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Abstract: This study presents a methodology for developing a high-resolution (2 m) urban tree
canopy leaf area inventory in different tree phenological seasons and a subsequent application of the
methodology to a 625 km2 urban area in Tokyo. Satellite remote sensing has the advantage of imaging
large areas simultaneously. However, mapping the tree canopy cover and leaf area accurately is
still difficult in a highly heterogeneous urban landscape. The WorldView-2/3 satellite imagery at the
individual tree level (2 m resolution) was used to map urban trees based on a simple pixel-based
classification method. The comparison of our mapping results with the tree canopy cover derived
from aerial photography shows that the error margin is within an acceptable range of 5.5% at the
3.0 km2 small district level, 5.0% at the 60.9 km2 municipality level, and 1.2% at the 625 km2 city
level. Furthermore, we investigated the relationship between the satellite data (vegetation index) and
in situ tree-measurement data (leaf area index) to develop a simple model to directly map the tree
leaf area from the WorldView-2/3 imagery. The estimated total leaf area in Tokyo urban area in the
leaf-on season (633 km2) was twice that of the leaf-off season (319 km2). Our results also showed
that the estimated total leaf area in Tokyo urban area was 1.9–6.2 times higher than the results of the
moderate-resolution (30 m) satellite imagery.

Keywords: urban forest; tree canopy cover; ecosystem services; satellite imagery; WorldView-2/3;
aerial photography; leaf area index; vegetation index; megacity

1. Introduction

Urban vegetation, particularly trees, provides numerous benefits to human well-being (ecosystem
services) [1,2]; trees improve air quality by removing pollutants from the atmosphere and mitigate
the heat island effect by providing direct shade and by transpiration [3]. However, trees are also
responsible for the formation of ozone (O3) and fine particulate matter (PM2.5) through the emission
of biogenic volatile organic compounds (BVOC) via leaf surface [4,5]. To maximize the urban forest
benefits for smart sustainable city development, the negative impacts of the tree canopy on air quality
should be assessed [6].

Statistically sound data on the urban forest structure are required to properly assess the effect of the
balance of the services/disservices on urban air quality. The magnitude of plant-atmosphere processes
is strongly correlated with the total leaf area [7]. In practice, field surveys and aerial photographs are
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widely used to obtain urban tree canopy data [8–10]; however, these methods are time-consuming and
expensive, and thus, usually cannot provide timely and/or complete coverage of large areas.

Satellite remote sensing allows imaging large areas simultaneously. However, accurately
mapping individual tree crowns using satellite imagery is still difficult in highly heterogeneous
urban landscapes [11,12]. Existing studies that attempted to map the tree canopy cover and leaf area
using satellite imagery are limited to forest areas, especially due to the spatial resolution. Tree extraction
accuracy is particularly problematic in urban landscapes characterized by the heterogeneous mosaics
of small features made up of materials with different physical properties. Given the higher spatial
heterogeneity of urban areas than that of forested areas, further research is required to improve the
mapping accuracy in urban landscapes [11,12].

Satellite imaging sensors have advanced spectral resolution (e.g., Hyperion hyperspectral sensor,
10 nm spectral resolution) and spatial resolution (e.g., IKONOS: 4 m resolution, four spectral bands;
OrbView-2/3: 4 m resolution, four spectral bands; and QuickBird: 2.4 m resolution, four spectral bands).
Unlike in the moderate-resolution satellite imagery (e.g., Landsat, 30 m resolution), individual trees
become visible in high-resolution satellite images. This feature makes satellite imagery a cost-effective
alternative to field surveys and aerial photographs [12].

The primary focus of this study is to explore the potential of high spatial/spectral resolution satellite
imagery for mapping seasonal tree canopy cover in a highly heterogeneous urban landscape with a
large area. For this purpose, we chose a study area of 625 km2 in Tokyo, which has more than 9.3 million
residents and represents the most urbanized district in Japan (Figure 1). For this case, we adopted
the state-of-the-art WorldView-2 and WorldView-3 (WorldView-2/3) satellite imagery. Based on a
simple pixel-based classification method, the tree canopy was isolated from non-vegetation land cover.
These analyses were performed bi-seasonally during the leaf-on season (spring/summer) and the
leaf-off season (autumn/winter) to assess the mapping accuracy throughout the year. In addition,
we conducted field surveys of the urban tree leaf area index (LAI; m2 m−2) to develop a simple model
to directly map the tree leaf area from the WorldView-2/3 imagery. The LAI surveys were conducted
during the leaf-on and leaf-off seasons to test if there were any seasonal and/or tree phenology effects
on the model developed. The in situ LAI data were obtained from the 10 dominant tree species in
Tokyo to evaluate whether any specific tree species affected the accuracy of the leaf area estimates.

The significant contributions of this study to the literature can be summarized as follows:
(1) the performance of high-resolution (2 m resolution) multispectral (eight band) satellite imagery
(WorldView-2/3) was studied to identify and map urban trees based on a simple pixel-based classification
method, (2) the mapping results were compared with the tree canopy cover derived from aerial
photography over an urban area (625 km2 in Tokyo), and (3) a simple approach was developed to
estimate tree leaf area over the urban landscape in different tree phenological seasons.

2. Materials and Methods

2.1. Study Area

The study area covers the entire urban area of Tokyo metropolis, the capital of Japan. This area,
named the special wards, houses conterminous 23 municipalities (wards) that together make up the
core and the most populous single city of Tokyo metropolis, and also of Japan (Figure 1). The population
is approximately 9.3 million people in an area of 625 km2 according to the 2015 National Population
Census [13]. Each of the 23 municipalities has an average area of 27.2 km2 (range: 10.1–58.0 km2).
The topography is fairly flat. The area experiences a humid subtropical climate, with the mean annual
temperature of 15 ◦C and the mean annual precipitation of 1500 mm yr−1 [13]. Land cover comprises
various types of anthropogenic features (e.g., asphalt, concrete, and roof materials) intersecting with
the semi-natural environment (e.g., trees, grass, soil, and water). Trees are mainly located within the
parks, residential areas, and along the streets, thereby representing a typical distribution of trees in an
urban area.
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Figure 1. (a) Study area superimposed on the population density map of Tokyo according to the 2015 
National Population Census. The area surrounded by the black lines with high population density 
indicates our study area of 23 municipalities (Tokyo special wards). (b) Location and name of each 
municipality (special ward). The maps were generated using MATLAB R2018b. 

2.2. WordView-2 and WorldView-3 (WorldView-2/3) Datasets 

Cloud-free WorldView-2/3 images (DigitalGlobe, Inc., USA) acquired during different tree 
phenology periods were used in this study (Table 1). In Tokyo, April to September are considered 
spring and summer months belonging to the “leaf-on season” when most trees develop a green 
canopy, while October to March are autumn and winter months belonging to the “leaf-off season” 
when the leaves of deciduous trees begin changing color and falling. As the image acquisition dates 
were selected based on the data availability and cloudless sky conditions over the site, one pair of 
images for both leaf-on and leaf-off seasons were not available for the same year. 

We used the WorldView-2/3 datasets of eight multispectral bands with 2 m ground sample 
distance, including Coastal (Band 1; 400–450 nm), Blue (Band 2; 450–510 nm), Green (Band 3; 510–580 
nm), Yellow (Band 4; 585–625), Red (Band 5; 630–690 nm), Red Edge (Band 6; 705–745), NIR1 (Band 
7; 770–895 nm), and NIR2 (Band 8; 860–1040 nm). The satellite has a swath width of 13.1 km. We 
obtained the WorldView-2/3 satellite imagery for the entire study area by merging the sets of 
cloudless images for each season (Figure 2a,b). 

The WorldView-2/3 images were subjected to atmospheric and geometric corrections before 
processing and classification. Each multispectral digital number image was converted to Top of 
Atmosphere (TOA) radiance based on the radiometric calibration parameters and the standard 
correlation formula [14,15]. For each band, surface reflectance was generated based on the sensor 
response function and specific atmospheric conditions. The datasets were orthorectified and 
projected to the WGS-84 UTM Zone 54N system. 

  

Figure 1. (a) Study area superimposed on the population density map of Tokyo according to the 2015
National Population Census. The area surrounded by the black lines with high population density
indicates our study area of 23 municipalities (Tokyo special wards). (b) Location and name of each
municipality (special ward). The maps were generated using MATLAB R2018b.

2.2. WordView-2 and WorldView-3 (WorldView-2/3) Datasets

Cloud-free WorldView-2/3 images (DigitalGlobe, Inc., Westminster, CO, USA) acquired during
different tree phenology periods were used in this study (Table 1). In Tokyo, April to September are
considered spring and summer months belonging to the “leaf-on season” when most trees develop
a green canopy, while October to March are autumn and winter months belonging to the “leaf-off

season” when the leaves of deciduous trees begin changing color and falling. As the image acquisition
dates were selected based on the data availability and cloudless sky conditions over the site, one pair
of images for both leaf-on and leaf-off seasons were not available for the same year.

We used the WorldView-2/3 datasets of eight multispectral bands with 2 m ground sample distance,
including Coastal (Band 1; 400–450 nm), Blue (Band 2; 450–510 nm), Green (Band 3; 510–580 nm),
Yellow (Band 4; 585–625), Red (Band 5; 630–690 nm), Red Edge (Band 6; 705–745), NIR1 (Band 7;
770–895 nm), and NIR2 (Band 8; 860–1040 nm). The satellite has a swath width of 13.1 km. We obtained
the WorldView-2/3 satellite imagery for the entire study area by merging the sets of cloudless images
for each season (Figure 2a,b).

The WorldView-2/3 images were subjected to atmospheric and geometric corrections before
processing and classification. Each multispectral digital number image was converted to Top of
Atmosphere (TOA) radiance based on the radiometric calibration parameters and the standard
correlation formula [14,15]. For each band, surface reflectance was generated based on the sensor
response function and specific atmospheric conditions. The datasets were orthorectified and projected
to the WGS-84 UTM Zone 54N system.
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Table 1. Detailed information on WorldView-2/3 imagery used in this study.

Phenological
Image Category Satellite Photographed

Date
Solar Azimuth

Angle (Deg)
Solar Altitude

(Deg)
Observation Angle

(In Track) (Deg)
Observation Angle
(Cross Track) (Deg)

Image Location
in Figure 2

Leaf-on season

WorldView-2 18 October 2016 162.3 43.1 −2.8 3.0 (1)
WorldView-2 26 October 2016 165.1 40.7 −2.3 −5.1 (2)
WorldView-2 26 October 2016 165.2 40.7 9.1 −5.4 (3)
WorldView-3 13 October 2013 164.1 45.5 11.5 18.8 (4)
WorldView-3 22 September 2014 150.7 51.2 −7.4 −3.2 (5)
WorldView-2 01 November 2015 167.7 39.4 13.7 −6.8 (6)

Leaf-off season

WorldView-2 14 February 2017 156.6 38.4 6.0 −3.2 (7)
WorldView-2 04 April 2017 147.1 56.0 −8.2 10.8 (8)
WorldView-2 21 January 2016 158.1 31.3 −8.3 −4.1 (9)
WorldView-2 13 January 2014 165.4 31.7 16.5 −4.9 (10)
WorldView-2 21 February 2013 162.8 42.4 7.1 −10.8 (11)
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Figure 2. WorldView-2/3 imagery used in this study for (upper panels: (a) leaf-on season and (lower 
panels: (b) leaf-off season. The yellow areas in (a) and (b), respectively, represent the sites where leaf 
area index (LAI; m2 m−2) field measurement was conducted in each season (A1–A3 and B1–B3). The 
green plots illustrate the LAI field measurement points. Aerial photograph inspection in (A2 and B2) 
and field investigation in (A3 and B3) were conducted to assess the accuracy of tree mapping results 
from WorldView-2/3 imagery. Satellite imagery from DigitalGlobe Products. (a, A1, b, and B1–B3) 
WorldView2 © 2020 DigitalGlobe, Inc., a Maxar company. (a, A2, and B3) WorldView3 © 2020 
DigitalGlobe, Inc., a Maxar company. 

2.3. Tree Canopy Extraction from Background 

After merging the WorldView-2/3 images and performing radiometric calibration, we separated 
the land cover into categories. A multiple stepwise masking procedure using the bi-modal histogram 
threshold method was employed to extract the tree crowns from the remaining background [16]. 
Figure 3 illustrates the segmentation procedure that consists of six steps. Here, a pixel-based 
classification was performed [17]. 

First, we selected the training sample pixels from 12 categories: eight non-vegetation (soil, sand, 
asphalt/concrete, high-rise building, low-rise building, water, shaded non-vegetation, and high 
Normalized Difference Vegetation Index (NDVI) non-vegetation), and four vegetation (tree canopy, 
dense grass, sparse grass, and shaded vegetation) categories. More than 1500 training samples per 
image were chosen almost equally for each land category, fulfilling the accuracy requirement of the 
decision tree methods for land cover classification [18]. Training samples were randomly selected in 
the study area to avoid spatial bias. 

After the training samples were obtained, we used the normalized difference index (𝑁𝐷𝐼 =(𝐵𝑎𝑛𝑑 𝐴 − 𝐵𝑎𝑛𝑑 𝐵) (𝐵𝑎𝑛𝑑 𝐴 + 𝐵𝑎𝑛𝑑𝐵)⁄ ) as a classifier to distinguish each pixel into different land 
categories. Bands A and B are, respectively, the reflectance data of the WorldView-2/3 spectral bands. 
We produced a pixel number histogram of the NDI values calculated from two different land 
categories. All 64 possible band combinations of the eight spectral WorldView-2/3 bands were tested 

Figure 2. WorldView-2/3 imagery used in this study for (upper panels: (a) leaf-on season and (lower
panels: (b) leaf-off season. The yellow areas in (a) and (b), respectively, represent the sites where
leaf area index (LAI; m2 m−2) field measurement was conducted in each season (A1–A3 and B1–B3).
The green plots illustrate the LAI field measurement points. Aerial photograph inspection in (A2 and B2)
and field investigation in (A3 and B3) were conducted to assess the accuracy of tree mapping results
from WorldView-2/3 imagery. Satellite imagery from DigitalGlobe Products. (a, A1, b, and B1–B3)
WorldView2 © 2020 DigitalGlobe, Inc., a Maxar company. (a, A2, and B3) WorldView3 © 2020
DigitalGlobe, Inc., a Maxar company.

2.3. Tree Canopy Extraction from Background

After merging the WorldView-2/3 images and performing radiometric calibration, we separated
the land cover into categories. A multiple stepwise masking procedure using the bi-modal histogram
threshold method was employed to extract the tree crowns from the remaining background [16]. Figure 3
illustrates the segmentation procedure that consists of six steps. Here, a pixel-based classification was
performed [17].

First, we selected the training sample pixels from 12 categories: eight non-vegetation (soil, sand,
asphalt/concrete, high-rise building, low-rise building, water, shaded non-vegetation, and high
Normalized Difference Vegetation Index (NDVI) non-vegetation), and four vegetation (tree canopy,
dense grass, sparse grass, and shaded vegetation) categories. More than 1500 training samples per
image were chosen almost equally for each land category, fulfilling the accuracy requirement of the
decision tree methods for land cover classification [18]. Training samples were randomly selected in
the study area to avoid spatial bias.

After the training samples were obtained, we used the normalized difference index
(NDI = (Band A− Band B)/(Band A + BandB)) as a classifier to distinguish each pixel into different
land categories. Bands A and B are, respectively, the reflectance data of the WorldView-2/3 spectral
bands. We produced a pixel number histogram of the NDI values calculated from two different
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land categories. All 64 possible band combinations of the eight spectral WorldView-2/3 bands were
tested to determine an appropriate band from the two sets (Bands A and B) for obtaining a bi-modal
(two-peak) NDI histogram. Subsequently, a splitting variable (threshold) around the bottommost
point (valley) of the bi-modal NDI histogram was determined manually by visual inspection. The NDI
values of 64 different band combinations were tested at each classification step, and the classification
performance was optimized by trial-and-error. Tree canopy land cover map was produced based on
the best result.

Since we were not successful at distinguishing the vegetation type in the shaded area, we calculated
the total area of the shaded tree canopy cover using the ratios of the vegetation categories as follows:
Tshadow = Vshadow × (Tsunlit/Vsunlit), where Tshadow and Tsunlit are the percent tree canopy cover (%) in
shadow and sunlit areas, respectively; Vshadow and Vsunlit are the percent vegetation cover (%) in shadow
and sunlit areas, respectively. We assumed that the ratios of the vegetation categories in shadow and
sunlit areas are approximately the same in a large area.
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2.4. Reference Data of Tree Canopy Cover

Vegetation maps obtained from the field surveys and aerial photographs were used as a reference
to test the accuracy of the output of our WorldView-2/3 image classification analysis.

2.4.1. Field Investigation

We surveyed the vegetation cover in an urban park of 0.3 km2, which is located in Koto-ward
in December 2016 (Figure 2, B3). Hardcopies of the WordView-2 images acquired in both the leaf-on
and leaf-off seasons were brought to the field to locate the tree crown and also to confirm the tree
types. We classified the trees with height >2 m as “tall” and <2 m as “small.” We manually outlined
the vegetation in the WordView-2 image and created a 2D polygon map of eight vegetation types
(six tree types and dense/sparse grass). The image analysis was conducted using ArcGIS (Ver. 10.3.1;
Environmental Systems Research Institute, Inc., Redlands, CA, USA).
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2.4.2. Aerial Photograph Interpretation

We used one scene of the true color GEOSPACE digital aerial photographs with 0.25 m spatial
resolution acquired in March 2013. The photograph covered 3.0 km2 of a dense urban setting
with many high-rise buildings around the Tokyo metropolitan government office in Shinjuku-ward
(Figure 2, B2). We manually created 2D polygons of each vegetation land cover category (tree canopy,
grass, and shaded vegetation) in the aerial photograph by visual inspection using ArcGIS.

2.4.3. Tokyo Green and Water Coverage Ratios (Tokyo GWC-Ratio Data) Based on Aerial
Photograph Interpretation

The green and water coverage ratios in Tokyo special wards (our study area) have been surveyed
every five years since 2003 by the Tokyo metropolitan government. This data (called Tokyo GWC-ratio
data hereafter) were created to calculate and monitor the ratio of the total area of parks, water surfaces,
and ground surfaces covered by greenery in the entire region. The land cover map of tree canopy and
grass were surveyed in the leaf-on season. We used the 2013 data to assess the accuracy of our image
classification results obtained for the leaf-on season only.

The method adopted to analyze the green coverage data is based on the extraction of features of
interest (tree canopy and grass) from aerial photographs by visual inspection. The aerial photographs
covered all Tokyo special wards (approx. 625 km2) with the ground resolution of no less than 0.2 m.
The photographs for the 2013 data (and also 2018 data) were taken in November of the preceding
year for both datasets. Tree canopy and grass areas were delineated by visual inspection by enlarging
the photographs to a scale of 1:1000 so that a 1 m2 object on the ground could be visible in a 1 mm2

area on the computer screen. Therefore, every single tree and a patch of grass larger than 1 m2 were
delineated. The areas of tree and grass were digitized as a polygon layer and saved as a shape file in
ArcGIS. In case the ground object was difficult to identify due to some cloud and shadow interruptions,
the analyst conducted an on-site visit for confirmation. Cultivated areas of farmlands, and algae and
weed in rivers and lakes were excluded.

The shape of the tree canopy in streets and parks is relatively constant due to the forest management
by local authorities. According to the Tokyo GWC-ratio data, there is only a small difference (−0.2%)
between the 2013 to 2018 data on the ratio of tree canopy coverage in the special wards. Thus, it is
likely that no significant tree canopy size and leaf area changes can occur from the date of the satellite
imagery data (between 2013 and 2017) to the date of the reference data (December 2016 for the field
investigation, March 2013 for the aerial photograph interpretation, and November 2012 for the 2013
Tokyo GWC-ratio data). This was also proved in the field survey and aerial photographs; trees were
mostly identified at the same position as in the WordView-2/3 images with similar crown sizes.

2.5. Approximate Model for the Relationship between Leaf Area Index (LAI)–Vegetation Indices (VI)

To infer LAI from the WordView-2/3 imagery, we developed an approximate model to evaluate the
relationship between the vegetation index (VI) and in situ leaf area index (LAI; m2 m−2) measurement
data. Then, this model was used to calculate the pixel-based tree canopy LAI from the corresponding
VI data. The LAI is the total one-sided leaf area per unit ground surface [19].

Several studies have developed LAI prediction models using vegetation indices (VI) for a variety
of vegetation cover, including grasslands and trees [20,21]. The NDVI = ((NIR− red)/(NIR + red) ),
which is the most widely used VI, quantifies the response of the vegetation to near-infrared reflectance
(NIR) and red absorption [22,23]. The red and NIR of the WordView-2/3 data correspond to spectral
bands Band 5 and Band 7, respectively. The NDVI is recognized as the most stable vegetation index for
estimating the LAI [24,25], yet the methodological limitation of the VI and notably the NDVI were
shown by Pinty et al. [26]. Thus, in this study, four different additional vegetation indices, which have
also been widely applied in the literature to derive LAI, were examined (Table 2). The red edge of the
WordView-2/3 data correspond to spectral band, Band 6. The VI obtained with different extraction
methods was tested to evaluate the relationship between the VI and LAI measurement data. We tested
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two VI-extraction window sizes (1, 3 × 3) close to the LAI measurement point, i.e., a VI value acquired
from (1), which is the closest pixel to the LAI measurement point, and (2) a block of nine (3 × 3) pixels
constituted with the closest pixel to the LAI measurement point at the center and its surrounding eight
pixels. For the 3 × 3 extraction window, we tested two values of each VI (mean and maximum) for
comparison with the LAI data at the center of those nine pixels.

The LAI–VI approximate model was then developed for both the leaf-on and leaf-off seasons.
We optimized the model parameters to achieve 1:1 ratio between the estimated LAI and the observed
LAI to avoid overestimation.

Table 2. Vegetation indices considered in this study that concern prediction of leaf area index (LAI).

Vegetation Indices Algorithm Abbreviation Reference

Normalized Difference Vegetation Index (NIR − red)/(NIR + red) NDVI [27]
Red Edge NDVI (NIR − Red edge)/(NIR + Red edge) RE−NDVI [28]

Wide Dynamic Range Vegetation Index (0.1 × NIR − Red)/(0.1 × NIR + Red) WDRVI1 [29]
Wide Dynamic Range Vegetation Index (0.2 × NIR − Red)/(0.2 × NIR + Red) WDRVI2 [29]

2-Band Enhanced Vegetation Index 2.5 × (NIR − Red)/(NIR + 2.4 × Red + 1) EVI2 [30]

2.6. In Situ Tree LAI Measurement

We measured the tree canopy LAI (m2 m−2) for Ginkgo biloba, Cornus florida, Prunus spp.,
Acer buergerianum, Zelkova serrata, Platanus spp., Cinnamomum camphora, Lithocarpus edulis, Morella rubra,
Magnolia kobus as these are the 10 species most commonly planted in Tokyo special wards. Several other
species found in the field were also measured. The LAI data was collected from evergreen and
deciduous trees for the leaf-on season, and from evergreen trees for the leaf-off season. A LAI-2200
plant canopy analyzer (LI-COR Biosciences Inc., Lincoln, NE, USA) was used for the tree canopy
LAI measurement in the field (Supplementary Material Figure S1). LAI measurement points were
deployed over three areas in Figure 2 (A1 and B1, A2 and B2, A3 and B3) for the leaf-on and leaf-off

seasons, respectively. The exact location of the LAI measurement points was recorded by GPS
to allow subsequent extraction of the nearby VI value from satellite images. A field survey was
conducted in each area in 2018, in the same month when the satellite image of each respective area was
photographed. A total of 386 and 268 tree canopy LAI data points were collected in the leaf-on and
leaf-off seasons, respectively.

All the LAI measurements were conducted on either cloudy days, soon after the sunrise, or soon
before the sunset, to avoid measurement errors, which may be caused by direct sunlight [31]. Moreover,
the operator always stood between the sensor and the sun to conduct measurements under the same
light conditions to reduce measurement bias. To shield the hemispherical sensor of the plant canopy
analyzer from the operator and any objects except trees, we only used the data obtained within a front
azimuth angle between 0◦ and 30◦ and a vertical zenith angle between 0◦ and 43◦ in accordance with
the procedure suggested by Dufrêne and Bréda [32]. Each LAI data point represents an average of five
measurements taken under a single tree canopy, and additional one measurement of above-canopy
radiation taken in the nearby open space as a reference. Incidentally, it is likely that the in situ LAI
data include some contribution of woody elements, so-called plant area index, rather than an actual
leaf area index [7]. Thus, we measured the LAI of leafless trees (i.e., the woody element only) in winter
to evaluate the degree of overestimation in the LAI data obtained by the plant canopy analyzer.

All the statistical analyses in this study were performed using MATLAB (Ver. 2018b, The MathWorks,
Inc., Natick, MA, USA) and BullCurve for Excel (Ver. 3.4.3, Social Survey Research Information Co.,
Ltd., Tokyo, Japan).

2.7. LAI Estimates Using Landsat5-TM and Landsat8 Satellite Data

We also estimated the tree canopy leaf area using Landsat5-TM and Landsat8 imagery
(30 m resolution). For this purpose, we adopted a previously reported LAI−NDVI relationship:
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LAI = 0.419eNDVI/0.270 for Landsat5-TM imagery derived from a broad-leaved forest area in Japan [33],
and LAI = 3.440eNDVI

− 3.380 for Landsat8 imagery derived from an urban park tree canopy in
South Korea [34]. Landsat5-TM imagery was acquired on 11 October, 2010, and Landsat8 imagery
was acquired on 27 October, 2016. The season of image acquisition was chosen to coincide with
the WorldView-2 imagery, which was acquired on 27 October 2016, for a more accurate comparison.
Cloudless images were selected. The Landsat scenes were obtained from the United States Geological
Survey (USGS) Earth Explorer website (https://earthexplorer.usgs.gov/). The multispectral digital
numbers were converted using the conversion coefficients provided by the Landsat metafiles to obtain
Top of Atmosphere (TOA) spectral reflectance. Band 4 (Red) and Band 5 (NIR) of the Landsat scene
were used to calculate the NDVI for the LAI estimates.

3. Results

3.1. Determination of Masking Thresholds and Band Combinations for Tree Canopy Extraction

In total, five land cover classes (tree, grass, shaded vegetation, non-vegetation, and shadow/water)
were produced following the stepwise masking approach and determining the ideal NDI band
combinations and thresholds (see Section 2.3). Table 3 shows the optimized two-band combinations
for obtaining the bi-modal NDI histogram and thresholds for each classification step. The bi-modal
NDI histograms obtained for each satellite imagery is shown in the Supplementary Material section
in Figure S2 for the leaf-on season, and Figure S3 for the leaf-off season. First, the land surface was
separated with the NDI calculated from Band 5/Band 7, namely NDVI. In areas with a high NDVI,
some pixels were non-vegetation pixels. Thus, in the second step, those non-vegetation pixels in the
high NDVI areas were excluded using the NDI calculated from Band 5/Band 6. In the third step,
the NDI calculated from Band 1/Band 3 clearly separated the tree canopy and grass, using the same
threshold value (0.2) for both the leaf-on and leaf-off seasons. In the fourth step, the dense grass
and sparse grass was separated. In the fifth and sixth steps, the vegetation was extracted from the
area of low NDVI pixels that was obtained in the first step. Here, to distinguish the vegetation and
non-vegetation in the shadow area, the threshold value was a key factor that strongly affected the
classification accuracy. Hence, we manually determined an optimum threshold value for each satellite
image that produced the best classification result for extracting vegetation data in the shadow area.
We were not successful in distinguishing the types of vegetation (tree canopy and grass) in the shadow
area because of the weak spectral capability.

Table 3. Band combinations and threshold variables determined for image classification.

Classification
Step Classification Category

Normal
Differential
Index (NDI)

Threshold Season Image No. In
Figure 2

1 (high NDVI)/(low NDVI) Band5−Band7
Band5+Band7 −0.28

leaf-on (1)–(6)

leaf-off (7)–(11)

2
(vegetation)/(high NDVI

non-vegetation)
Band5−Band6
Band5+Band6 −0.12

leaf-on (1)–(6)

leaf-off (7)–(11)

3 (tree canopy)/(grass) Band1−Band3
Band1+Band3 0.2

leaf-on (1)–(6)

leaf-off (7)–(11)

4 (dense grass)/(sparse grass) Band5−Band8
Band5+Band8 −0.58

leaf-on (1)–(6)

leaf-off (7)–(11)

5
(non-vegetation in

sunlight)/(shadow and water)
Band1−Band6
Band1+Band6 0.45

leaf-on (1)–(6)

leaf-off (7)–(11)

6
(shaded vegetation)/(shaded

non-vegetation)
Band5−Band7
Band5+Band7

0.01
0.02
0.11
0.14

leaf-on (1) and (2)
(3)–(6)

leaf-off
(7)–(9)

(10) and (11)

https://earthexplorer.usgs.gov/
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3.2. Accuracy Assessment

Figures 4 and 5 present the resultant classification maps of vegetation (tree, grass, and shaded
vegetation) using the pixel-base classification method in the leaf-on and leaf-off seasons, respectively.
The mapping results we obtained from WordView-2/3 (Figure 4(a3,b3), and Figure 5(a2,b2)), agree with
the vegetation maps generated from aerial photographs (Figure 4(a2,b2), and Figure 5(a1)), and field
investigations (Figure 5(b1)). The overall difference of the tree canopy cover was less than 5.5% (Table 4).
However, those two sites show only a small area and do not therefore fully represent the land cover
in the entire study area. Thus, we made a comparison across municipalities for a comprehensive
accuracy assessment. The tree canopy cover was found to be in good agreement with the Tokyo
GWC-ratio data showing ±5% difference overall and 1.2% difference for the entire Tokyo special-ward
area (Supplementary Table S1). Figure 6 shows a summary of the overall classification accuracy.
The classification result achieved nearly 1:1 ratio against the validation data from field investigation
and aerial photograph interpretation. Thus, the classification accuracy was nearly equal in the study
area and sufficient for a comprehensive assessment of the tree canopy cover with a margin of difference
of 5.5% at 3.0 km2 small district level, 5.0% at 60.9 km2 municipality level, and 1.2% at 625 km2 city
level (Supplementary Table S1), compared to aerial photograph interpretation.
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Figure 4. Mapping results of vegetation in the test area shown in Figure 2 (A2 and B2) for leaf-on
season (upper panels: a1–a3) and leaf-off season (lower panels: b1–b3). The areas enclosed by
yellow lines are places where the comparisons were performed. (a1) Aerial photograph taken in
May 2012 (leaf-on season). (a2) Tree canopy cover (purple) and grass (green) based on the Tokyo
Green and Water Coverage ratios data (Tokyo GWC-ratio data) derived from aerial photograph
interpretation. (b1) Aerial photograph taken in March 2013 (leaf-off season). (b2) Manually delineated
tree canopy cover (red) and grass (green). (a3 and b3) Tree canopy cover (red), grass (dense = green;
sparse = light blue), and vegetation in shadow (blue) from the WorldView-2/3 imagery. Satellite imagery
from DigitalGlobe Products. (a2 and a3) WorldView3 © 2020 DigitalGlobe, Inc., a Maxar company.
(b3) WorldView2© 2020 DigitalGlobe, Inc., a Maxar company. (a1, b1, and b2) Aerial photograph©
NTT GEOSPACE CORPORATION.
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Figure 5. Mapping results of vegetation in the test area shown in Figure 2 (A3 and B3). (a1) Map of
the tree canopy (purple) and grass (green) based on the Tokyo GWC-ratio data. (b1) Vegetation cover,
which was manually delineated based on field observations. (a2 and b2) Vegetation cover estimated
from WorldView-2/3 imagery. The areas enclosed by yellow lines represent where the comparisons were
performed. Satellite imagery from DigitalGlobe Products. (a1 and a2) WorldView3© 2020 DigitalGlobe,
Inc., a Maxar company. (b1 and b2) WorldView2© 2020 DigitalGlobe, Inc., a Maxar company.

Table 4. Classification accuracy of tree canopy cover (%) from WorldView-2/3 imagery for two test
areas in Figures 4 and 5.

Region Area Season Tree Canopy Cover Ratio Difference

WorldView-2/3
imagery Field investigation Tokyo GWC-ratio

data

Figure 4 0.3 km2 Leaf-on 42.4% — 36.9% 5.5%
Leaf-off 22.0% 24.0% — 2.0%

WorldView-2/3
imagery Aerial photograph Tokyo GWC-ratio

data

Figure 5 3.0 km2 Leaf-on 11.9% – 8.4% 3.5%
Leaf-off 7.5% 6.8% — 0.7%
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Figure 6. Image classification performance for tree canopy cover estimation. The plots represent the
ratio of tree canopy cover (%) estimated for various areas (two test areas, each of 23 municipalities in
Tokyo special-wards, and all Tokyo special wards) in comparison with the respective verification data
derived from the field survey and aerial photographs.

3.3. Tree Canopy LAI Mapping from VI

The measured LAI from the three sites ranged between 1.9 and 10.7 m2 m−2 (N = 386, mean ± SD
= 5.4 ± 2.0) for the leaf-on season and between 1.8 and 9.7 m2 m−2 (N = 268, mean ± SD = 4.6 ± 1.3)
for the leaf-off season, respectively. The LAI data followed a normal distribution for both the leaf-on
season (χ2 = 23.6, 2 df, p < 0.001) and the leaf-off season (χ2 = 18.1, 2 df, p < 0.001). Among the four VI
extraction methods examined herein (Section 2.5), the maximum VI selected within a block of nine
pixels (3 × 3) showed the highest correlation with the LAI data (Supplementary Material Figure S4,
a11–a15 for the leaf-on season, and b11–b15 for the leaf-off season). The Red Edge NDVI (RE−NDVI)
was not correlated with LAI. The relationship between the maximum VI (except RE−NDVI) and the
observed LAI data was equal during the leaf-on seasons (Spearman’s rank correlation coefficient,
R = 0.44), yet the NDVI showed a slightly better relationship during the leaf-off season (Spearman’s
rank correlation coefficient, R = 0.34 for NDVI, and R = 0.30 for WDRVI and EVI2).

As an example of the LAI−VI relationship, Figure 7 (a1 and b1) shows the relationship between
the maximum NDVI and the observed LAI data for each tree species. The LAI values converge
to the value of 2 when the NDVI values decrease. This result agrees with our observation for the
leafless trees during the leaf-off season that showed an LAI value of 1.8 ± 0.4 m2 m−2 (mean ± SD,
N = 39). Thus, the LAI estimates derived using the plant canopy analyzer include an overestimation
of 1.8 m2 m−2 caused by the misdetection of the woody elements (i.e., tree trunk and branches) as
leaves. Accordingly, we subtracted this overestimation from the observed LAI data and obtained the
LAI−NDVI approximate model for the leaf-on season (LAI = 0.1eNDVI/0.179) and the leaf-off season
(LAI = 0.1eNDVI/0.188) (Figure 7, a1 and b1). The LAI was saturated at an NDVI of 0.8 for both the
seasons, and thus, the applicability of these models was uncertain at an NDVI > 0.8. Hence, we replaced
the NDVI values > 0.8 with 0.8 to estimate the LAI. The same was true for the other VI, where the
VI values appeared to saturate at −0.15 for the WDRVI1, 0.2 for the WDRVI2, and 1.6 for the EVI2,
respectively (see Supplementary Material Figure S4, a11–a15 for the leaf-on season, and b11–15 for the
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leaf-off season). Therefore, the maximum VI value for each LAI−VI model was set to that respective
saturation VI value (Supplementary Material Table S2).

Figure 7(a2,b2) shows the observed LAI data in association with the estimated LAI using the
LAI−NDVI approximate model as an example of the accuracy achieved from the LAI−VI model.
The 1:1 ratio between the observed and estimated LAI is an expected outcome because the LAI−NDVI
approximate model was adjusted manually to obtain this result (for detail see Section 2.5). Even some
plots in Figure 7(a2,b2) were out of the 95% prediction interval, large errors were not caused by a
particular tree species. Similarly, there was no significant difference between the estimated LAI and
observed LAI for most tree species (Figure 7c). The root-mean-square errors (RMSEs) for the estimated
LAI for leaf-on/leaf-off seasons were 2.11/2.41, 2.54/2.30, 2.35/1.93, and 2.34/1.86 for LAI−NDVI,
LAI−WDRVI1, LAI−WDRVI2, and LAI−EVI1, respectively (Supplementary Material Table S2).

Figure 8b presents an example of the LAI map generated using the LAI−NDVI approximate
model. Here, we calculated LAI in pixel i by sequentially executing the following code through all the
pixels defined as tree canopy using the image classification:

LAI(i) = A ∗ e(maxVI(i)/B) (1)

where, A and B are the specific coefficients for each LAI−VI model as shown in Supplementary Material
Table S2. The maxVI (i) value is the maximum VI within a block of nine pixels with pixel i at the center.
As a result, the estimated total leaf area in Tokyo special wards in the leaf-on season was twice that
in the leaf-off season. Table 5 presents the summary of the estimated results for the entire area and
the subarea illustrated in Figure 8 with the dense tree canopy covering most of the ground. For both
areas, the total leaf area for the WorldView-2/3 results was higher than the Landsat5-TM and Landsat8
results. The same was true for the entire Tokyo special-ward area: the total leaf area estimated from
WorldView-2/3 was 1.9–6.2 times higher than the Landsat5-TM and Landsat8 results (Table 5).
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Figure 7. Performance of the LAI−NDVI (Normalized Difference Vegetation Index) approximate model
developed for both the leaf-on and leaf-off seasons. (a1 and b1) Scatter plots of vegetation index (NDVI)
vs. observed leaf area index (LAI; m2 m−2). The line represents the LAI−NDVI approximate model
derived from the maximum NDVI and observed LAI data. (a2 and b2) Estimated LAI vs. observed
LAI. The y = 1.00x line is fitted. (c) Box plots of comparison between observed LAI and estimated LAI
for each species.
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Figure 8. Example of mapping results of tree canopy leaf area in the test area shown in Figure 2 (A1 and
B1). (a) Vegetation cover according to the Tokyo GWC-ratio data based on aerial photograph. Estimated
map of tree leaf area index (LAI; m2 m−2) for leaf-on season (b) and leaf-off season (c). Satellite imagery
from DigitalGlobe Products. (a–c) WorldView2© 2020 DigitalGlobe, Inc., a Maxar company.
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Table 5. Comparison of the total tree canopy leaf area (km2) estimated in Figure 8 and all Tokyo special wards from the satellite images (WorldView-2/3, Landsat5-TM,
and Landsat8) and the respective LAI−VI models.

Satellite Imagery Date

Entire Region
of Figure 8 Tree Colony Region in Figure 8 All Tokyo Special Wards

LAI−VI model Ref
Leaf Area Mean LAI ± SD Leaf Area Mean LAI ± SD Leaf Area Mean LAI ± SD

(km2) (m2 m−2) (km2) (m2 m−2) (km2) (m2 m−2)

WorldView-2 *

4.4 2.4 ± 2.4 0.2 5.5 ± 1.4 632.6 1.1 ± 1.6 LAI = 0.100eNDVI/0.179

(NDVI range: 0–0.8)

4.8 2.6 ± 3.2 0.3 6.8 ± 2.9 632.8 1.0 ± 1.8 LAI = 27.5eWDRVI1/0.167

(WDRVI1 range: < −0.15)

4.8 2.6 ± 3.0 0.2 6.4 ± 2.4 648.7 1.0 ± 1.7 LAI = 4.0eWDRVI2/0.217

(WDRVI2 range: < 0.2)

4.6 2.5 ± 3.0 0.2 6.5 ± 2.3 553.2 0.9 ± 1.8 LAI = 0.05eEVI2/0.307

(EVI2 range: 0–1.6)

Landsat5-TM 11 October
2010 2.3 1.2 ± 1.2 0.1 4.0 ± 0.4 298.0 0.5 ± 0.5 LAI = 0.419eNDVI/0.27 [2]

Landsat8 27 October
2016 1.3 0.7 ± 0.8 0.1 2.4 ± 0.2 104.0 0.2 ± 0.4 LAI = 3.44eNDVI

− 3.38
(LAI range: > 0)

[3]
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4. Discussion

In this study, we aimed to develop a method to identify the small patches of individual trees in a
highly urbanized landscape at the mega-city scale, which is seldom studied. We selected the entire
urban area of Tokyo (special wards consisting of 23 municipalities) as the study area and utilized the
high-resolution WorldView-2/3 satellite imagery to map and estimate the leaf area of the tree canopies.
Land coverage of trees by pixel-based image classification was estimated with less than 5.5% difference
from the test areas where the field surveys and aerial photograph interpretation were performed.
At the municipality scale, the tree canopy cover was estimated with ± 5% difference from the Tokyo
GWC-ratio data derived from the aerial photograph interpretation.

Once the tree canopy was identified, we developed a simple method to estimate their leaf area.
The results revealed a relationship between the in situ LAI measurement data and the three VI data
(NDVI, WDRVI, and EVI2, except the RE−NDVI) from the WorldView-2/3 imagery. The maximum VI
selected within a block of nine pixels (3 × 3) was the only one to produce a significant relationship
with the LAI data. The others (a VI value at the nearest pixel to the LAI measurement point and
the average VI of the nine-pixel (3 × 3) window with the LAI measurement point at the center pixel)
were not correlated with the LAI (see Supplementary Material Figure S4). The major reason for their
weak LAI−VI relationships can be the effect of geolocation uncertainties in the satellite images and
the uneven illumination on the tree crown caused by the shaded and unshaded areas. The rounded
shape of an individual tree crown may cause variations in canopy illumination. These variations can
be detected in high spatial resolution satellite imagery (2 × 2 m) and may have a significant influence
on spectral reflectance. Shadows have lower reflectance intensity than unshaded areas and can cause
the VI values to become lower than their actual values. Hence, if the shaded area is included within
a block of 3 × 3 pixels, an average VI value for the window of nine pixels will be unreasonably low.
This can lead to the weak LAI−VI relationships. However, using the maximum VI value within a block
of 3 × 3 pixels means that the VI at the center of the nine pixels is more likely to be chosen from the
unshaded area of the tree crown and, thus, it becomes less affected by the uneven illumination effect.
Hence, we used the LAI−VI relationship based on the maximum VI to calculate the LAI.

We investigated the LAI−VI relationships in two seasons (leaf-on and leaf-off seasons) because
there was a possibility that these relationships are not uniform over the year and might fluctuate
seasonally with the phenological stages of the vegetation [35,36]. In fact, Qiao et al. [25] used the NDVI
from MODIS satellite imagery and found significant LAI−NDVI relationships during the vegetation’s
growing and declining periods, whereas a poor relationship was observed during the flourishing
period. We focused only on the two phenophases, namely the vegetation non-active period during
January–February (except one satellite imagery acquired on April 4) and the vegetation active period
during September–November (corresponding approximately to the “declining period” [25]), and thus,
the other phenological transition stages such as periods of growing and flourishing were neglected
in this study. This might be the reason why the LAI−VI relationships in our results were not visibly
affected by the phenology because the flourishing period (the most uncertain period for the LAI−VI
relationships) was not considered. Additional work is warranted to evaluate more cases in different
seasons for a comprehensive and more accurate assessment.

Using the obtained LAI−VI approximate model, we estimated the tree leaf area over Tokyo’s
23 special wards and also for the area shown in Figure 8 that can be characterized as a typical urban
environment with the built-up area including parks and tree-lined streets. The obtained leaf area from
the WorldView-2/3 imagery was higher than the results suggested in [33,34] (Table 5). The problem
with the lower NDVI values arising from mixed pixels (i.e., a pixel that encompasses vegetation
with different physical properties) was previously documented [37]. Given the relatively larger
pixel size of the Landsat imagery (30 × 30 m) compared to the WorldView-2/3 imagery (2 × 2 m),
the mixed pixel effect was strong in the highly heterogeneous urban environment and thus lowered
the VI and the LAI values accordingly. In fact, the LAI−NDVI relationships proposed by Hoshi et
al. [33] and Kimm et al. [34] were targeted for broad-leaved trees with continuous canopy, and thus,
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their applicability to estimate the leaf area in a highly urbanized landscape with small patches of
individual trees was uncertain. On the contrary, for the same reason, the gap between the results was
smaller for the estimates in the dense tree canopy region (Table 5).

This study only focused on extracting the tree canopy cover and did not consider the differences
in species and vegetation types in the shadow area. In addition, the problem of saturation of VI at
high LAI also needs to be addressed (notably the NDVI in Figure 7 a1 and b1, and for the other VI
see Supplementary Material Figure S4). The VI data are derived from the two-dimensional picture,
and therefore, the VI, notably the NDVI, is known to be less sensitive to high LAI values when
the vegetation is dense [21,24,38]. Thus, the use of VI poses a challenge because the leaf area of an
overlapping canopy and a tall tree is difficult to quantify accurately using the LAI−VI relationship.
There is a need for robust algorithms to fully evaluate the leaf area in the pixels with high VI values.
Although NDVI is one of the most reliable index for estimating LAI [24,39,40], some other vegetation
indices tested in this study (RE−NDVI, WDRVI, and EVI2) are also proposed with their own advantages.
Several new vegetation indices such as the near-infrared reflectance of vegetation (NIRv) [41] are
reported to possess sufficient sensitivity in high-density vegetation areas. Another uncertainty in the
LAI−VI relationship is the effect of understory vegetation. During the LAI measurement, the view
angle was skywards; thus, the vegetation below the sensor (≈1.5 m high in this study) was not
recorded and, therefore, excluded from the ground truth. In a closed dense canopy, the influence of
understory vegetation can be neglected, but in a sparse canopy, understory vegetation can influence
the VI value, which is observed from the sky above [42,43]. In fact, a recent study showed that the
relationship between the LAI and several vegetation indices (including NDVI) improved substantially
when the observation points with understory vegetation were excluded [44]. The extent of the effect of
understory vegetation on this study’s findings should be addressed in a future study to provide more
accurate and consistent LAI estimates.

Our future work will focus on the unsolved issues to produce a more complete leaf area inventory
for the Tokyo urban area. Using multi-temporal data is known to offer a promising increase in the
success rate of mapping urban trees and/or species composition [12,45]. As the WorldView-2/3 satellite
can provide images with near-daily revisit times, future research will also include the evaluation of the
multi-temporal datasets to improve estimation accuracy by mitigating the uncertainties in the seasonal
variations in the LAI−VI relationship caused by the differences in phenology and species type.

5. Conclusions

To the best of our knowledge, only a few studies have conducted the accuracy assessment of tree
canopy cover maps derived from high-resolution (2 m) satellite imagery in mega cities. Our results can
be summarized as follows:

1. The WorldView-2/3 imagery has the ability to map tree canopy cover in a highly heterogenic
urban environment with acceptable accuracy. The error margin of the tree canopy cover can reach
5.5% at the 3.0 km2 small district level, 5.0% at the 60.9 km2 municipality level, and 1.2% at the
625 km2 city level, compared to the values based on aerial photograph interpretation.

2. LAI was estimated with acceptable accuracy for the leaf-on season (September–November,
corresponding to a vegetation declining period in autumn) and the leaf-off season (January–February,
corresponding to a vegetation non-active period in winter) using the LAI−VI relationships.

3. The estimated LAI and the total leaf area in Tokyo urban area was 1.9–6.2 times higher than the
results from the Landsat5-TM and Landsat8 images using the LAI−NDVI relationships reported
in a previous study.

Timely and accurate acquisition of the information on the status and structural changes in urban
forests is crucial to develop strategies for sustainable city development and air quality improvement.
The method developed in this study offers a practical solution to estimate the tree leaf area in
megacity-scale regions in different tree phenology seasons. Maps of the leaf area at the individual



Remote Sens. 2020, 12, 1505 18 of 20

tree scale can improve the understanding of the effect of the ecosystem services/disservices on urban
systems, and enhance the efficiency of green infrastructure investment and implementation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/9/1505/s1,
Table S1: Comparison of the vegetation land cover for each 23 municipalities in Tokyo special wards estimated by
aerial photograph interpretation (Tokyo GWC-ratio data), and WorldView-2/3 imagery classification (this study).
Figure S1: LAI measurement using LAI-2200, Plant Canopy Analyzer. Measurements were made below the
tree canopy at the breast height with the sensor facing upward. Figure S2: Bi-modal histograms used to obtain
the threshold values for image classification (leaf-on season). The histograms are normalized with the total
number of each classification category for each satellite imagery. Figure S3: Bi-modal histograms used to obtain
the threshold values for image classification (leaf-on season). The histograms are normalized with the total
number of each classification category for each satellite imagery. Figure S4: Relationships between the VI and
the observed/estimated LAI for the leaf-on season (upper panels: a) and the leaf-off season (lower panels: b).
Columns (1–5), (6–10), and (11–15) are the relationship between the VI obtained with different extraction methods
and the observed LAI, respectively. The blue line in columns 11, 13, 14, 15 represents LAI–VI approximate
model derived from the maximum VI and observed LAI data. Columns 16, 17, 18, and 19 are performances of
the LAI–VI approximate model developed herein. The y = 1.0x line is fitted. Table S2: The obtained LAI–VI
approximate models.
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