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Abstract: The use of new and modern sensors in forest inventory has become increasingly efficient.
Nevertheless, the majority of forest inventory data are still collected manually, as part of field
surveys. The reason for this is the sometimes time-consuming and incomplete data acquisition
with static terrestrial laser scanning (TLS). The use of personal laser scanning (PLS) can reduce
these disadvantages. In this study, we assess a new personal laser scanner and compare it with a
TLS approach for the estimation of tree position and diameter in a wide range of forest types and
structures. Traditionally collected forest inventory data are used as reference. A new density-based
algorithm for position finding and diameter estimation is developed. In addition, several methods
for diameter fitting are compared. For circular sample plots with a maximum radius of 20 m and
lower diameter at breast height (dbh) threshold of 5 cm, tree mapping showed a detection of 96% for
PLS and 78.5% for TLS. Using plot radii of 20 m, 15 m, and 10 m, as well as a lower dbh threshold
of 10 cm, the respective detection rates for PLS were 98.76%, 98.95%, and 99.48%, while those for
TLS were considerably lower (86.32%, 93.81%, and 98.35%, respectively), especially for larger sample
plots. The root mean square error (RMSE) of the best dbh measurement was 2.32 cm (12.01%) for PLS
and 2.55 cm (13.19%) for TLS. The highest precision of PLS and TLS, in terms of bias, were 0.21 cm
(1.09%) and −0.74 cm (−3.83%), respectively. The data acquisition time for PLS took approximately
10.96 min per sample plot, 4.7 times faster than that for TLS. We conclude that the proposed PLS
method is capable of efficient data capture and can detect the largest number of trees with a sufficient
dbh accuracy.

Keywords: forest inventory; point cloud; personal laser scanning; SLAM; terrestrial laser scanning;
tree detection; diameter estimation

1. Introduction

The management of natural resources and complex ecosystems such as forests requires reliable
information and data, in order to make well-founded and transparent decisions. The major purpose of
forest inventories is to provide relevant information on the status and changes of forest landscapes.
The need for information from forest inventories has increased steadily in recent decades [1] and,
in order to provide reliable and precise information on traditional attributes such as average growing
stock timber volume or tree count, measurement errors (besides the design-based sampling variance)
should be kept as small as possible. Forest inventory data are not only required for decision making in
forest management, but are also used as an empirical platform for manifold research activities.

Tree location and diameter at breast height (dbh) are crucial parameters in forest inventory.
Traditional methods based on field inventory work [2–5] for tree location calculation and dbh
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measurement are labor intensive, time consuming, prone to manifold measurement errors [6–8],
and are thus limited in their spatial extent. The lack of efficient inventory tools is an old and
well-known challenge related to forest in-situ measurements [9] and, so, since the beginning of
forest inventory, trials to improve efficiency have permanently enhanced techniques, instruments,
and protocols [7]. Nevertheless, these traditionally collected data are often used as reference values for
the quality assessment of automatic sensor-based forest inventories.

In recent years, technologies from different platforms, such as the point clouds from terrestrial laser
scanning (TLS) (e.g., [6,8–20]) and images (e.g., [9,21–27]), have presented feasible options for applying
automated measurements of forest attributes, which have the capacity to provide three-dimensional
(3D) forest structure data accurately and automatically. Airborne laser scanning (ALS) (e.g., [28–32]),
unmanned aerial vehicle (UAV) laser scanning (ULS) (e.g., [33–38]), and UAV images (e.g., [34,38–41])
feature the ability to cover large areas (up to regional level) and to penetrate gaps between vegetation
foliage. However, ALS (and, partly, UAV) systems are generally unsuitable for deriving accurate
and detailed information of individual trees, such as tree position at breast height and dbh, as their
three-dimensional (3D) point clouds represent tree stems too sparsely and the derived information
largely depends on the quality and quantity of field reference data [42,43].

To further improve the efficiency of data collection using laser scanning systems, mobile laser
scanning (MLS) has been used in forestry surveys, due to its ability to measure complex forest areas in
a short time [9,42,44–47]. With TLS, it is necessary to have multiple scan positions (i.e., a multi-scan
approach) with artificial targets for high detection rates and low dbh errors; even then, there are always
shadowing effects and non-detections [6,20,48]. In comparison to TLS, MLS offers a powerful tool to
solve the problem of tree occlusion and inability to move. This reduces the required time and labor
costs. Liang et al. [42] reported that, within an equal time frame, the area that can be investigated by
utilizing MLS is significantly larger than the area investigated with TLS. However, the data acquired
by MLS is often less precise than TLS point cloud data, due to the propagation of positioning errors
within MLS point cloud data [42,47]. Some studies have also reported that the point clouds acquired
with the MLS were much noisier [49].

An MLS system consists of one or several laser scanner(s) and multi-sensor positioning
and orientation sensors. The carrier platforms typically used for terrestrial MLS in forestry are
vehicles [9,45,50], backpacks [45,51–53], or handheld systems [46,47,49,53–58]. A typical MLS system
uses a Global Navigation Satellite System (GNSS) receiver and an inertial measurement unit (IMU) for
positioning and orientation. This configuration limits their use to relatively open environments, such
as highways and infrastructure corridors [46,47,49,54,55]. When using GNSS MLS in the forest, weak
or missing GNSS signals under the canopy has become the greatest challenge for the application of
MLS in forestry surveys [47,59]. The latest MLS systems, especially for hand-held devices, are capable
of digitalizing complex 3D scenarios on the move without GNSS. Using simultaneous localization
and mapping (SLAM) algorithms, simultaneous point cloud registration and map extraction is done.
Regarding the quality of the data, these devices usually offer a centimeter-level accuracy and a
resolution that depends on the acquisition speed and the distance to the object at each moment [54].
Chen et al. [47] stated that SLAM-based MLS has the potential to improve mapping efficiency compared
with conventional field measurements, as well as to compensate for the limitations of other laser
scanning techniques, such as having to transport the scanner and associated equipment from site to
site, which is one the major disadvantage of TLS. In addition, for SLAM MLS, there is no need for
certain terrain conditions and GNSS signals, which limit the application of MLS [60].

To our best knowledge, there are currently only a few studies on the use of hand-held SLAM
MLS systems in forest inventory for measuring tree position and dbh. The major findings of selected
recent studies are described as follows. First of all, the different terms for SLAM-based MLS systems
have to be brought into accordance. Most studies [46,49,55–57] have used the term handheld mobile
laser scanner (HMLS). However, there are also terms such as wearable laser scanning (WLS) [54],
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handheld laser scanner (HLS) [53], and personal laser scanning (PLS) [47]. We use the term personal
laser scanning (PLS) in this study.

Only three different SLAM-based PLS-devices have so far been used in forest inventory related
studies: the ZEB1 [46], ZEB-REVO [61], and ZEB-REVO-RT [62] (all GeoSLAM Ltd., Nottingham, UK).
ZEB1 [46] was introduced in 2013, which has a spring-mounted sensor head and a data acquisition rate
of 43,200 points s-1 at a maximum range of 30 m. Ryding et al. [46] evaluated ZEB1 against multi-scan
TLS. Fewer trees were detected with ZEB1 (omission difference between 8% and 11%) and the root
mean square error (RMSE) of the ZEB1-based stem positioning ranged between 1.9 cm (17%) and 3.5 cm
(29%) when using TLS data as reference. The corresponding bias was between 0 cm (−0.3%) and 0.5 cm
(−4.6%). Oveland et al. [53] compared the tree detection rates of single-scan TLS (61.8%), ZEB1 (74%),
and a backpack mobile laser scanner (87.5%). The associated bias and RMSE of the dbh estimation
were −2 cm, 0.3 cm, 0.1 cm, and 6.2 cm, 3.1 cm, 2.2 cm, respectively. Giannetti et al. [56] reported RMSE
of 1.28 cm for ZEB1 and 1.13 cm for TLS-based dbh measurements, where the corresponding bias was
-0.38 cm and -0.41 cm, respectively. Bauwens et al. [49] reported detection rates for single-scan TLS
(78%), multi-scan TLS (93%), and ZEB1 (90%). The bias of the dbh measurements was −0.17 cm for
multi-scan TLS and −0.08 cm for ZEB1, and the corresponding RMSE was 1.3 cm (4.7%) and 1.11 cm
(4.1%), respectively.

The successors ZEB-REVO [61] and ZEB-REVO-RT [62] were introduced in 2015 and 2017,
respectively, which had the same type of rotating sensor head (270◦ × 360◦ angular field of view) and
data acquisition rate and maximum range of 43,200 points s−1 and 30 m, respectively. The difference
between these two models is real time-data visualization, which is only offered by the ZEB-REVO-RT.
Chen et al. [47] used ZEB-REVO-RT and were able to detect 93.3% of tree positions, where the
RMSE of dbh measurements was 1.58 cm. Cabo et al. [54] showed that the performance of
ZEB-REVO-based dbh measurement (RMSE 0.9–1.1 cm) was equivalent to that of TLS; there was no
apparent differences in tree detection nor significant bias in dbh estimation. Vatandaşlar and Zeybek [57]
found that ZEB-REVO-collected 3D data yielded slightly higher dbh values than conventional ground
measurements. However, its correlation coefficients ranged between 0.978 and 0.998.

Similar to TLS, where the number and geometric setup of scan positions is important for tree
detection and diameter estimation [20,63], the selection of a walking path is a crucial task for PLS
applications. In connection with the SLAM algorithm, it is often mentioned that each scan should start
and end at a same fixed point to ensure a closed loop. Bauwens et al. [49] stated that the path in PLS
should be designed to have (1) a good distribution of the scanning positions (i.e., the plot is crossed
four times and the path assures that the plot border is scanned at least once); (2) a pattern which
reduces scanner range noise; and (3) avoids problems associated with drift, which can occur if the
SLAM algorithm does not result in good alignment. Similar to Bauwens et al. [49], Oveland et al. [53]
and Giannetti et al. [56] used star-shaped walking paths to minimize occluded areas and used the
same start and end point. Ryding et al. [46] chose a free walking method to cover a subplot and,
where possible, the user walked in “straight lines” up and down (obstacles were avoided) with the
instrument remaining at breast height throughout. To assess the influence of scan density on accuracy
estimation, three different survey paths were tested by Del Perugia et al. [55]. They found that walking
around each tree improved the detection of the trees with small diameters; however, this is relatively
time-consuming. Furthermore, walking back and forth along straight lines drawn at a distance of 10 m
from each other has been shown to provide sufficient data to assess single-tree attributes, such as tree
position and dbh [55].

The goal of the present study was to investigate the accuracy of tree detection and diameter
estimation in forest inventory, using a new SLAM-based PLS system under various stand and terrain
conditions. We used a ZEB HORIZON (GeoSLAM Ltd., Nottingham, UK) [64] system, which
drastically outperforms the existing sensors (i.e., ZEB1, ZEB-REVO, and ZEB-REVO-RT) in terms of
data acquisition rate (300,000 points s−1 vs. 43,200 points s−1) and max. scanning range (100 m vs.
30 m). According to our best current knowledge, this is the first study on the application of this new
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scanner in a forest inventory context. Furthermore, we present a new algorithm for the automatic
detection of tree stems and compare various methods for automatic dbh measurement. The results of
the PLS data were compared with TLS results on the same inventory plots, using the same algorithms
for automatic tree detection and dbh estimation. Manual measurements on the sample plots were used
as reference data. In addition, cylindrical reference objects were scanned to test the diameter accuracy
of PLS and TLS under non-forest conditions.

The point clouds and reference data used in this study are freely available (Creative Commons
Attribution 4.0 International License - CC BY 4.0) under doi: 10.5281/zenodo.3698956 (https://doi.org/

10.5281/zenodo.3698956). (see Supplementary Materials)

2. Data and Methods

2.1. Study Area and Sample Plots

Since 1989, the Institute of Forest Growth has maintained a permanently repeated forest inventory
in the forest district of Ofenbach, located in the federal state of Lower Austria near the village of
Forchtenstein [65]. A total of 554 sample plots are systematically aligned in a regular grid with a
mesh width of 141.4 m × 141.4 m. At each sample point, Bitterlich relascope sampling (synonymously,
angle count sampling) [66–68] was conducted using a constant basal area factor of k = 4 m2 ha−1.
Trees were recorded only if their diameter at breast height (dbh) is greater than or equal to a lower
threshold of 5 cm, and if their distance to the plot center R ≤ 50 × dbh/2. Thus, the Bitterlich
method produces an incomplete pattern of spatial tree positions resulting from a size-related and
distance-dependent thinning.

For the present study, a subsample of 20 plots was selected in such a way that the variation in
forest type (broadleaved, coniferous, and mixed), forest structure (one- or two-layered), and terrain
property (flat to steep) was represented. In order to obtain reference information for the trees that were
not included in the Bitterlich sample, additional manual measurements were conducted in the field in
March 2019. The tree positions, dbh (measured from one direction at 1.3 m height) and species of all
trees with a dbh of 5 cm or greater and a distance of 20 m or less from the sample plot center were
collected [20].

In addition, covariates were derived for each sample plot: among these are stand class, existence of
regeneration, proportion of main species, terrain slope, basal area per hectare (BA/ha), quadratic mean
diameter (dm), stand density index (SDI) [69], stem density in terms of number of trees per hectare
(N/ha), coefficient of variation of diameter at breast height (CVdbh), dbh differentiation according to
Füldner [70] (Di f f _Fuel), Clark and Evans aggregation index [71] (CE), and Shannon index [72]. Table 1
shows summary statistics (number of trees, mean, standard deviation, min, and max) of the metric
sample plot parameters. A complete description of the 20 sample plots can be found in Appendix A,
Table A1. Panoramic photos of three typical sample plots can be found in Appendix A, Figure A1.

https://doi.org/10.5281/zenodo.3698956
https://doi.org/10.5281/zenodo.3698956
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Table 1. Summary statistics of sample plots. slope, slope of sample plot; dm, diameter of mean basal
area tree; BA/ha, basal area per hectare; N/ha, number of trees per hectare; SDI, stand density index;
CVdbh, coefficient of variation of diameter at breast height; Di f f _Fuel, dbh differentiation according to
Füldner; CE, Clark and Evans aggregation index; shannon, Shannon index.

# of sample plots 20
# of trees 2466

# of trees/sample plot 123.3
dbh range (cm) 5.0–74.0

Mean SD Min Max q(0.05) q(0.25) q(0.5) q(0.75) q(0.95)

slope (%) 29.4 10.2 10.5 51.0 14.0 22.4 29.1 34.3 47.3
dm (cm) 27.0 9.1 12.1 43.1 13.4 20.2 27.2 32.8 41.9

BA/ha (m2/ha) 39.6 8.0 26.8 56.9 26.8 32.9 39.8 43.9 51.7
N/ha (trees/ha) 981 807 239 3350 284 483 689 1218 2383
SDI (trees/ha) 802 174 535 1246 545 717 772 935 1009

CVdbh 0.53 0.13 0.25 0.74 0.34 0.45 0.54 0.63 0.71
Di f f _Fuel 0.41 0.08 0.20 0.52 0.29 0.35 0.40 0.47 0.50

CE 0.93 0.12 0.71 1.14 0.79 0.85 0.93 0.99 1.13
shannon 0.79 0.28 0.15 1.20 0.38 0.61 0.81 0.98 1.15

2.2. Instrumentation and Data Collection

A total of 20 sample plots were scanned in March 2019 using a GeoSLAM ZEB HORIZON
(GeoSLAM Ltd., Nottingham, UK) [64] personal mobile laser scanner (see Figure 1a). The hand-held
part of the device (1.3 kg) includes a VLP-16 (Velodyne LiDAR Inc., Morgan Hill, CA, USA) [73],
an optional Firefly 8si camera with 4k resolution, an inertial measurement unit (IMU), and a handle.
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Figure 1. (a) ZEB HORIZON personal laser scanning (PLS) in operation; and (b) walking path for PLS
data acquisition (starting and ending in plot center) and sample plot.

The VLP-16 (0.83 kg) has 16 channels and uses time-of-flight Light Detection and Ranging (LIDaR)
technology to measure up to 300,000 points per second in single return mode within a maximum range
of 100 m. The distances are measured with a continuous wavelength of 903 nm and a range accuracy
of ±3 cm. The field of view of the VLP-16 is 360◦ × 30◦ with a vertical angular resolution of 2◦ and
a horizontal angular resolution of 0.1◦–0.4◦, and the internal rotation rate is 5–20 Hz. The VLP-16 is
attached to the ZEB HORIZON by a revolving housing that rotates around an axis orthogonal to the
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internal rotation axis of the VLP-16 at a rate of 31 min−1. The combination of the internal and external
rotation results in an angular field of view of 360◦ × 270◦ [64].

The data logger (2.4 kg) contains the processing unit, a solid-state disk storage (120 GB), and the
battery (operational time approx. 3.5 h); this is connected to the hand-held part via a cable. The size of
the collected point data is approximately 100–200 MB per minute. A USB 3.0 port on the data logger is
used to transfer the data to an external flash drive [64].

Given its battery capacity of approximately 3.5 hours, total weight of 3.7 kg (1.3 kg + 2.4 kg),
and compact design (100 mm × 200 mm × 240 mm for the hand-held part), the scanner is easy to handle
in forestry measurement campaigns. The use of SLAM technology solves the problem of missing or
poor GNSS signals under the forest canopy.

Data acquisition with ZEB HORIZON starts with IMU initialization, in order to establish the local
coordinate reference system. In the course of this, the scanner was placed on a tripod at the center of
the plot. After approximately 15 s of initialization, the survey was executed by moving at walking
speed, while the rotating scanner head captured data of the full 3D environment. The 3D data was
stored in real time on the hard drive, located in the data logger in GEOSLAM’s proprietary compressed
data format. The walking path had a star-shaped design, based on Bauwens et al. [49], for optimal
coverage of the plot area, low scanner range noise, and to reduce the drift associated with the SLAM
algorithm. Starting from the plot center to the north, the circular sample plot with 20 m radius was
circled once with a 2–3 m buffer zone and then crossed twice. The scanner was then placed back
(closing the loop) on the tripod at the plot center and the scanning process ended. The recording of the
entire sample plots took approximately 7–15 min, depending on the possible walking speed, which
differed due to stand and terrain characteristics. There was no need for artificial reference targets.
An example of the walking path in a sample plot is presented in Figure 1b.

Out of the 20 PLS scanned sample plots, 17 were scanned in February–March 2018, during the
study of Gollob et al. [20], using a FARO Focus3D X330 terrestrial laser scanner (Faro Technologies Inc.,
Lake Mary, FL, USA). For further information on the scanner and the hardware parameter settings,
the reader is referred to Gollob et al. [20].

According to the results of Gollob et al. [20], the multi-scan mode with a scan position in the
center and three scan positions at a distance of 15 m in a triangular shape (scan variant 3) was selected
as the TLS scan for comparison in this study. The TLS scans were performed with nine Styrofoam
spheres as artificial targets and took about 49.6 min (32.6 min scan time without photographs, approx.
12 min scanner installation, and approx. 5 min sphere installation).

2.3. Point Cloud Processing

A step-by-step overview of the entire workflow and detailed parameter settings is given in
Appendix A, Table A2.

When the PLS field data collection was completed, the data was transferred from the data logger
to a desktop computer with GeoSLAM Hub 5.2.0 software [74] using a USB flash drive. The GeoSLAM
Hub software processed the data automatically with the SLAM algorithm. A moving time window
through the raw data was used for scanner location and to calculate the trajectory of the scanner,
based on IMU data and feature detection algorithms [46]. Registering of the point cloud was based
on the distances and angles of the points relative to the scanner position, using a linearized model to
minimize the error in the IMU measurements as well as maximizing the correspondences between the
3D point cloud data for each respective time segment [46]. According to [64], the relative accuracy of
points obtained by the ZEB HORIZON is 1–3 cm in the registered point cloud under normal lighting
conditions. The registered point cloud is given in a local coordinate system, with origin at the start/end
position of the walking path. The data for each of the seventeen sample plots was exported in the
LAS file format [75], which is compatible with a variety of point cloud software. For exporting,
the parameter settings “100% of points”, “time stamp: scan”, and “point color: none” were selected in
GeoSLAM Hub 5.2.0.
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Co-registration of the raw TLS scan data was performed manually for each sample plot, by means
of Styrofoam reference targets, using the FARO SCENE 6.2 software [76]. A constant cutoff distance of
30 m was chosen for each of the four scanner positions. The aligned scans were then further processed
to obtain a complete 3D point cloud for each sample plot. The registered point cloud was in a local
coordinate system with origin at the first scan position in the center of the plot. Point clouds were
exported separately for each of the seventeen sample plots, in xyz format, as plain text files.

Transforming the local coordinates obtained by PLS and TLS into global coordinates thus only
requires a precise measurement of the plot center and a correction of magnetic declination.

In addition to point position measurements, a laser scanner simultaneously measure the energy of
the backscattered laser signal and recorde it as an intensity value for each point [77–80], by internally
converting the optical power to voltage by amplifying it in the system, and then transforming it
into a scaled integer value named intensity [81]. The intensity values of the two scanners cannot be
compared directly, because of a different scaling and because of different laser wavelengths (1550 nm
for the FARO Focus3D X330 [82], and 903 nm for the GeoSLAM ZEB HORIZON [64,73]) resulting in a
different reflectivity of the surfaces hit by the laser, and thus in a different energy of the backscattered
laser signal.

Further point cloud processing and analysis was performed using the statistical computing
language R [83]. The TLS point clouds were imported, transformed, and exported in the .las format
using the functions fread() and write.las() of the R packages data.table [84] and rlas [85], respectively.
Henceforth, the point clouds of PLS and TLS were processed and analyzed with the same algorithms
(any differences in the individual parameters can be seen in Appendix A, Table A2). The points were
imported and simultaneously clipped to an upright-oriented cylinder with a radius of 21 m centered at
the sample plot center using the readLAS() function from the lidR package [86]. Each point cloud was
then processed with the lidR lasground() function. By doing so, all points were classified into ground
and non-ground points, using a cloth simulation filter algorithm by Zhang et al. [87]. A Digital Terrain
Model (DTM) with 20 cm raster resolution was created by interpolating the classified ground points
using the grid_terrain() function from lidR. Subsequently, all points were normalized relative to the
ground-derived DTM (lasnormalize() from lidR), and the ground points were discarded from the data
(lasfilter() from lidR).

2.4. Clustering, Detection of Tree Positions, and dbh Measurement

For automatic tree detection, we further refined the algorithms of Ritter et al. [8] and Gollob et al. [20]
based on density-based clustering.

The OPTICS (ordering points to identify the clustering structure) algorithm, developed by
Ankerst et al. (1999) [88], was used for clustering. OPTICS is an extension of DBSCAN (density-based
spatial clustering of applications with noise) [89], which allows cluster detection in data of varying
density (a typical characteristic of TLS and PLS data). DBSCAN requires two parameters: a maximum
distance ε and a minimum number of points minPts. A point p is considered to be a core point of
a cluster if its ε-neighbourhood contains at least minPts points. DBSCAN returns a list of clusters,
consisting of core points and points whose ε-neighbourhood contains core points, but less than minPts
points. All other points, which are not reachable from any other point, are considered noise. In the
case where p is a core point, a cluster is formed with p together with all points (core or non-core) that
are reachable from it. Instead of using a fixed value of ε, the discrimination of clusters with OPTICS is
based on the core distance of every point p; that is, the maximum distance value between p and one of
its minPts nearest neighbors.

Based on the core distances, for each point p, the reachability distance to every other point is
calculated. Valleys in these reachability distances represent clusters (the deeper the valley, the more
dense the cluster) and high distances indicate points between clusters. The parameter ε is basically
unnecessary in OPTICS; however, it improves the computational performance by providing an upper
limit for the core distance calculation. Both algorithms (DBSCAN and OPTICS) enable clustering in 2D
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and 3D space. For full computational details on DBCAN and OPTICS, we refer to Ankerst et al. [88]
and Ester et al. [89], respectively. DBSCAN and especially OPTICS have several advantages which
justify their selection for clustering point clouds: (i) they are suitable for large databases, (ii) they
discover areas of high density and group them into clusters, (iii) they discover clusters of arbitrary
shape, (iv) they do not impose any restrictions on the shape of the resulting clusters, (v) they do not
require a predetermined number of clusters, and (vi) they can identify noise points [90–92].

In order to obtain a lower number of points and a slightly more homogeneous point density for
clustering, a random point per voxel at a spatial resolution of 2 cm for PLS data and 1.5 cm for TLS
data was sampled from the normalized point cloud using the tlsSample() function from the TreeLS
package [93], in order to obtain a comparable point density for PLS and TLS. Subsequently, a vertical
layer with an extent of 2 m was clipped and, by discarding the Z values, the points were projected onto a
plane. The lower boundary of the layer was placed at 1 m height above ground and the upper boundary
of the layer was set at 3 m height. For the remaining points, the reachability of each individual point
was calculated using the optics() function from the dbscan package [93]. The parameter eps (ε) was set
to 2.5 cm and parameter minPts (minPts) to 90. Finally, the function extractDBSCAN(), implemented
in the dbscan package [93], extracted the DBSCAN clustering [89] by cutting the reachability of the
points at eps_cl = 2.5 cm. The points classified as noise were removed, whereby the branch, needle,
and regeneration points were largely filtered out. Subsequently, the missing Z values were then
merged to the clustered points. Clusters with less than 500 points for PLS (less than 600 points for
TLS) or a vertical extent of less than 1.3 m were excluded from further analysis. The further steps
were done individually for each cluster. As, in some cases, two or more trees standing close together
were classified into a common cluster, an additional cluster step, depending on the horizontal extent
(calculated as range of X values × the range of Y values), was added. If this horizontal extension was
greater than or equal to 0.22 m2, the parameters eps = 2.5 cm, minPts = 20, and eps_cl = 2 cm were used
for optics() and extractDBSCAN(); otherwise (i.e., extension less than 0.22 m2), the parameters eps =

2.5 cm, minPts = 18, and eps_cl = 2.3 cm were used. In contrast to the first cluster step, this clustering
was done in 3D. Subsequently, points classified as noise were removed and only clusters with greater
or equal than 500 points and a vertical extent of more or equal than 1.3 m remained. Furthermore,
the 80% quantile of the intensities was calculated for the PLS data, and only those clusters that had an
80% quantile of intensities greater than 7900 were further analyzed. Through this second cluster step
and the intensity filtering (PLS), close-standing trees were segmented and further noise (e.g., branch,
needle, and regeneration points) were filtered out.

The 3D point clouds of these clusters were then stratified into 14 vertical layers, each of which
had a vertical extent of 15 cm. The lower boundary of the lowest layer was placed at 1 m height above
ground, and the lower boundary of the topmost layer was at 2.625 m height. The distance between two
neighboring layers was 12.5 cm, resulting in a 2.5 cm overlap of neighboring layers. The 3D points from
each layer were projected onto a horizontal plane, creating 2-dimensional XY points. If a layer had less
than 50 points, it was excluded from further analysis. Subsequently, circles were separately fitted to the
points of each layer using the circular cluster method of Müller and Garlipp [94]. This method has been
implemented in the function circMclust() in the R package edci [95]. A regular grid of 25 × 25 starting
points was chosen for the initial circle centers in the optimization. In addition, a sequence of five
starting radii, beginning at 1 cm and ending at 50 cm, and with a step width of 9.8 cm, was chosen at
each grid point. This procedure resulted in 3125 starting values for each of the 14 layers. Additionally,
an ellipse was fitted to the same points as before, using the method of Fitzgibbon et al. [96], which is
extremely robust and efficient, as it incorporates an ellipticity constraint into the normalization factor
and as it can be solved naturally by a generalized eigensystem. The method has been implemented
in the function EllipseDirectFit() in the R package conicfit [97]. These preliminary diameter fits to
the thinned point cloud were used to initialize diameter fitting to the original (high-resolution) point
cloud. Therefore, the fitted center and shape of the circle (if the circle fit converged) or the ellipse (if the
circle fit did not converge) were used to construct a clipping region in the original normalized point
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cloud (result of Section 2.3., Point Cloud Processing) for each of the 14 layers. To clip out the points,
a diameter depending on buffer distance (6 cm for a preliminary diameter estimate of less than 30 cm;
9 cm for a preliminary diameter estimate of 30 cm or more) was added to the radii of the preliminary
fitted circles or ellipses.

The final diameters were then calculated based on these clipped points, using the circMclust()
and EllipseDirectFit() functions for circular and elliptical fitting, respectively. The ellipse diameter
was calculated as the quadratic mean of the ellipse’s two radii. Henceforward, these diameters are
referred to as dcirc and dell; dell was only calculated if the ratio of the semi-minor axis to the semi-major
axis was greater than or equal to 0.6. Another circle with diameter dcirc2 was then fitted, using the
least-squares-based algorithm of Chernov [98] implemented in the R package conicfit [97]. For this,
the center and radii values of dcirc or dell were used as the initial starting radius and initial center,
respectively. The stem cross-sections were also modeled using a Generalized Additive Model (GAM)
with a smoothing spline (see Figure 2). Thereby, using the above-mentioned center (i.e., from dcirc or
dell), the Cartesian coordinates were transformed into polar coordinates, including the distance and the
angle to the center. The distance to the center was modeled as a function of the angle using a cyclic
penalized cubic regression spline smooth (see Figure 2b). This method has been implemented in the
function gam() in the R package mgcv [99–103]. The resulting curve was a natural cubic spline through
the values at the knots (given two extra conditions specifying that the second derivative of the curve
should be zero at the two end knots). The number of knots and the dimension of the basis used to
represent the smooth term were chosen by default. The standard deviation of the residuals (sdres_gam)
was used as a measure of the noise from the point clouds. Distance values were then predicted for 360
angles (from −π to π) and the new polar coordinates were transformed back into Cartesian coordinates
(see Figure 2c). Based on this, a polygonal observation window was created and its area was calculated
using the functions owin() and area.owin() of the spatstat package [104], respectively. Hereafter,
the diameter of a circle with the same area was calculated and referred to as dgam. Another diameter
was estimated via a tensor product smooth. Therefore, the Cartesian coordinates of the 14 vertical
layers (or correspondingly fewer, if less than 50 points were contained in a layer) were transformed
into polar coordinates with the use of each layer’s center (from dcirc or dell ). In contrast to the layered
procedure for the previous diameter estimates, it was ensured that there were no vertical overlaps of
neighboring layers and the Z coordinates were used (in addition to the angle) to predict the distance.
Methodically, this was done with a tensor product smooth implemented in the mgcv package [99–103],
using the smooth terms "cc" (cyclic cubic regression spline) and "tp" (thin plate regression spline) for
the angle and the Z coordinate, respectively. Distance values were then predicted for 360 angles (from
−π to π) and a Z coordinate of 1.3 m. The rest of the process was the same as for dgam, and the obtained
diameter is referred to as dtegam.

After accomplishing the diameter fitting in each vertical layer or for all layers (dtegam), the decision
as to the tree position was finally proposed as the diameter’s center, determined by the results of the
dcirc and dell fits. Trials revealed that this decision could be safely made, depending on the following
two criteria. For six out of the 14 total layers: (i) the standard deviation of the XY position coordinates
must be less than or equal to 0.01 m, and (ii) the standard deviation of the diameter measurements
must be less than or equal to 1.85 cm. The preliminary proposal of a tree location was rejected if at
least 1 of the 2 criteria was not met for any of the 3003 total possible combinations of 6 samples from
the 14 layers. If several combinations met both criteria, the one with the lowest standard deviation
in diameter measurement across the six layers was further analyzed to derive the final tree position
and dbh measurement. There were three possibilities for the output: (i) both dcirc and dell had six
layers that met the criteria, (ii) only dcirc had six layers that met the criteria, and (iii) only dell had six
layers that met the criteria. Based on this, the final tree position was calculated at 1.3 m height using a
linear model of the 6 X and Y coordinates over the height. If there were both outputs (dcirc and dell)
or only dcirc, then the final tree position was calculated based on the dcirc centers. If there was only
one output for dell, then the final position was calculated based on this. This means that a final tree
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position only existed if at least one combination of dcirc or dell met the criteria. A subset of the found
tree positions was taken from a circle of 20 m radius around the sample plot center, to be comparable
with the reference data. In the same way as for the position, the actual dbh (i.e., dcirc and dell) at 1.3 m
height was calculated using a linear model. The remaining dbhs (dcirc2, dgam, and dtegam) were then
calculated from the best combinations of dcirc and dell using the heights of the six layers. This means
that a final tree dbh for dcirc2, dgam, and dtegam only existed if there was also a final dcirc or dell.
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Figure 2. (a) Cross-section of a single tree for PLS and terrestrial laser scanning (TLS); (b) transformed
points with cyclic cubic spline for PLS and TLS; and (c) back-transformed points with cyclic cubic
spline for PLS and TLS.

2.5. Evaluation of Point Cloud Quality and Diameter Fitting on Cylindrical Reference Objects

As the ZEB HORIZON PLS was new on the market at the time of the study, the quality of the
point clouds and the performance of the diameter estimation algorithm were examined on seven
cylindrical objects and one spherical object (Figure 3). In addition, a possible bias of the diameter
estimation was also examined on the reference objects in order to eliminate the effects of tree species
or bark. These objects were scanned under virtually perfect conditions (i.e., no wind, feature-rich
environment, short scanning range, and high scanning resolution) to exclude disturbing effects from
the forest environment and to judge the potential accuracy of the scanner. An overview of the objects,
in terms of shape, material, and diameter, can be found in Table 2. All objects were cylindrically shaped,
except for object 5 (Faro reference sphere). The surfaces of the objects were smooth and made of plastic
(objects 1, 4–8), metal (object 2), or cardboard (object 3). The diameters of the objects were measured
with a caliper, and were between 5 cm and 49.8 cm. The objects were scanned with the PLS in two scan
surveys, with different walking speeds and using the same walk path with the same start and end
point. Scanning times were 2 min and 1 min, respectively. In addition, the same objects were scanned
from three scanning positions with the FARO Focus3D X330 TLS. For both PLS and TLS, care was taken
to ensure that the objects received laser beams from all sides and the objects were covered to ensure
that no laser beams hit the inside of the objects. PLS and TLS data were co-registered and exported
with use of GeoSLAM Hub 5.2.0 software [74] and FARO SCENE 6.2 software [76], respectively. All
parameter settings for the scanners and the software were the same as described in Sections 2.2 and 2.3.
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Table 2. Overview of the objects in terms of shape, material, and diameter.

Shape Material Diameter (cm)

Object 1 cylinder plastic 49.8
Object 2 cylinder metal 40.0
Object 3 cylinder cardboard 36.1
Object 4 cylinder plastic 25.5
Object 5 sphere plastic 20.2
Object 6 cylinder plastic 15.9
Object 7 cylinder plastic 11.0
Object 8 cylinder plastic 5.0

The individual objects were manually clipped out from the exported point clouds with the
CloudCompare v2.10.2 software [105] and saved in LAS file format [75]. For these individual object
point clouds, the diameters dgam and dcirc2 were then estimated at the half of the height, according to
the methods described in Section 2.4 (Clustering, Detection of Tree Positions, and dbh Measurement).
The deviation δ of the fitted diameters d̂ to the reference diameters d was calculated as

δ = d̂− d. (1)

In addition, the standard deviation of the residuals from dgam (sdres_gam) was calculated and used
as a measure of the noise in the point cloud. With the help of the intensity parameter, which was
available for each individual 3D point, an average intensity of the layer was calculated. Then, δ,
sdres_gam, and average intensity were compared for each object between PLS (scan 1 and scan 2) and TLS.

2.6. Reference Data

Reference data for the actual dbh values and tree positions were derived from field data in March
2019. Based on a preliminary stem map of a study by Gollob et al. [20], trees were recorded if their
dbh (measured from one direction with caliper in 1.3 m height) was greater than or equal to a lower
threshold of 5 cm and if their distance from the sample plot center was 20 m or less. New trees that were
not included in the preliminary stem map were recorded by measuring angles and distances to two
known tree positions. To account for possible deviations from the north direction and to ensure that
the estimated position and the reference position coordinates would be equal, an affine transformation
of the found tree positions was carried out, with the help of 15 trees per sample plot, which were found
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by the algorithm and were also present in the reference data. This transformation was automatically
performed using the function AffineTransformation() in the R package vec2dtransf [106]. The final
assignment of tree positions was done using the function pppdist() in the R package spatstat [104].
This function performs a mapping of two similar point patterns by minimizing the average Euclidean
distance between matching points. Automatically detected tree positions which could not be assigned
to a tree measured in the reference data were manually double-checked in the TLS point cloud.
Depending on the results of the check, either the automatically detected tree position was marked
as a false positive or, in the case where the tree was visible in the point cloud but missing during the
reference measurements in the field, the co-ordinates were added to the reference data post-hoc.

2.7. Accuracy of Tree Detection and dbh Measurement

The accuracy of tree detection was evaluated in terms of three measures: detection rate dr(%),
commission error c(%), and overall accuracy acc(%). These measures were calculated as follows:

dr(%) =
nmatch

nref
× 100, (2)

c(%) =
nfalsepos

nextr
× 100, (3)

acc(%) = 100%− (o(%) + c(%)), (4)

where nmatch is the number of correctly found reference trees; nref is the total number of reference trees;
nfalsepos is the number of tree positions which could not be assigned to an existing tree in the reference
data; nextr is the number of automatically detected tree positions (nmatch + nfalsepos); and o(%) is the
omission error, defined as 100%− dr(%). The detection rate dr (%) measures the proportion of correctly
detected tree locations, the commission error c (%) measures the proportion of falsely detected tree
locations, and the overall accuracy acc(%) is a combination of the latter two metrics and represents a
global quality criterion.

The accuracy of the automatic dbh measurements was assessed by means of root mean square
error (RMSE), calculated as the square root of the average quadratic deviation between the automatic
measurement d̂bhi and the corresponding reference measurement dbhi:

RMSE =

√
1

nmatch

∑nmatch

i=1

(
d̂bhi − dbhi

)2
. (5)

The precision of the automatic dbh measurements was assessed in terms of bias:

bias =
1

nmatch

∑nmatch

i=1

(
d̂bhi − dbhi

)
. (6)

The deviation between the automatic measurement d̂bhi and the corresponding reference
measurement dbhi was computed analogously to Equation (1), and is referred to as δdbh.

RMSE and bias were also calculated as relative measures (RMSE% and bias%):

RMSE% =
RMSE

dbh
× 100, (7)

bias% =
bias

dbh
× 100, (8)

with
dbh =

1
nmatch

∑nmatch

i=1
dbhi (9)

being the average dbh of the reference data.
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In order to examine whether, and to what extent, the accuracy of the automatic tree detection was
influenced by the distance of a tree from the sample plot center, the performance measures for tree
detection described above were separately assessed for four subplot sizes defined by disks with radii
of 20 m, 15 m, 10 m, and 5 m. In addition, it was analyzed whether the performance of the automatic
routines showed trends depending on the size of the trees. For this purpose, the performance measures
were evaluated for subsets defined by the three lower dbh thresholds of 5 cm, 10 cm, and 15 cm.
Furthermore, the performance of tree detection of PLS and TLS was compared with regard to the lower
dbh thresholds and various plot sizes. The deviations δi of the estimated dbh values from the reference
diameters were analyzed for the different tree species.

To investigate the possible influence of scanner noise and dbh on δi, a simulation study was
performed. For every dbh between 1 cm and 20 cm (with step size 0.5 cm), 1000 cross-sections were
simulated. For every cross-section, a noisy point cloud was simulated in polar co-ordinates by adding a
normally distributed random error to 1000 radii that were evenly distributed over 1000 angles ranging
from -π to π. The random error had a mean of 0 cm and different standard deviations (1 cm, 2 cm,
2.45 cm, and 3 cm), in order to account for different levels of unbiased noise. The standard deviation of
2.45 cm is the mean sdres_gam for all dgam in PLS data. Then, the simulated point cloud was transformed
into Cartesian coordinates, and the diameters dgam and dcirc2 were fitted to assess possible model bias.

In order to correct the estimated PLS diameters for a possible dbh-related bias, the dbh deviation
δdbh was modeled using a simple linear model. For practicality, the proposed linear model should
include variables which are easy to estimate accurately, either in the field or during processing. We used
the following linear model for bias correction:

δ̂dbh = β0 + β1 × log(dgam) + β2 ×meaninten + β3 × sdresgam + β4×
(
meaninten × sdresgam

)
+ ε, (10)

where δ̂dbh is the dbh deviation, log(dgam) is the logarithmic natural cubic spline dbh, mean_inten is the
mean intensity of the cross-section 3D points, sdres_gam is the standard deviation of the spline residuals,
mean_inten× sdres_gam is an interaction term, ε is the residual error, and β0, . . . , β4 are linear coefficients.

To evaluate the significant effects of the above-mentioned covariates, a linear regression model
was formulated using the lm() function in R. Before that, the predictor variables were plotted against
the dependent variable and, in the course of modeling, any plausible interactions were also tested.

In order to determine the necessary sample size for modeling the dbh-related bias with satisfactory
precision, we performed cross-validations with sample sizes varying between 30 and 500 for the model
data set; that is, we investigated how many dbhs have to be measured manually in order to obtain
robust predictions for the remaining dbh deviations. For each sample size, 10,000 random samples of
the reference dbh values were drawn. Then, the δ̂dbh were predicted on the independent validation
sets. The dbh-related bias of dgam was then corrected by δ̂dbh and, as a quality criterion, the RMSE
was calculated. The deviations δdbh of the corrected estimated diameters dgam_corr were analyzed in
relationship with the reference diameters.

3. Results

3.1. Detection of Tree Positions

The analysis of the sample plots (20 for PLS, 17 for TLS) showed that the detection rate dr(%)

strongly depended on the lower dbh threshold and the sample plot radius applied as a maximum
radius (Figure 4). In general, the detection rate increased with an increasing lower threshold for dbh
and a decreasing maximum radius. Furthermore, it can be seen that TLS scans generally had lower
detection rates, which became more pronounced with a lower threshold for dbh and an increasing
sample plot radius. The range of the detection rates in the sample plots were always smaller with
PLS than with TLS. The average detection rates for PLS over all 20 sample plots, dbh thresholds,
and plot radii ranged from 95.99% to 100%, while the corresponding average detection rates for TLS
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on 17 plots ranged from 78.46% to 99.02%. Using plot radii of 20 m, 15 m, and 10 m, and a lower dbh
threshold of 10 cm, the respective average detection rates for PLS were 98.76%, 98.95%, and 99.48%,
while the respective values for TLS were 86.32%, 93.81%, and 98.35% (see further details in Appendix B,
Table A3). Using a lower dbh threshold of 10 cm and plot radii of 20 m, 15 m, and 10 m, a respective
detection rate of 100% was achieved on 90%, 70%, and 60% of the sample plots using PLS, while it was
only achieved on 76%, 35%, and 6% of the sample plots using TLS.
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The commission error (Figure 5) increased with increasing lower dbh threshold and maximum
radius. This increase was more obvious with TLS than with PLS. The commission error differed only
slightly among dbh threshold and maximum radii for PLS. In general, the average and the range
of the commission errors were smaller with PLS than with TLS. The average commission errors for
PLS over all 20 sample plots, dbh thresholds, and plot radii ranged from 0.62% to 1.69%, while the
corresponding average commission errors for TLS on 17 plots ranged from 0.42% to 4.27%.
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Figure 5. Distribution of commission errors for PLS/TLS, lower dbh thresholds, and plot radii. Black
squares represent average detection rates over all sample plots.

Overall accuracy rates (acc(%)), as a combination of detection and commission rates, are presented
in Figure 6. Overall accuracy showed similar behavior to detection rate, depending on dbh threshold,
plot radius, and scan variant. Average overall accuracies for PLS across all 20 sample plots varied
between 94.83% and 98.75%, while the average overall accuracies for TLS on 17 plots varied between
76.38% and 98.17%. Using plot radii of 20 m, 15 m, and 10 m, and a lower dbh threshold of 10 cm,
respective average overall accuracies for PLS were 97.29%, 97.86%, and 98.55%. The respective values
for TLS were 83.81%, 89.96%, and 96.08% (see further details in Appendix B, Table A3).
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squares represent average detection rates over all sample plots.

Using a lower dbh threshold of 10 cm and plot radii of 20 m, 15 m, and 10 m, a respective overall
accuracy of 100% was achieved on 80%, 50%, and 40% of the sample plots using PLS, while it was only
achieved on 59%, 0%, and 0% of the sample plots using TLS.

The performance in terms of tree detection separately for each sample plot can be found in
Appendix B, Table A3.

The relationship between overall accuracy and maximum sample plot radius was analyzed,
in more detail, for PLS and TLS. The curves of the overall accuracy rates over the sample plot radii
had a similar shape for all three lower dbh thresholds (Figure 7). However, the level of the curve
(i.e., the overall accuracy) was lowest for the 5 cm threshold and highest for the 15 cm threshold.
Furthermore, it can be seen that the overall accuracies of PLS decreased only slightly with increasing
sample plot radii. In comparison, the overall accuracies of TLS remained almost constant, up to a
sample plot radius of approx. 10 m, and continuously declined for sample plot radii greater than 10 m.
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Figure 7. Average overall accuracy achieved with PLS and TLS, evaluated separately for lower dbh
thresholds of 5 cm, 10 cm, and 15 cm and different sample plot radii r. Solid black lines indicate overall
accuracy averaged over 20 (PLS) and 17 (TLS) sample plots, respectively. Gray shaded area indicates
95% prediction interval.

3.2. Estimation of dbh

3.2.1. Personal Laser Scanning (PLS)

The performance of automatic dbh estimation, in terms of deviation between dbh estimates
from PLS and dbh measured in the field, is outlined in Figure 8. For all dbh fitting methods (i.e.,
dgam, dtegam, dcirc, dcirc, dcirc2, and dell), small diameters (dbh < 10 cm) were generally overestimated,
while large diameters (dbh > 10 cm) were generally underestimated. Underestimation increased
with further increasing dbh, and the overestimation increased with decreasing dbh. Evaluating the
various dbh fitting methods, the RMSE ranged between 2.87 cm (14.85%) and 3.32 cm (17.18%) and
the bias between −0.48 cm (−2.48%) and 0.03 cm (0.16%). The lowest RMSE was obtained by dgam

(2.87 cm = 14.85%), while the lowest bias was obtained by dell (0.03 cm = 0.16%). The mean standard
deviation (sdres_gam) of the residuals from dgam was 2.45 cm, which can be considered as measure for
the noise in the PLS point cloud. A separate representation of spruce and beech showed that there
were discernible differences between the tree species. In the case of beech, the RMSE ranged between
2.77 cm (16.32%) and 3.18 cm (19.49%) and the bias between −0.47 cm (−2.88%) and 0.16 cm (0.98%).
For spruce, the RMSE ranged between 2.56 cm (10.62%) and 3.29 cm (13.46%) and the bias between
−0.74 cm (−3.07%) and −0.40 cm (−1.66%). For an overview of the dbh deviations for all tree species,
refer to Appendix C, Figure A2. The performance of dbh estimation separately for each sample plot is
presented in Appendix B, Table A4.
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Figure 8. dbh deviation, δdbh, for different methods of dbh estimation (ell, circ2, circ, tegam, and gam)
over all 20 sample plots for PLS. The dashed gray line is zero-reference. Left panel: the deviation
between dbh estimates from PLS and dbh measured in the field. The solid red line is a locally weighted
scatterplot smoothing (LOESS) fit with a span of 3/4. Central panel: The deviation between dbh
estimates from PLS and dbh measured in the field for the two most common tree species. Blue dots
indicate spruce (Picea abies) and green dots indicate beech (Fagus sylvatica). Right panel: LOESS fit
with a span of 3/4 for the data from the central panel. The blue lines indicate spruce and the green
lines indicates beech. The shaded blue and green areas indicate 95% confidence intervals of the
corresponding LOESS fits.
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3.2.2. Terrestrial Laser Scanning (TLS)

The performance of automatic dbh estimation, in terms of deviation between dbh estimates from
TLS and dbh measured in the field, is outlined in Figure 9. For some dbh fitting methods (dgam, dtegam,
dcirc, and dcirc2), small diameters (dbh < 10 cm) were overestimated. Large diameters (dbh > 10 cm)
were underestimated for dcirc and dgam. Evaluating the various dbh fitting methods, the RMSE ranged
between 2.55 cm (13.19%) and 3.32 cm (19.45%) and the bias between −0.74 cm (−3.83%) and 0.86 cm
(4.45%). The lowest RMSE was obtained by dell (2.55 cm = 13.19%), while the lowest bias was obtained
by dcirc (−0.45 cm = −2.33%). The mean standard deviation of the residuals from dgam was 0.52 cm,
which can be considered as measure of the noise in the TLS point cloud. A separate representation of
spruce and beech showed that there were no discernible differences between the tree species. In the
case of beech, the RMSE ranged between 2.51 cm (15.38%) and 4.24 cm (25.98%) and the bias between
−0.75 cm (−4.60%) and 0.81 cm (4.96%). For spruce, the RMSE ranged between 2.37 cm (9.83%) and
3.26 cm (13.52%) and the bias between −0.63 cm (−2.61%) and 0.86 cm (3.57%). The performance of
dbh estimation separately for each sample plot is presented in Appendix B, Table A4.

3.3. Cylindrical Reference Objects under Controlled Conditions

For a better understanding of the performance of PLS with regard to dbh measurement, and to
better evaluate the dbh results obtained with PLS in the forest, reference data were collected on eight
objects under perfect scanning conditions. For the individual object point clouds, the diameters
dgam and dcirc2 were estimated using the same algorithms for diameter estimation as in the forest.
The evaluation of two PLS scans (scan 1: 2 min and scan 2: 1 min) and a TLS scan with regard
to diameter deviation δ, standard deviation of the residuals from the natural cubic spline sdres_gam,
and average intensity of the points belonging to the cross-section can be found in Table 3. In general,
it can be seen that the deviations from the reference diameter were higher with PLS than with TLS.
Furthermore, the noise in the point clouds, as measured by the standard deviation of the residuals
sdres_gam, was lower with TLS (0.03–0.28 cm) than with PLS (1.18–2.53 cm). The mean intensities were
higher with TLS. The values of the deviations showed no relationship with the reference diameters.
When comparing PLS scans 1 and 2, it was noticed that PLS scan 2 (with 1 min scan time) generally
had lower diameter deviations and residual standard deviation. The highest PLS diameter deviation
occurred with object 4 (scan 1: −7.84 cm, scan 2: −7.60 cm). Object 4 also had the highest noise, in terms
of sdres_gam (scan 1: 2.53 cm, scan 2: 2.51 cm), and the lowest average intensity (scan 1: 313, scan 2:
296). For TLS, object 6 had the highest deviation (−2.30 cm) with the highest noise in terms of sdres_gam.
PLS scans 1 and 2 showed a systematic underestimation (scan 1: −0.50 to −7.84 cm, scan 2: −0.34 to
−7.60 cm) of the diameters whereas, for TLS, both underestimation and overestimation (−2.30 cm to
0.33 cm) existed. A comparison of the diameter fitting methods showed that, with PLS scan 1 and TLS,
dgam basically caused lower deviations and, with PLS scan 2, the opposite occurred. An overview of
the eight object cross-sections, including the fitted diameters, deviations, standard deviations of the
residuals, and average intensities, can be found in Appendix C, Figures A3 and A4.
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Figure 9. dbh deviation, δdbh, for different methods of dbh estimation (ell, circ2, circ, tegam, and gam)
over 17 sample plots for TLS. The dashed gray line is zero-reference. Left panel: the deviation between
dbh estimates from TLS and dbh measured in the field. The solid red line is a locally weighted scatterplot
smoothing (LOESS) fit with a span of 3/4. Central panel: The deviation between dbh estimates from
TLS and dbh measured in the field for the two most common tree species. Blue dots indicate spruce
(Picea abies) and green dots indicate beech (Fagus sylvatica). Right panel: LOESS fit with a span of 3/4
for the data from the central panel. The blue lines indicate spruce and the green lines indicates beech.
The shaded blue and green areas indicate 95% confidence intervals of the corresponding LOESS fits.
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Table 3. Evaluation of PLS and TLS on cylindrical reference objects.

Object
Reference
Diameter

(cm)

PLS Scan 1 PLS Scan 2 TLS Scan 1

Scan Time: 2 min Scan Time: 1 min Scan Time: 27 min

δ δ sdres_gam (cm) Aver-Age
Inten-Sity δ δ sdres_gam (cm) Aver-Age

Inten-Sity δ δ sdres_gam (cm) Aver-Age
Inten-Sity

Object 1 49.80 −2.59 −2.53 1.58 9370 −2.16 −2.16 1.45 9117 −0.71 −0.66 0.10 57,674
Object 2 40.00 −2.16 −2.19 1.51 1859 −0.92 −1.03 1.49 1942 0.33 0.32 0.07 49,439
Object 3 36.10 −1.85 −1.84 1.39 12,718 −1.78 −1.77 1.26 12,726 0.32 0.3 0.03 55,410
Object 4 25.50 −7.84 −7.83 2.53 313 −7.53 −7.60 2.51 296 0.05 0.04 0.11 31,136
Object 5 20.20 −4.31 −4.29 1.45 21,177 −3.37 −3.44 1.18 22,179 −1.14 −1.13 0.2 61,644
Object 6 15.90 −4.01 −4.00 1.74 10,789 −4.66 −4.67 1.65 11,153 −2.30 −2.29 0.28 56,127
Object 7 11.00 −2.03 −2.03 1.48 3404 −1.22 −1.31 1.27 3562 0.19 0.18 0.07 46.442
Object 8 5.00 −0.50 −0.52 1.22 3011 −0.34 −0.36 1.23 2717 0.17 0.16 0.09 46,714
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3.4. Simulated Noisy Cross-Sections

To explain the overestimation of the small trees, 1000 cross-sections, each with a dbh of 1–20 cm,
were simulated. Normally distributed random errors with mean of 0 cm and standard deviations
of 1 cm, 2 cm, 2.45 cm, and 3 cm were added to the distances (radii in a closed circle) of 1000 polar
co-ordinates per tree to simulate noisy cross-sections. The transformation to Cartesian coordinates
resulted in cross-sections, to which dgam and dcirc2 were fitted. The bias resulting from the comparison
with the error-free diameters is presented in Figure 10. In general, the bias drastically increased with
decreasing reference diameter. With increasing standard deviation, the bias occurred with larger
reference diameters and, thus, bias became larger for a given diameter. With regard to the diameter
fitting method, dgam caused a smaller bias than dcirc2. Simulated examples of noisy cross-sections with
sd = 2.45 cm are presented in Appendix C, Figure A5.
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Figure 10. Bias from simulating noisy cross-sections depending on reference diameter, standard
deviation, and dbh fitting method. Mean bias of dgam (red curves) and dcirc2 (black curves) and range
(min–max) as dashed curves. The light-gray dotted line is zero-reference.

3.5. Diameter Correction

We found that dbh modeled with natural cubic splines had the lowest RMSE for PLS. Nevertheless,
a bias depending on the reference diameter was also seen, as shown in Figure 8. The results of the
cross-validation for the linear model to correct the estimated diameters can be found in Figure 11.
It can be seen that the RMSE decreased with increasing number of measured reference diameters.
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The maximum RMSE could be kept below 2.70 cm and the average RMSE below 2.40 cm when using
250 or more manual reference measurements.Remote Sens. 2020, 12, x FOR PEER REVIEW 23 of 46 
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Figure 11. Root mean square error (RMSE) of a cross-validated linear model. The sample size
represents the number of measured reference diameters. The solid black line indicates the average
RMSE. The corresponding dashed lines indicate the min/max values of RMSE.

The model results for an example of 10,000 random samples used for modeling and validation
can be found in Table 4. The dbh deviation (δ) decreased (in the sense of becoming more negative)
as the estimated logarithmic dbh

(
dgam

)
increased. When the mean intensity (mean_inten) and the

standard deviation of residuals (sdres_gam increased, the dbh deviation (δ) also increased (in the sense of
becoming more positive). The effect of mean intensity (mean_inten) on dbh deviation decreased as the
standard deviation of residuals (sdres_gam) increased. The coefficient of determination was 0.353 for the
linear model.

Table 4. Regression analysis.

dbh Deviation δ

Covariate Coef. Est. SE t Value p Value

Intercept β0 −9.770 3.355 −2.912 0.004
log(dgam) β1 −1.851 0.752 −6.727 <0.001

mean_inten β2 0.001 <0.001 3.371 <0.001
sdres_gam β3 689.9 138.9 4.996 <0.001

mean_inten×sdres_gam β4 −0.045 0.010 −4.336 <0.001

R2 0.353

SE, standard error; R2, coefficient of determination.

An example of how the dbh deviations looked after correction by the linear model (using 250
reference diameters) is shown in Figure 12. The bias, for large diameters (dbh > 10 cm), widely
disappeared; however, overestimation of small diameters (dbh < 10 cm) decreased only marginally
and was still present. This resulted in a RMSE of 2.32 cm and a bias of 0.21 cm. A table with the
performance, in terms of corrected dbh estimations separately for each sample plot, can be found in
Appendix B, Table A4.
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4. Discussion

4.1. Point Cloud Quality PLS/TLS

One of the major advantages of applying PLS (in this study: GeoSLAM ZEB HORIZON [64]) is
rapid data acquisition over the entire forest plot. The PLS had some clear advantages over TLS when
taking field measurements: it solved the TLS-related problems of setting up the system and using
calibration targets on tripods. With a maximum number of 300,000 points per second and a maximum
range of 100 m, the GeoSLAM ZEB HORIZON may also be well-suited to capturing tree heights and
canopy shapes. However, this requires further research. The PLS combined with SLAM algorithms
had better registration accuracies in forest environments, compared to MLS systems using GNSS data.
The registration process for the points worked automatically and 100% of the PLS sample points were
successfully registered. The process took approximately 30 min per sample plot on a notebook with
64 GB main memory and an i7-8750H hexa core CPU (Intel Corp., Santa Clara, CA, U.S.A.). Initial
tests showed that the registration of the points with the SLAM algorithm worked without problems,
up to a recording time of approximately 30 min. Real time data processing and visualization would
be a convenient feature, as field crews could directly check if scanning worked properly. Scanners
with lower range and data acquisition rate, like the GeoSLAM ZEB RevoRT already offer this feature,
however, currently, the amount of data produced by the ZEB Horizon, is still too large to be processed
in real time. Keeping Moore’s law in mind, it is however only a question of time until real time data
visualization will be possible for scanners like the ZEB Horizon.

Longer recording times (up to 45 min) yielded instrumental drift and registration problems which
resulted in the occurrence of doubled tree images. Moreover, the computing time and especially the
amount of necessary main memory drastically increased: on a machine equipped with 64 GB of main
memory, registration was impossible; on a machine equipped with 128 GB main memory and an
i7-6850K hexa core CPU (Intel Corp., Santa Clara, CA, U.S.A.), registration took approximately 24h of
computing time.

Due to the high cross-section completeness of the PLS scans, compared to TLS scans, there were
also more flexible options for modeling the diameter, such as polygons [107] or free-form curves [108].
Nevertheless, the noise in the point clouds was higher for PLS than for TLS. Thus, problems occurred;
especially with small diameters, as these no longer had a gap in the center. This could also lead to
problems for modeling taper forms, as no reduction in the upper, smaller diameters was visible in the
PLS point clouds. Applications such as modeling of branching architecture, bark structure, or tree
species recognition could be limited due to this high PLS noise.
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Future research questions in the area of PLS arise in dealing with the low precision of the 3D
points. There will still be applications that can only be managed with TLS, due to their high precision
requirements. However, PLS also opens up new possibilities for sample design. It is no longer
necessary to make circular samples and, so, new methods could be developed; for example, using
random walk approaches.

4.2. Stem Detection

The algorithm used in this study was developed and trained based on the sample plots of
the BOKU forest inventory and worked fully automatically for PLS and TLS. Sample plots were
intentionally selected to represent a broad range of stand and terrain conditions (stand density ranging
from 286 trees ha−1 to 3350 tress ha−1, and slope ranging from 10.1% to 51.0 %), the results remain
constant under all conditions. The TLS data acquisition was done one year before the PLS recordings,
which means that, due to thinning and for a fair comparison, only 17 TLS sample plots were used. One
advantage of our study was that the different scanning methods had the same pre-conditions regarding
stem density, tree species, stem sizes, understory vegetation, reference data, and plot size. This made it
easier to compare the PLS and TLS used in the study. Except for processing the raw scan data with
the manufacturer’s software, point cloud processing and analysis was performed using R statistical
software (R Foundation for Statistical Computing, Vienna, Austria) [83]. This was also an advantage,
as the majority of the workload can be carried out with freely available and programmable software.
For each sample plot and scanner system (PLS and TLS), constant parameter settings were applied for
the underlying clustering algorithms and diameter fitting routines. There were only a few differences
in the parameters of PLS and TLS algorithms (see Appendix A, Table A2), which were necessary mainly
due to the higher point density in TLS. As a result, the proposed methodology proved to be robust and
provided high flexibility under different forest structure scenarios and in different scanning setups.

The use of PLS resulted in a better tree detection rate than multi-scan TLS with a very competitive
acquisition time. For PLS, the average detection rate and time required for a 20 m radius sample plot
with a lower dbh threshold of 5 cm were 96% (sd ±4.84%) and 10.96 min (sd ±2.24 min), respectively.
In comparison, the TLS detected 78.46% (sd ±16.22%) of trees in 49.6 min (sd ±0 min). The high number
of non-detections with TLS can be explained by occlusion effects resulting from the small number of
only four scan positions. The PLS provides a multi-view mapping scenario, which records each tree
from different directions as the operator position and viewing geometry constantly changed and the
entire plot was recorded by walking through it. The proportion of falsely detected trees (commission
error) was 1.13% (sd ±2.12%) for PLS and 2.41% (sd ±2.76%) for TLS. Although the commission error
for both was very low, TLS had about twice as many falsely detected trees as PLS. This was mainly
due to TLS co-registration problems. It was shown that plot size and the lower dbh threshold in PLS
had only a small influence, in contrast to that in TLS. The detection rate increased at 10 m radius and
10 cm lower dbh threshold to 99.49% (sd ±1.59%) for PLS and to 98.35% (sd ±4.01%) for TLS. This was
because the density of the TLS 3D point cloud data became thinner and occlusion effects were more
likely to occur with a higher distance from the scanner.

4.3. dbh Estimation

In dbh measurement, it was found that small diameters (dbh < 10 cm) were overestimated and
large diameters (dbh > 10 cm) were underestimated with PLS, regardless of the fitting method. It turned
out that the dbh modeled with natural cubic splines had the highest accuracy (RMSE: 2.87 cm) for PLS,
with corresponding bias of −0.48 cm. An interpretation of the overall bias is meaningless, due to the
dependency of the bias on the diameters. There were also differences between tree species, but the
general trend that small diameters were overestimated and large diameters were underestimated
remained the same. The reason for the overestimation of small trees was probably the high noise in the
PLS point clouds: With increasing noise, in terms of sdres_gam, the overestimation increased.
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In order to obtain exact diameter estimates from PLS, a correction model for dgam with the predictor
variables dgam, mean intensity of the points (mean_inten), standard deviation of the residuals (sdres_gam),
and interaction between the mean_inten and sdres_gam was fitted. In the course of this, the diameter
deviation should be predicted. The mean intensity was also a term for the tree dimension, which
increased as the diameter increased. The point intensity also reflected the reflectivity of the surfaces
and, thus, different tree species were represented to a certain extent. As the standard deviation
of the residuals (sdres_gam) increased, the diameter error also increased. Cross-validation showed
that at least 250 manual reference measurements are necessary to keep the RMSE below 2.40 cm.
The large diameters showed, after correction, no underestimation; although, for small diameters, only
a marginal reduction of the overestimation was seen. With regard to the correction, it could also
be beneficial to measure the reference in diameter classes separately, according to tree species. This
could reduce measurement costs and better consider differences in tree species. In order to control the
underestimations of large trees, alternatively smooth additive regression models for quantiles were
fitted with the function qgam() in the R package qgam [109], in order to see if there was an optimal
quantile. However, the optimal quantile could only be predicted with a coefficient of determination of
0.28 using the preliminary estimated diameter dgam and, therefore, proved to be unsuitable.

The dbh estimates from TLS did not show a trend in diameter deviations, like for PLS estimates,
and there were no tree species differences. The highest accuracy (RMSE: 2.55 cm) was achieved for
TLS with an elliptical dbh fit. However, there were also high diameter deviations for TLS, which are
explained mainly by co-registration problems. It seems that all diameter fitting methods tended to
have outliers when the cross-sections of the stem were incomplete. Particularly in the outer areas of
the sample plots, TLS had more incomplete cross-sections, compared to PLS. In this regard, it may be
advantageous to place the outer scan positions of the TLS at the perimeter of the sample plot.

In principle, the performance of the algorithms used for the point cloud processing, position
finding, and dbh measurement should not be influenced by seasonal effects. However, in the leaf-on
stage during the vegetation period, the quality (completeness) of the point cloud is probably lower,
due to shadowing effects. Particularly in deciduous forests, a high stem density and a multi-layered
structure could more easily produce co-registration problems during the vegetation period. In order to
provide clear results, further research is needed in the future on how the methods are affected by such
seasonal effects.

4.4. Cylindrical Reference Objects

Using reference data collected on eight cylindrical objects, it was shown that the diameter was
underestimated for all objects (i.e., regardless of their actual diameter). However, the noise, in terms of
sdres_gam in the reference data obtained under controlled conditions, was lower compared to the PLS
scans in the forest. Concerning this, there was also a positive correlation with the scan time. The fact
that the reference objects were underestimated even with small diameters (5 cm) was due to the small
standard deviation of the residuals, compared to the data from the forest. Obviously, the systematic
underestimation of PLS-derived diameters had device-related or software-related (SLAM) reasons.

4.5. Comparison with Other Studies

Table 5 shows a comparison of the results of our study with other studies which evaluated
SLAM-based PLS approaches. In particular, recent studies and those with TLS comparisons on the
same sample plots were used. The GeoSLAM ZEB HORIZON used in our study represents the latest
scanner generation from GeoSLAM. Compared to other studies, the highest detection rate and lowest
commission rate were achieved with PLS. Regarding RMSE and bias, the results of the present study
performed in the middle range. For further details on the comparative studies, the reader is referred to
those. In Gollob et al. [20], where the same 17 TLS points were used as in this study, only 59.1% of
the trees were found in a 20 m sample plot radius with a lower dbh threshold of 5 cm and using a
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different algorithm. It can be seen that there were also large differences due to the algorithms used,
which makes it difficult to compare studies.

Table 5. Comparison of current results with previous studies.

Reference Method Scanner
TLS

Scanner-
Positions

Detection
Rate (%)

Commis-sion
Rate (%)

Overall
Accuracy

(%)

RMSE
(cm)

Bias
(cm)

This study PLS GeoSLAM ZEB HORIZON 96 1.1 94.9 2.32 0.21
TLS FARO Focus3D X330 4 78.5 2.4 76.1 2.55 −0.74

Bauwens et al.
[49]

PLS GeoSLAM ZEB1 90 31 59 1.11 −0.08
TLS FARO Focus 3D 120 5 93 22 71 1.30 −0.17
TLS FARO Focus 3D 120 1 78 21 57 3.73 −0.08

Oveland et al.
[53]

PLS GeoSLAM ZEB1 74.0 4.8 69.2 3.1 0.30
TLS FARO Focus3D X130 1 61.8 5.4 56.4 6.2 −2.00

Chen et al.
[47] PLS GeoSLAM ZEB-REVO-RT 93.3 6.1 87.2 1.58 −1.26

Ryding et al.
[46] PLS GeoSLAM ZEB1 * * * 2.90 −0.30

* Not evaluated against manual field data.

Bauwens et al. [49] also found a trend in the diameter deviations due to the tree size for the
GeoSLAM ZEB1. In addition to the tree size, the bark roughness was also shown to have a significant
effect on dbh estimates [49]. Furthermore, Brolly et al. [110] stated that the roughness of the bark seems
to have influence in the accuracy of TLS dbh estimates. Ryding et al. [46] indicated that there was
a significant difference in the fitting accuracy of trunks with diameters greater than 10 cm and less
than 10 cm. In our study, tree species differences could also be found, but they did not change the
general trend in diameter deviations due to tree size and were relatively small. The high noise in the
PLS cross-sections may have masked the effect of bark roughness. Bauwens et al. [49] argued that the
influence of the tree size for dbh estimates is based on the irregularity of the shape of cross-sections
and the fact that smaller trees often have low branches and are surrounded by other small trees with
low branches. We attempted to model such irregular shapes in our study with flexible curves (dgam,
dtegam), but this did not result in much higher dbh precision and accuracy. The trends of overestimation
(small diameters) and underestimation (large diameters) were still present. In this study, a test was
also made to measure the diameter, similar to the method used in the field with calipers. Therefore,
the non-circularly modeled cross-sections (dgam, dtegam, dell) were measured with rotating clipping
boxes, in the same way as with a caliper from different directions. This also did not lead to more
precise diameters.

Some studies [46,54] have indicated that PLS is 2 to 12 times faster in scanning time than TLS.
However, this comparison must be viewed critically, with regard to different hardware parameter
settings, number of TLS locations, and walking paths in PLS. Furthermore, the times for co-registration
are usually not taken into account. In the present study, the scan time for PLS, with an average of
10.96 min per sample plot, was 4.6 times shorter than for TLS (49.9 min). In comparison, traditional
inventory methods like the Bitterlich relascope sampling, which has been carried out on the same
sample plots since 1989, took around 30 min per sample plot. The times mentioned were always
recording times for one person doing the inventory. Further research is necessary for more informed
statements regarding walking times to the sample plots, processing times for the 3D data and transfer
times for the traditional inventories. In terms of a fair comparison, it is important to mention that the
Bitterlich relascope sampling does not include the full tree pattern and no tree locations.

In this study, a star-shaped walking path was used, similar to Bauwens et al. [49], Oveland et al. [53],
and Giannetti et al. [56]. The walking path influences the scanner range noise and drifts associated
with the SLAM algorithm. Liang et al. [42] stated that, for PLS in general, it is important to plan the
walking path before data acquisition. The results of the present study showed that the noise in the point
clouds increased with the scan time. A recommendation for forest inventory on circular samples could
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be to make the radius smaller, in order to shorten the scanning time. However, a decreased sample
plot size would require more sample plots to obtain the same level of inventory precision. As this
would be associated with more working time for moving from plot to plot, studies on the optimal
sample plot size for PLS are needed in the future. Ryding et al. [46] stated that, for the GeoSLAM
ZEB1, a slower operational gait may also allow for a higher resolution point cloud creation. Del
Perugia et al. [55] showed, in a study on the influence of scan density on the estimation of single-tree
attributes by SLAM-based PLS, that a distance of 10 m between scan paths provided the best results
with the GeoSLAM ZEB1. No such studies have yet been carried out for the new GeoSLAM ZEB
HORIZON used in our study.

Due to the many possible combinations of parameter settings, such as hardware properties,
scanner position variations, underlying forest structure diversity, and non-homogeneous quality
criteria, comparative assessment of the results from different laser scanning studies is difficult [7].
For this reason, an international benchmark project [7] for TLS forest inventory has been initiated,
in order to evaluate the performance of different algorithms under predefined reference conditions.
To carry out an objective comparison of different routines for PLS forest inventory, a benchmark project
for PLS or MLS would also be beneficial in the future. This is the reason why the PLS, TLS, and reference
data from the sample plots of this study have been made freely available for research purposes.

4.6. Quality of Reference Data

The assessment of results from automatic laser scanning routines is usually based on manually
collected field measurements. The tree position in the field measurement is defined as the cross-section
center at a height of 1.3 m (i.e., breast height). If trees fork just above or below this height, it is not
guaranteed that an automatic algorithm recognizes them and correctly detects the corresponding
number of trees. The 1.3 m breast height should also be viewed critically. In forestry, the ground level
(height = 0 m) is defined as the highest point of the ground around the tree; however, the algorithms
used for tree detection and diameter estimation do not always use this definition. Frequently (as in
this study), the point clouds are normalized with a DTM and, thus, the definition of breast height is
violated. Another crucial step is the classification of terrain points. If the stem base is also classified as
terrain, then the trees are made smaller due to normalization. In the current study, care was taken
when choosing the parameters for terrain classification, such that terrain points were clearly separated
from the stem bases. Errors in the 1.3 m breast height have an influence on the estimated positions
and diameters and ensure, together with manual reference diameters measured at the wrong heights,
imprecise results. A solution to this would be to mark the breast height before scanning and manual
dbh measurements.

Irregularities at the base of the stem, such as ovality, might induce error in the measured diameter
when using calipers, due to the measuring direction. During a manual field survey for this study,
it was not always guaranteed that the specified measuring direction was followed. In order to take
this into account, trials were made to test different measuring directions with clipping boxes rotating
around the modeled cross-sections. This did not lead to more precise diameter estimates. However,
the high noise in the PLS data may have masked the influence of the measuring direction. For the
incomplete TLS cross-sections, an evaluation of the measuring direction was not meaningful. On the
other hand, least-square fitting methods on irregular cross-sections, as well as on trees with rough bark,
induce lower diameter estimates than with caliper measurement. Tilted trees are another problem:
according to the field measurement instructions, tilted trees were also measured at an angle using the
calipers. Many automatic laser scanning routines (including that in this study) do not take the tilt of
the trees into account.

Luoma et al. [111] assessed the precision in conventional field measurements of individual tree
attributes. A total of 319 sample trees were measured independently by four trained mensurationists.
The standard deviations in tree dbh and height measurements were 0.3 cm (1.5%) and 0.5 m (2.9%),
respectively. There were no statistically significant differences for tree species and tree size classes
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between the obtained dbh or height measurements. These results are important when using sample plot
data in forest inventory applications; especially now, at a time when new tree attribute measurement
techniques based on remote sensing are being developed and compared to conventional caliper and
clinometer measurements.

5. Conclusions

The major goal of the present study was to investigate the accuracy of tree detection and
diameter estimation in forest inventory using PLS under various stand and terrain conditions. A new
SLAM-based personal laser scanner (PLS) was used for this and, to the best of our knowledge, this
represents the first application of this scanner in a forestry context. The results of the PLS data were
compared with TLS results on the same inventory plots, using a new algorithm for automatic tree
detection and dbh estimation. Our tree detection and diameter estimation method proved to be
applicable to manifold forest structure conditions comprising different species combinations, varying
stem densities, and dense understory vegetation. Parameter setup of the scanning devices was kept
fixed for PLS and TLS scans under all environmental conditions, so that the field crews did not have to
change the setup. Additionally, the parameter setup of the algorithms for extracting tree attributes
from the point cloud were unchanged, so that these extractions worked fully automated. It was shown
that, with PLS, 96% of trees could be detected in a 20 m sample plot radius with a lower dbh threshold
of 5 cm. The proportion of falsely detected trees was 1.1%. In comparison, TLS detected 78.5% of the
trees with a percentage of falsely detected trees of 2.4%. Using plot radii of 20 m, 15 m, and 10 m,
as well as a lower dbh threshold of 10 cm, the respective detection rates for PLS were 98.76%, 98.95%,
and 99.48%, while the respective detection rates for TLS were considerably lower (86.32%, 93.81%,
and 98.35%), especially for larger sample plots. Different methods for diameter estimation were tested
for PLS and TLS. Regarding diameter estimation, there was a trend in the diameter deviations of PLS
which depended on the tree size. However, this trend was corrected with a function, resulting in
a RMSE of 2.32 cm (12.01%) and a bias of 0.21 cm (1.09%) for the best diameter estimation method
(dgam). With TLS, an accuracy, in terms of RMSE, of 2.55 cm (13.19%) and a precision, in terms of bias,
of −0.74 cm (−3.83%) was achieved with the best diameter estimation method (dell). The scan time for
PLS, with an average of 10.96 min per sample plot, was 4.6 times shorter than for TLS (49.9 min).

Decision-making in forest resources relies on precise information collected using sample-based
inventories. With traditional instruments, such as calipers and tapes, the entire workflow—from
data collection to data analysis—can be regarded as inefficient. In contrast, information is kept
electronically throughout the entire workflow of laser-based surveys. Thus, high-resolution 3D data
remains accessible with novel software routines in the future. PLS technology represents the next step
(i.e., after TLS technology) towards an efficient and modern forest inventory methodology. It is also
expected that PLS will be more often used in forest inventories as soon as the currently developed
programs are available, in terms of free software routines, and the challenges of imprecise PLS point
clouds are solved.

Supplementary Materials: The point clouds and reference data used in this study are freely available (Creative
Commons Attribution 4.0 International License - CC BY 4.0) under [112] doi: 10.5281/zenodo.3698956 (https:
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Appendix A

Table A1. Plot descriptions of the 20 sample plots and summary statistics of sample plots. slope, slope of sample plot; p_spr, proportion of Norway spruce; p_bee,
proportion of Common beech; p_lar, proportion of European larch; p_pin, proportion of Scots pine; p_ f ir, proportion of Silver fir; dm, diameter of mean basal area tree;
BA/ha, basal area per hectare; N/ha, number of trees per hectare; SDI, stand density index; CVdbh, coefficient of variation of diameter at breast height; Di f f _Fuel, dbh
differentiation according to Füldner; CE, Clark and Evans aggregation index; shannon, Shannon index; PLS/TLS, used scanner device.

Plot Stand
Class

Regen-
eration slope (%) p_spr (%) p_bee (%) p_lar (%) p_pin (%) p_fir (%) dm (cm)

dbh
Range
(cm)

BA/ha
(m2/ha)

N/ha
(trees/ha)

SDI
(trees/ha) CVdbh Diff_Fuel CE Shannon PLS/TLS

1 2 1 27.4 5 86 3 3 1 25.7 5.3–54.4 38.4 740 774 0.71 0.52 0.85 0.61 PLS/TLS

2 3 2 22.4 9 73 4 2 5 32.3 7.0–49.5 37.2 454 685 0.34 0.38 0.93 0.98 PLS

3 3 4 32.5 37 47 0 3 7 41.8 16.0–58.0 32.8 239 546 0.25 0.20 1.14 1.20 PLS/TLS

4 2 1 24.0 58 11 31 0 0 28.1 5.2–57.3 39.5 637 768 0.65 0.31 1.13 0.92 PLS/TLS

5 1 0 22.4 26 71 3 0 0 15.0 5.0–42.5 40.0 2260 997 0.5 0.36 0.83 0.73 PLS/TLS

6 1 0 34.2 14 86 0 0 0 12.1 5.0–32.4 26.8 2332 727 0.46 0.33 0.93 0.43 PLS/TLS

7 3 3 22.4 35 50 3 6 6 38.3 6.8–62.0 32.9 286 567 0.52 0.40 0.99 1.15 PLS/TLS

8 1 1 10.5 82 10 1 0 5 18.7 5.0–50.7 32.9 1202 752 0.48 0.37 0.99 0.69 PLS/TLS

9 1 0 51.0 60 39 0 0 0 13.5 5.0–28.2 47.9 3350 1246 0.42 0.33 1.03 0.69 PLS/TLS

10 2 0 47.1 13 87 0 0 0 26.3 5.0–49.6 26.8 493 535 0.57 0.50 0.96 0.39 PLS/TLS

11 3 3 24.0 71 29 0 0 0 43.1 5.4–74.0 56.9 390 934 0.40 0.30 1.12 0.60 PLS/TLS

12 3 1 14.2 56 38 0 0 5 35.2 5.8–59.1 43.3 446 770 0.47 0.40 0.89 0.85 PLS/TLS

13 2 0 34.2 41 57 0 0 0 21.1 5.1–42.0 44.4 1265 966 0.68 0.48 0.84 0.78 PLS/TLS

14 2 0 41.4 35 56 1 6 1 32.0 6.6–55.4 43.7 541 806 0.43 0.39 0.98 0.98 PLS/TLS

15 2 0 25.7 43 45 0 0 0 20.2 5.1–43.7 42.3 1313 936 0.74 0.43 0.80 1.00 PLS/TLS

16 3 1 37.8 26 56 0 0 19 32.7 5.1–56.7 46.7 557 855 0.58 0.47 0.90 0.99 PLS/TLS

17 3 2 20.7 5 53 0 24 18 33.1 5.0–60.2 42.6 493 776 0.56 0.50 0.71 1.13 PLS/TLS

18 2 1 30.8 3 64 0 6 27 28.5 5.4–56.0 51.4 804 993 0.64 0.50 0.93 0.91 PLS/TLS

19 2 0 32.5 0 97 0 3 0 22.6 5.2–43.2 31.1 772 659 0.63 0.47 0.90 0.15 PLS

20 2 0 34.4 4 86 0 0 0 20.2 5.4–44.2 33.8 1050 748 0.59 0.46 0.79 0.57 PLS

Stand class: 1, dbh <22 cm; 2, >50% dbh 22–37 cm; 3, >50% dbh 37–52 cm. Regeneration: 0, no regeneration; 1, <1.3 m; 2, >1.3 m coverage <33%; 3, >1.3 m coverage 33–66%; 4, >1.3 m
coverage >66%.
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Table A2. Workflow and applied software functions and parameters. Black indicates steps for both
PLS and TLS. Red indicates steps for PLS solely and blue indicates steps for TLS solely.

Step No. Step/Substep Software Package/Function Parameters

1 Registration of point cloud

GeoSLAM
Hub2 Export in .las format

100% of points
time stamp: scan
point color: none

3 Co-registration of scans FARO
SCENE4 Export in .xyz format

5 Import, transform, and export in .las
format

R

data.table,
rlas

fread(),
write.las()

6 Import data

lidR

readLAS() filter = "-keep_circle 0 0 21"

7 Classify into ground points and
non-ground points lasground()

csf(class_threshold = 0.05,
cloth_resolution = 0.2,

rigidness = 1)

8 Create DTM grid_terrain() res = 0.2,
knnidw(k = 2000, p = 0.5)

9 Normalize relative to DTM lasnormalize()

10 Remove ground points lasfilter() Classification = 1

11 Sample random point per voxel TreeLS tlsSample() voxelize(spacing = 0.02)
voxelize(spacing = 0.015)

12a Clustering 2D

calculate
reachability of

each point dbscan
optics() eps = 0.025

minPts = 90

12b DBSCAN
clustering extractDBSCAN() eps_cl = 0.025

13 Filter clusters various functions in base
nr. of points ≥ 500
nr. of points ≥600

vertical extent ≥ 1.3 m

14a if(extension≥0.22 m2)
Clustering 3D

calculate
reachability of

each point dbscan
optics() eps = 0.025

minPts = 20

14b DBSCAN
clustering extractDBSCAN() eps_cl = 0.02

14a if(extension<0.22 m2)
Clustering 3D

calculate
reachability of

each point dbscan
optics() eps = 0.025

minPts = 18

14b DBSCAN
clustering extractDBSCAN() eps_cl = 0.023

15 Filter clusters various functions in base
nr. of points ≥ 500

vertical extent ≥ 1.3 m
80% quantile intensity > 7900

16 Stratification into 14 vertical layers various functions in base
from 1 m to 2.625 m

vertical extent = 0.15 m
overlap = 0.025 m

17a

Preparing layers for
diameter estimation

dcirc edci circMclust()
nx = 25
ny = 25
nr = 5

17b delll conicfit EllipseDirectFit()

17c if(diam. <0.3 m)
add buffer various functions in base + 0.06 m

17d if(diam. ≥0.3 m)
add buffer various functions in base + 0.09 m
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Table A2. Cont.

Step No. Step/Substep Software Package/Function Parameters

18a

diameter estimation

dcirc edci circMclust()
nx = 25
ny = 25
nr = 5

18b dell conicfit EllipseDirectFit()

18c dcirc2 conicfit LMcircleFit()

18d dgam
mgcv gam()

predict() s(angle, bs="cc")

spatstat area.owin()

18e dtegam
mgcv gam()

predict()
te(angle, Z, bs=c("cc","tp"))

Z = 1.3 m

18f spatstat area.owin()

19a Check criteria for
diameters for 6 out of

14 layers

sd XY position
(dcirc and dell) various functions in base

≤ 0.01 m

19b sd diameter
(dcirc and dell)

≤ 0.0185 m

20 Calculate final position at 1.3 m (from dcirc
or dell)

base lm()

21 Calculate final dbh at 1.3 m for all
diameter fits base lm()

22 Affine transformation of tree positions vec2dtransf AffineTransform-ation()

23 Assign tree positions spatstat pppdist() cutoff = 0.3

24 Correct bias for dgam base lm()

Appendix B

Table A3. Detection rates, commission errors, and overall accuracies for PLS/TLS, lower dbh thresholds,
and plot radii.

Detection Rate dr(%) Commission Error c (%) Overall Accuracy acc (%)

Radius dbh PLS TLS PLS TLS PLS TLS

20 m ≥5 cm 95.99 78.46 1.13 2.41 94.83 76.38
20 m ≥10 cm 98.76 86.32 1.40 2.70 97.29 83.81
20 m ≥15 cm 99.36 90.07 1.69 3.19 97.58 87.04
15 m ≥5 cm 95.98 87.33 0.84 3.26 95.16 84.05
15 m ≥10 cm 98.95 93.81 1.06 3.68 97.86 89.96
15 m ≥15 cm 99.56 94.78 1.29 4.27 98.24 90.33
10 m ≥5 cm 97.33 92.22 0.66 1.98 96.67 90.15
10 m ≥10 cm 99.48 98.35 0.91 2.08 98.55 96.08
10 m ≥15 cm 99.18 98.64 1.08 2.47 98.05 95.93
5 m ≥5 cm 99.15 93.97 0.62 0.42 98.44 93.52
5 m ≥10 cm 100.00 98.82 1.00 0.59 98.75 98.17
5 m ≥15 cm 100.00 99.02 1.00 0.84 98.75 98.04
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Table A4. Performance of tree detection and diameter estimation for PLS/TLS with a lower dbh threshold of 5 cm and plot radius of 20 m.

Plot dr(%)
PLS

dr(%)
TLS

c
(%)
PLS

c
(%)
TLS

acc
(%)
PLS

acc
(%)
TLS

RMSE
(cm)
PLS

RMSE
(cm)
TLS

RMSE
corr.
(cm)
PLS

bias
(cm)
PLS

bias
(cm)
TLS

bias
corr.
(cm)
PLS

sdres_gam
(cm)
PLS

sdres_gam
(cm)
TLS

Time
(min)
PLS

Time
(min)
TLS

1 100.0 91.7 0.0 1.1 100.0 90.6 2.96 2.38 2.11 −1.32 −0.75 −0.92 2.58 0.55 9.1 49.6

2 100.0 0.0 100.0 1.95 1.64 −1.06 0.49 2.58 7.3

3 100.0 93.3 0.0 3.4 100.0 90.0 3.79 5.11 2.50 −3.59 −2.40 −1.93 2.78 0.58 11.7 49.6

4 95.0 78.8 1.3 0.0 93.8 78.8 3.56 1.67 2.02 −0.23 −0.24 0.09 2.55 0.54 12.0 49.6

5 90.8 63.8 0.4 1.1 90.5 63.1 2.79 2.89 2.51 0.22 −1.11 −0.35 2.43 0.62 13.4 49.6

6 83.3 47.3 0.4 0.0 82.9 47.3 3.50 2.16 3.16 0.52 −0.88 0.29 2.33 0.56 10.7 49.6

7 100.0 69.4 7.7 10.7 91.7 61.1 3.15 4.20 2.44 −2.35 −2.30 −0.98 2.69 0.46 13.9 49.6

8 97.4 62.9 1.3 3.1 96.0 60.9 4.00 2.50 3.81 0.86 −1.21 1.55 2.57 0.58 13.5 49.6

9 92.2 56.1 0.0 0.4 92.2 55.9 1.83 2.28 1.98 0.21 −0.55 0.80 2.18 0.57 15.5 49.6

10 95.2 92.9 0.0 1.5 95.2 91.4 3.67 2.06 2.51 −2.13 0.34 −1.21 2.74 0.50 8.5 49.6

11 100.0 90.0 0.0 2.2 100.0 88.0 3.13 3.54 2.66 −1.92 −1.21 0.91 2.67 0.47 11.4 49.6

12 98.2 93.4 1.8 5.0 96.4 88.5 3.26 1.52 1.67 −2.63 −0.27 −0.03 2.61 0.39 10.6 49.6

13 90.6 72.3 0.7 0.0 89.9 72.3 3.27 2.34 2.86 −0.41 −0.91 0.80 2.50 0.61 13.1 49.6

14 100.0 97.2 0.0 0.0 100.0 97.2 2.26 1.86 1.47 −1.37 −0.21 0.34 2.59 0.39 8.6 49.6

15 87.3 57.1 0.7 0.9 86.7 56.6 2.25 3.19 2.10 −0.2 −1.06 0.54 2.52 0.61 10.6 49.6

16 100.0 94.4 0.0 4.2 100.0 90.3 3.17 2.39 1.61 −2.05 −0.84 0.00 2.70 0.55 12.1 49.6

17 95.2 88.7 6.3 5.2 88.7 83.9 2.62 1.91 1.50 −1.91 −0.18 0.51 2.58 0.41 9.8 49.6

18 99.0 84.5 2.0 2.2 97.0 82.5 2.97 2.59 1.81 −1.81 −0.21 −0.10 2.45 0.44 11.0 49.6

19 97.9 0.0 97.9 2.29 1.95 −0.46 0.02 2.39 8.0

20 97.7 0.0 97.7 2.01 1.59 −0.53 −0.48 2.35 8.3
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gam) over all 20 sample plots for PLS. The dashed gray line is zero-reference. Left panel: the deviation 

between dbh estimates from PLS and dbh measured in the field. The solid red line is a locally 

weighted scatterplot smoothing (LOESS) fit with a span of 3/4. Central panel: The deviation between 

dbh estimates from PLS and dbh measured in the field for different tree species. Right panel: LOESS 

fit with a span of 3/4 for the data from the central panel. The colored lines indicate different tree 

species. The shaded areas indicate 95% confidence intervals of the corresponding LOESS fits. 

Figure A2. dbh deviation, δdbh, for different methods of dbh estimation (ell, circ2, circ, tegam, and gam)
over all 20 sample plots for PLS. The dashed gray line is zero-reference. Left panel: the deviation
between dbh estimates from PLS and dbh measured in the field. The solid red line is a locally weighted
scatterplot smoothing (LOESS) fit with a span of 3/4. Central panel: The deviation between dbh
estimates from PLS and dbh measured in the field for different tree species. Right panel: LOESS fit
with a span of 3/4 for the data from the central panel. The colored lines indicate different tree species.
The shaded areas indicate 95% confidence intervals of the corresponding LOESS fits.
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Figure A3. Overview of four object cross-sections including the fitted diameters, deviations, standard
deviations of the residuals, and average intensities. The solid red and black circles indicate the diameter
dgam and dcirc2, respectively. The solid green circle indicates the diameter of the reference circle.
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Figure A4. Overview of four object cross-sections including the fitted diameters, deviations, standard
deviations of the residuals, and average intensities. The solid red and black circles indicate the diameter
dgam and dcirc2, respectively. The solid green circle indicates the diameter of the reference circle.
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Figure A5. Examples of diameter deviation δ for different methods of dbh estimation for simulated
noisy cross-sections. Normally distributed random errors with a standard deviation of 2.45 cm were
added to the distances (radii in a closed circle) of 1000 polar co-ordinates per tree to simulate noisy
cross-sections. The solid red and black circles indicate the diameter dgam and dcirc2, respectively.
The solid green circle indicates the diameter of the reference circle.
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