataset was downloaded from a website for testing. It was supplied by competition team “Sparse
Characterization and Intelligent Analysis of Remote Sensing Images”, sponsored by the Information
Science Department of the National Natural Science Foundation of China. The feature space derived
from the public dataset was constructed in Section 3.2, 3.3 and 3.4. The original spectra image from
2017, 2018, and the truth ground label image are shown in Figure 18.

(a) 2017year original (b) 2018year original (c)2017year &2018year truth

spectra image spectra image ground change label image

Figure 18. Public dataset.

The kernel type of SVM is Radial Basis Function. A total of 7979 sample points of change (white)
and 3662 points of no-change (black) are selected by ROIs (region of interest) tools as training data
for SVM. The binary classification is shown in Figure 19a, where the overall accuracy is 79.4449%
(732164/921600) and Kappa coefficient is 0.5703.

(a) binary change by SVM (b) binarychang by Siamese Network  (c) binary by this paper method
Figure 19. Comparison of three change detection methods.

Figure 19b illustrates the binary changes by Siamese Network. First, Using the original spectral
data from public dataset, we train the Siamese Net. After this, the change detection is carried out by the
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network. Overall accuracy = (848,241/921,600) 92.04%, and Kappa coefficient = 0.7429. Figure 19c shows
the results of our proposed method, which achieved and overall accuracy of 93.68% (863,354/921,600)
and Kappa coefficient of 0.7634.

The comparison is shown in Table 3. The method proposed in this paper has the best overall
accuracy of 93.68%, whereas the Siamese Network achieves 92.04%, and SVM performs the worst with
79.44% accuracy. Furthermore, our method performs best in terms of the check error rate (Commission
4.578%), and Kappa (0.7634). However, this paper’s miss rate (omission 16%) is between the other
methods’ miss rates.

Table 3. Experimental results of three methods on the public dataset.

Method Overall Accuracy % Omission % Commission % Kappa

SVM 79.44 114 29 0.5703
Siamese Network 92.04 21.03 24.42 0.7429
This paper’s method 93.68 16 4.578 0.7634

4. Discussion

Constructing feature space is very important for change detection. As one member in the feature
space, the VGG feature is based on pixels, and it will produce “salt and pepper” in change detection.
However, the VGG feature is not sensitive to the differences in light radiation, and this characteristic
enhances the robustness of change detection, especially for the detection of changes in images with
big radiation differences, as in the case of the two images shown in Figure 18a,b. Although the
extracted object features provide considerable advantages for CD, they “equalize” the object interior,
which causes the loss of some image details. To recreate these details, the pixel-based VGG features are
utilized in this paper. The texture features can obtain the boundary information and contour of the
ground objects and enhance their independence, as shown in Figure 5c,d. To overcome the position
deviations of the ground objects, this paper proposes the circular neighborhood method, which can
also reduce the errors caused by geometric registration and rotation, as shown in Figure 2.

The model working on the expanded experimental area in Section 3.6 performs slightly weaker
and its overall accuracy on the expanded experimental area becomes from 92.32% to 83.36%, as the
training set is too small. The accuracy can be improved if the training dataset is extended. Regardless,
the accuracy of 83.36% essentially meets the demand. This is due to the good frame work we proposed
and the robustness of the model U-Net, as shown in the flow in Figure 1. One important reason for this
is the feature space constructed in Section 2.1, and another is the enhanced training dataset which is
enhanced by operations such as increased noise, blurring, and cutting. All of the methods are adopted
to improve the prediction accuracy of the model. In order to assess the effectiveness of this method on
other datasets, we supplemented the public dataset for testing. In Section 3.7, for the comparison of
the proposed method, we completed experiments on the public dataset using the method of SVM and
Siamese Network. The SVM method is simple, however its accuracy is the lowest of all. The accuracy
of the method we proposed in this paper is the highest (93.68%), while the commission is the lowest
(4.578%). The Siamese Network performs slightly weaker than our method, however, it requires much
more training data and has less robustness, and takes a lot of time to train the model.

5. Conclusions

This paper proposes a smart combination of different techniques to produce acceptable results.
Due to the lack of training data, various methods (e.g., increased noise, blurring, and cutting) are
adopted to enhance the adaptability of the U-Net model in complex situations, to improve its robustness.
Therefore, the difficulty of lacking a sample set is solved. A novel adaptive neighborhood is introduced
to reduce deviation while constructing a difference image.
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However, the small-sized images of 256 X 256 are the results of the prediction mode, and they
have to be spliced as large as the original image. As expected, the splice at the joint is filled with zeros
(there is no detailed description in this paper). The splices, however, increased the error in change
detection. Future studies should focus on reducing the error caused by splicing. In our paper, we focus
on binary change detection (only two states: change and no-change) and we will pay more attention to
multi-class change detection in future work.
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