remote sensin N
?J & bpy

Article
A Deep Learning Model for Automatic Plastic
Mapping Using Unmanned Aerial Vehicle (UAV) Data

Gordana Jakovljevic !, Miro Govedarica >( and Flor Alvarez-Taboada 3*

1 Faculty of Architecture, Civil Engineering and Geodesy, University of Banja Luka,

78000 Banja Luka, Bosnia and Herzegovina; gordana.jakovljevic@aggf.unibl.org

Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia; miro@uns.ac.rs
3 GEOINCA, Universidad de Ledn, 24404 Ponferrada, Spain

*  Correspondence: flor.alvarez@unileon.es; Tel.: +34-661-266-671

check for
Received: 1 April 2020; Accepted: 7 May 2020; Published: 9 May 2020 updates

Abstract: Although plastic pollution is one of the most noteworthy environmental issues nowadays,
there is still a knowledge gap in terms of monitoring the spatial distribution of plastics, which is
needed to prevent its negative effects and to plan mitigation actions. Unmanned Aerial Vehicles
(UAVs) can provide suitable data for mapping floating plastic, but most of the methods require visual
interpretation and manual labeling. The main goals of this paper are to determine the suitability of
deep learning algorithms for automatic floating plastic extraction from UAV orthophotos, testing the
possibility of differentiating plastic types, and exploring the relationship between spatial resolution
and detectable plastic size, in order to define a methodology for UAV surveys to map floating plastic.
Two study areas and three datasets were used to train and validate the models. An end-to-end
semantic segmentation algorithm based on U-Net architecture using the ResUNet50 provided the
highest accuracy to map different plastic materials (F1-score: Oriented Polystyrene (OPS): 0.86; Nylon:
0.88; Polyethylene terephthalate (PET): 0.92; plastic (in general): 0.78), showing its ability to identify
plastic types. The classification accuracy decreased with the decrease in spatial resolution, performing
best on 4 mm resolution images for all kinds of plastic. The model provided reliable estimates of the
area and volume of the plastics, which is crucial information for a cleaning campaign.

Keywords: deep learning; mapping plastic; automatic detection; Al; remote sensing; UAV; segmentation

1. Introduction

Plastic pollution has become one of the most significant environmental issues of our age. Since the
1950s, when it was invented, as sanitary and cheap material, plastic took the place of paper and
glass in food packaging, wood in furniture, and metal in car production. Global plastic production
has increased annually, reaching almost 360 million tons in 2018 [1]. Only nine percent of the nine
billion tons of plastic that has ever been produced has been recycled [2]. Subsequently, more than
8 million tons of plastic end up in the ocean each year [3]. Plastic is not biodegradable, and over
time, macro plastic pieces degrade into smaller and smaller pieces called microplastic (less than five
millimeters long [4]). Microplastic can be swallowed by a wide variety of marine organisms and
then rise through the food chain, ending up on our dinner tables. Marine plastic litter is a global
environmental problem with significant economic, ecological, public health, and aesthetic impacts.
Effective measures to prevent negative effects of marine plastics require an understanding of its origin,
pathways, and trends.

Land-based litter, transported by rivers to oceans, is estimated to be a major contributor to this
problem [4,5]. The research presented by [6] estimates that just 10 river systems transport more than
90% of the global input. The global estimations of plastic debris entering oceans annually, although
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numerous, are typically based on local or regional scale surveys, and they vary from 250,000 tons [7]
to 4.8-12.7 million tons of plastic [8]. Therefore, the amount of plastic in the global oceans remains
poorly understood with a knowledge gap in terms of the temporal and spatial distribution of plastics,
degradation, and beach processes. This information is vital for the development of activity plans for
reducing land-based litter impact in oceans. Several efforts have been made to establish a standardized
monitoring methodology, such as Oslo and Paris Conventions (OSPAR) [9], Commonwealth Scientific
and Industrial Research Organization (CSIRO) [10], National Oceanic and Atmospheric Administration
(NOAA) [11], and United Nations Environment Programme/Intergovernmental Oceanographic
Commission (UNEP/IOC) [12]. Those methodologies are based on traditional beach monitoring
by visual counting of plastic pieces along transects. Many guidelines on survey and monitoring
of marine litter, such as OSPAR [9], NOAA [11], and UNEP/IOC [12] record the counts of all items
larger than 2.5 cm X 2.5 cm, since this is the minimum disposal size permitted under the International
Convention for the Prevention of Pollution from Ships (MARPOL) for ground shipping waste [13].
According to [12], each person is responsible for noticing or collecting all litter in the 2 m wide zone along
a transect and, as a consequence, traditional beach surveys involve a large number of people. As an
example, CSIRO engaged thousands of students, teachers, and employees in order to survey coastal
debris in 175 sites in Australia, surveying 575 two-meter wide transects over a period of 18 months [10].
Visual surveys are, therefore, time and labor consuming, and usually only a sub-sample of the target
study area is covered. In addition, the surveyors can be in unsafe situations due to heavy wind, slippery
rocks, hazards such as rain and snow, or exposed to dangerous substances (such as chemical substances,
medical waste, etc.). Plastic litter is mostly concentrated on banks, coastlines and in the upper layer
of surface water bodies, mostly within the first 0.5 m [14]. Taking that into account, remote sensing
technologies with a high spatial, temporal and spectral resolution have the potential to become reliable
sources of information on floating plastics. Two examples of using these techniques have been provided
by [15] and [16]. Jakovljevic et al. [15] developed an algorithm for the detection of floating plastic
in freshwater, based on Artificial Neural Networks and high-resolution multispectral WorldView-2
images, reporting a Root Mean Square Error (RMSE) of 0.03 during the test phases. Aoyama [16] used
high-resolution WordView-3 satellite images and the Spectral Angle Mapper algorithm for the extraction
of marine debris in the Sea of Japan.

In recent years, Unmanned Aerial Vehicles (UAVs) have been recognized as an effective low-cost
image-capturing platform, suitable for monitoring aquatic environments with high accuracy [17,18].
Customizable flight routes at low-level altitudes in combination with new algorithms for photogrammetric
processing, such as the Structure from Motion (S5fM) algorithm, provide a cost-effective acquisition
of geospatial data with high spatial and temporal resolution, suitable for qualitative and quantitative
analysis of natural and artificial structures of streams and floodplains. In addition to infrared and
standard sensors, UAV can be equipped with multispectral cameras enabling its data to be combined
with satellite imagery. Martin et al. [19] used high-resolution (<1 cm) UAV images and the Random
Forest algorithm for the detection of plastic on the beaches, obtaining detection rates of 44%, 5%, and
3.7% for drinking containers, bottle caps, and plastic bags, respectively. Topouzelis et al. [20] compared
the spectral response of Sentinel 2 and high-resolution UAV images over a large plastic floating target
(100 m?). Geraeds et al. [21] used images obtained by UAV at different flight heights to manually label
the riverbank and floating plastic. Moy et al. [22] created a hot spot map of debris on Hawaii Island
beaches by visually interpreting orthorectified imagery mosaics with a ground sample distance of 2 cm.
Although UAVs can provide appropriate spatial and temporal resolution to produce suitable data for
mapping floating plastic, most of the methods developed so far are based on visual interpretation and
manual labeling of plastic pieces, which is time-consuming and labor-intensive.

Recently, the deep Convolution Neural Network (CNN) has been widely used in image classification
tasks such as automatic classification, object detection [17,18], and semantic segmentation [23-25].
With the rapid improvement of Graphics Processing Unit (GPU) computing and the increase of open
training datasets, CNN models, such as AlexNet [26], VGGNet [27], ResNet [28], DenseNet [29],
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and Inception [30], used for image classification or for semantic segmentation in combination with Fully
Convolutional Network (FCN), U-Net or DeepLab architecture, have achieved state-of-art accuracy in
this topic. However, they completely discard the spatial information in the top layer, thus, producing a
lack of accurate positioning and class boundary characterization.

Semantic segmentation aims to assign the set of predefined class labels to each pixel in the image.
In early research, deep semantic segmentation used the patch-based CNN method [31,32], where
images are first divided into patches and then fed into CNN networks. The network predicts the central
pixel label based on the surrounding image patches. This process is repeated for each pixel, producing
a high computational cost, especially in overlapping patches. To solve this problem Long et al. [33]
proposed to use a Fully Convolutional Network (FCN). The FCN is an end-to-end model that maintains
a two-dimensional structure of a feature map and uses contextual and location information to predict
class labels, reducing the computational cost significantly. Semantic segmentation models based on
FCN can be divided into four categories: encoder-decoder structure [23,24], dilated convolutions [34],
and spatial pyramid pooling [35], which are described below.

The encoder-decoder structure is widely applied to semantic segmentation. Firstly, the encoder
generates feature maps with high-level semantic but low resolution by using convolutions, pooling and
an activation layer. Finally, the decoder upsamples the low-resolution encoder feature maps, retrieving
the location information and obtaining fine-scaled segmentation results. SegNet [23] and U-Net [24]
are typical architectures with encoder-decoder structures. On the one hand, SegNet [23] stores the
index of each max pooling window in the encoder, which then stores the indices of the maximum pixel,
so the decoders upsample the input using the indices coming from the encoder stage. On the other
hand, U-Net [24] is a highly symmetric U-shaped architecture where the skip connection is used to
directly link the output of each level from encoder to the corresponding level of the decoder. Therefore,
comparing U-Net to SegNet, the first does not reuse indices but instead it transfers the entire feature
map to the corresponding decoders and consonant them to the upsampled decoder feature maps.
This process produces more accurate maps than using SegNet, but it consumes more memory [23].
Also, U-Net can produce a precise segmentation with very few training images [24]. Zhao et al. [36]
used UAV RGB and multispectral images and U-Net architecture to extract rice lodging, obtaining
the dice coefficients of 0.94 and 0.92, respectively. Xu et al. [37] used ResUNet for building extraction
from Very High Resolution (VHR) multispectral satellite images reporting an F1 score of 0.98. In that
case, the ResUNet adopted the U-Net as basic architecture but the U-Net learning units were replaced
with residual learning units. Similarly, Yi et al. [38] used DeepResUNet and aerial VHR to map urban
buildings, reaching high accuracies (F1 score: 0.93).

Chen et al. [35] introduced DeepLab architecture, which uses a parallel atrous convolution
design instead of deconvolution for upsampling, performing similarly to other state-of-the-art models.
Recent studies show that U-Net architecture outperforms DeepLab in cases with complex water
environments [39,40]. Furthermore, U-Net architecture is preferred to DeepLab architecture because
due to a higher number of hyperparameters the DeepLab architecture is more computationally intensive
(processing time is increased by 58%) [39] and it needs more training steps to reach a performance
comparable to U-Net [40].

The first step in addressing the ocean’s plastic problem is to do an estimation of the amount of
plastic, where it is accumulating and its pathways. However, the differences in the protocols which
attempt to monitor the temporal and spatial distribution of plastic pollution (OSPAR [9], CSIRO [10]),
and the fact that the accuracy of the collected data varies depending on the observer’s skill, make the
integration and comparison of the estimations challenging. The research presented in this paper aims
to fulfill the need for an efficient and rapid estimation of floating plastic. The main goals of this paper
are to: (1) examine the performance of different deep learning algorithms for mapping floating plastic
using high-resolution UAV images, (2) to examine the relationship between the spatial resolution of
the UAV imagery and the size of the detected plastic, (3) to test the possibility of mapping different
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plastic materials such as Oriented Polystyrene (OPS), Polyethylene terephthalate (PET), and Nylon,
and (4) to define a methodology for UAV surveying to map floating plastic.

2. Study Area

Two study areas near Mrkonji¢ Grad (Bosnia and Herzegovina) were defined (Figure 1): (i) the
artificial Lake Balkana, with clear water, and (ii) the confluence of the Crna Rijeka and the Vrbas Rivers.
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Figure 1. Study areas: Lake Balkana (left) and Crna Rijeka River (right). EPSG:3857.

3. Materials

For the study area in the artificial Lake Balkana, targets were designed to examine the possibility
of mapping plastics of different sizes using UAV imagery. The targets consisted of (i) a wooden frame
(100 cm x 80 cm) with thin and transparent gauze and plastic squares, with side lengths from 1 to
10 cm (Figure 2b), (ii) a wooden frame (100 cm X 80 cm) with thin and transparent gauze and plastic
squares, with sides from 11 to 16 cm long, (iii) a wooden frame (100 cm X 80 cm) attached to a metal
frame located 20 cm below it, with thin and transparent gauze and plastic squares, with sides from
1 to 10 cm long (Figure 2a), and (iv) plastic bottles of different sizes and colors connected by ropes
(Figure 2d). A rope with a diameter of 4 mm was used to keep the frames in the area of interest during
the surveys (Figure 2c), while the wood made them floatable. The targets were released in the water in
the deepest part of the lake, to exclude the reflection of the lake bottom. Besides, three different plastic
materials were used: OPS (used for the plastic squares (Figure 2a,b), PET (plastic bottles Figure 2d)),
and Nylon (rope Figure 2c).
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Figure 2. Targets used in the study area located in Lake Balkana (a) frame with metal construction for
the underwater survey, (b) frame for the on the water surface survey, (c) nylon rope, (d) plastic bottles.

For the second study area, upstream of the confluence of the Crna Rijeka and the Vrbas Rivers
a net for collecting floating garbage was installed. Floating waste is the major source of litter in this
area, due to the disposal of the garbage in illegal landfills and picnic sites along the river or directly in
the river. The net collects about 10,000 m® of material annually, from which 60% is wood, 35% plastic
packaging, and 5% other [41]. The plastic packaging consists of 55% PET, while 45% consists of
Polyethylene (PE), and Polypropylene (PP) [41]. The amount of litter depends mostly on the weather
conditions. The largest quantity is captured during the rainy periods (spring and autumn) when water
level increases and washes away the garbage from the river banks. In May 2019, due to heavy rains,
the net broke and 10,000 tons of floating garbage ended up in the head pond of the hydroelectric
power plant. In order to detect and map the plastic (the self-built targets and the plastic stopped
by the net), 6 UAV surveys were conducted, using a DJI Mavic pro equipped with an RGB camera.
Five surveys with different flight heights (12-90 m) took place over the Balkana Lake area, and one
(at a 90 m flight height) over the Crna Rijeka River. The flight heights and spatial resolutions of the
surveys are presented in Table 1.

Table 1. Flight heights and spatial resolutions of the conducted surveys.

Spatial Resolution (mm)

Flight Height (m) Balkana Crna Rijeka
12 4 -
40 13 -
55 18 -
70 23 -

90 30 30
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4. Methods

In this paper, a pixel classification method to extract floating plastic pieces from water bodies within
VHR remote sensing images based on deep learning algorithms is proposed. Semantic segmentation
of floating plastic is highly challenging due to several limitations: low amount of training data, highly
imbalanced data sets, limited accuracy of ground truth data, and frequent scene changes due to
constant plastic movement. To address those limitations, we propose the workflow showed in Figure 3,
which summarizes the approach followed in this paper and consists of three main steps: preprocessing,

classification, and accuracy assessment.
UAV image

Ortophoto
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Manual labeling
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Figure 3. Workflow used in this study where “B*” and “CR**” correspond with the Balkana and Crna
Rijeka dataset respectively. UAV = Unmanned Aerial Vehicles; SfM = Structure from Motion.
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4.1. Preprocessing

For each flight, the acquired images and the SfM algorithm were used to generate a high-resolution
orthophoto. The SfM algorithm comprises of three main steps [42]: (1) the SIFT algorithm detects and
describes key points while the RANdom SAmple Consensus (RANSCAN) method matches key points
across multiple images. The bundle block adjustment of matching key points was used to compute the
extrinsic and intrinsic camera parameters and three-dimensional (3D) coordinates for a sparse unscaled
point cloud; (2) point cloud densification; and (3) digital terrain model and orthophoto generation.

To train the deep learning classifier ground truth data are necessary. Since this study represents
the first attempt to map floating plastic based on UAV images, previous ground truth data was not
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available. Therefore, we created our labels, which was challenging and time consuming, due to the
small size, the different colors, the different spectral signatures, the different level of submersion and
the constant moving of the floating plastic items.

To reduce the errors caused by the manual delineation of classes, the multiresolution segmentation
algorithm implemented in eCognition was used [43]. This algorithm merges pixels to obtain meaningful
non-overlapping objects/polygons. The algorithm results are controlled by three factors: (1) scale
parameter, i.e., the maximum allowed heterogeneity for the resulting object; (2) shape, i.e., the weight of
the object’s shape in comparison to the spectral characteristics of the object (color); and (3) compactness,
i.e., the weight representing the compactness of object (please see [43] for more information). The selection
of the optimal value combination was based on the trial-and-error process. Each segment was then
manually labeled using QGIS software, based on a visual inspection of the orthophoto. In the Balkana
study area, plastics were classified into three classes: PET, OPS, and nylon. In the Crna Rijeka area,
plastic was classified in two groups: plastic and maybe plastic. The maybe plastic class was created
to reduce the spectral confusion in the plastic class, and it was assigned to the segments where the
operators were not able to state whether it was plastic by visual inspection and by analyzing the
spectral signature.

The Balkana study area was surveyed five times but we were not able to use the same mask for
the orthophotos from the different flights (i.e., different spatial resolutions) due to the movement of
the plastic. Therefore, for each orthophoto a new ground truth mask was created. This limited the
accuracy of the mask and algorithm performance for the lower spatial resolution images.

4.2. Classification

This paper proposes an end-to-end semantic segmentation model for a floating plastic segmentation
based on U-net architecture, which has the ability to work with very little training data and provides
a precise segmentation [24]. U-Net has a symmetrical encoder-decoder architecture. The encoder
side effectively extracts and abstracts the image pixel information while the decoder aims to extract
the plastic from the feature maps. The U-Net architecture has been widely used in the semantic
segmentation of remote sensing imagery [36-38]. Its success is largely attributed to the several skip
connections [24,44] between encoding and decoding parts which are used to combine spatial details
from lower layers and semantic ones from higher layers of the network. Due to a combination of
contextual information at different scales of the input resolution, spatial information can be better
restored, producing sharper boundaries of predicted objects after the decoder [45].

4.2.1. Encoder

CNN models consist of a series of layers that are combined in the network. They start with a series
of convolutions and a pooling layer, called the convolutional base, and end with a densely connected
classifier [46]. The convolutions operate on feature maps with two spatial axes (height and width of
the image) and depth (number of channels). The convolutions extract the patches by sliding a window
of a fixed size (usually 3 x 3 or 5 X 5) and perform the transformation for all patches, via a dot product
with a weight matrix followed by adding bias and the application of the activation function, and finally
producing output feature maps [46,47]. The depth of the output feature maps is defined by the number
of filters which encode specific aspects of the input data allowing CNN to learn spatial hierarchical
patterns. The batch normalization (BN) layer is placed after each convolution to speed up the training
process and reduce the internal covariance of each batch of features maps.

The most common way of improving the performance of the deep neural network is increasing
the depth (number of layers) and width (number of units within a layer) of the network. However,
enlarged networks are more prone to overfitting especially if the size of the training set is limited [48].
Besides, an increase in the network size dramatically increases the use of computational resources.

With the increase of the network depth problems like the vanishing gradient start to emerge.
The vanishing gradient problem refers to a dramatic gradient decrease as it backpropagates the true
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network and by the time they reach close to the shallower layers, the updates for the weights nearly
vanish. In order to avoid the vanishing gradient problem, a rectified linear unit (ReLU) [49] was
used as a nonlinear activation function. The ReLU significantly accelerates the training phase in
comparison with the activation functions with a descent gradient such as a sigmoid or hyperbolic
tangent function. The pooling layers are used after the convolutional layer to spatially downsample
the image and to reduce the number of coefficients to process. Although the stride factor (the distance
between two successive windows) can be used for downsampling, the max-pooling tends to work
better since it increases the variance by looking at the maximum values of the extracted features over
small patches. Since there is not any information about the performance of available models in the
case of plastic detection, the encoder side was based on the state of the art CNN models, pre-trained
on ImageNet [50] datasets, such as ResNet50 [28], ResNeXt50 [51], Inception-ResNet v2 [30], and
Xception [52]. These four architectures were used in this work for the semantic segmentation of floating
plastics and are described below.

ResNet50: the deep ResNet architecture addresses the vanishing gradient problem by employing
identity skip-connections, which add neither extra parameters nor computational complexity but they
lead to a more efficient training and optimization of very deep networks [28]. ResNet is constructed by
stacking multiple bottleneck blocks called residual blocks (Figure 4a), which consist of three layers
of 1 x1,3x3,and 1 X 1 convolutions. The 1 X 1 convolution is introduced as the bottleneck layer
(to reduce and restore dimensionality) before a 3 X 3 layer to reduce the number of input feature maps
and to improve computational efficiency. In this paper, a 50-layer ResNet network was used.

Inception-ResNet v2: this network is constructed by the integration of ResNet [28] and Inception
v4 [23], so a residual connection is used to avoid the gradient vanishing problem while the Inception
modules increase the network. In the Inception-ResNet v2, the batch normalization is used only on
top of the traditional layer enabling the increase of an overall number of Inception blocks [30]. In the
Inception blocks, the convolutions with the varying size of the same layer were concatenated at the end
of block i.e., the convolution blocks were parallel (Figure 4b). Although the Inception-ResNet v2 shows
roughly the same recognition performance as Inception v4, the usage of the residual connection leads
to a dramatic improvement in the training speed [30]. Therefore, in this paper, the Inception-ResNet v2
was used.

Xception: the Extremely Inception (Xception) architecture replaces the Inception modules with
stacked depthwise separable convolution layers followed by a pointwise convolution. It represents
the extreme form of the Inception module, where the spatial features and channel-wise features are
fully separated [46]. The Xception architecture has 36 layers structured into 14 modules, all of which
have linear residual connections around them, except for the first and last modules (Figure 4c) [52].
The residual connection helps with the vanishing gradient problem both in terms of speed and accuracy.

ResNeXt50: this model is similar to the Inception model since they both follow the split-transform-
merge paradigm. However, in the ResNeXt all paths share the same topology and the outputs of
different paths are merged by adding them together i.e., ResNeXt consists of a stack of residual blocks
that have the same topology (Figure 4d). This architecture introduced the new dimension called
cardinality (C) (the number of paths) in addition to depth and width. The results presented in [51]
show that an increase in cardinality reduces the error rate while keeping the complexity. In this work
a cardinality of 32 was used (Figure 4d).

4.2.2. Decoder

The decoder block aims to upsample the densified encoder (low resolution) feature map to assign
a classification result to each pixel of the input image [23]. The encoder and decoder architecture
are fully symmetrical i.e., for each encoder there is a corresponding decoder. The decoder gradually
recovers the resolution of the original input image by replacing the pooling operation (in the encoder)
with 2 X 2 up-sampling operators followed by 3 x 3 convolutions, BN, and the ReLU activation function.
The upsampled outputs are combined with contextual information derived from the corresponding
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encoder via skip connection. In the final layer, a 1 X 1 convolution with the Sigmoid activation function
is used to predict the probability of being assigned to one of the pre-defined classes.
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Figure 4. Building blocks of (a) ResNet, (b) Inception-ResNet v2, (c) Xception, and (d) ResNeXt
(C = 32) (e) architecture of ResUNet50/ResUNext50. Where: ReLu is Rectified Linear Unit, BN is Batch
Normalization, and CONYV is convolution.

4.2.3. Data Augmentation and Transfer Learning

The performance of deep neural networks is highly limited by the low number of training data.
The size of the dataset needed for network training is a function of the size of the network (width and
depth) and the complexity of the problem. If a model with a large learning capacity is trained on very
few data, it can memorize the training sets producing a low generalization power of the model, i.e.,
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overfitting. This overfitting can be reduced by using data augmentation, which artificially enlarges the
training set by a random transformation of the existing training samples [26]. Although the produced
images are intercorrelated they are not the same, contributing to a better generalization of the network.
In addition to reducing overfitting, data augmentation improves the performance when there are
imbalanced class problems [53].

Transfer learning is another efficient approach when a limited number of training samples are
available. It is based on the idea of fine-tuning (adapting) the models that are already pre-trained
on large datasets, such as ImageNet, for completely new classification problems. Transfer learning
between different tasks is possible due to the property of deep networks that the first layers are general
(i.e., in CNN, first layers tend to learn standard features such as edges, patterns, textures, corners, etc.)
while the last layer computes specific features that greatly depend on the chosen dataset and task (such
as object parts and objects) [54]. The usual transfer learning approach is based on a fine-tuning which
unfreezes (updating weights during the training phase) and adjusts to the parameters of the few top
layers in the pre-trained network, while the first layers, representing the general features remain frozen.

4.3. Accuracy Assessment

To test the accuracy of the classification results three standard parameters were calculated:
precision, recall, and F-score. Precision (Equation (1)) computes the percent of detected pixels in each
class that actually belong to the assigned class, while recall (Equation (2)) represents the fraction of
correctly labeled pixels of each class. In a perfect model, the precision and recall are equal to 1. F1-score
(Equation (3)) is a quantitative metric useful for imbalanced training data, and it represents the balance
between precision and recall [55].

recision = L 1)
P ~ TP+ FP
TP
recall = m (2)
Where TP, FP, FN are true positive, false positive and false negative respectively.
2 X recall X precision
F1= (©)]

recall X precision

The higher the value of the F1-score, the better the model performance regarding the positive
class [56].

4.4. Implementation

Due to the limited processing power, the original images were decomposed to 256 X 256 px
patches. The models were based on U-Net architecture, which uses ResNet 50, ResNeXt50, Xception,
and Inception-ResNet v2 as encoders. The parameters of the original deep architecture pre-training to
the ImageNet datasets were maintained during the fine-tuning. The six different models were trained
on three different datasets, as follows. ResNet50, ResNeXt50, Xception, and Inception-ResNet v2 were
trained on Dataset 1 (Balkana 4 mm), ResUNet50 was trained on Dataset 2 (which consisted of Balkana
4 mm, 13 mm, 18 mm, 23 mm, and 30 mm resolution orthophotos), and ResUNet was trained on
Dataset 3 (Crna Rijeka 30 mm resolution orthophoto) (Figure 3). Dataset 1, Dataset 2, and Dataset
3 contained 328, 434, and 1846 images respectively. All datasets were split into 80% of the data for
training and 20% for validation. The batch size was limited by the GPU and it was chosen as big as
possible for each network. Different loss functions, such as cross entropy, cross entropy weighted, and
focal loss were tested. Since the highest accuracy was obtained using cross entropy, this loss function
was used for all the models. The models were implemented in the Python 3 programming language by
using artificial intelligence libraries such as PyTorch, TensorFlow, Keras, and Matplotlib. The training
of the networks was done using the publicly available cloud platform Colaboratory (Google Colab),
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which is based on Jupyter Notebooks. The hyperparameters used for the model training are presented
in Table 2.

Table 2. Hyperparameters used for training the models.

Study Area Dataset Architecture Batch Size Learning Rate  Training Time
Balkana Dataset 1 ResUNet50 8 8x 107 31 min
Balkana Dataset 1 ResUNext50 8 1x107° 44 min
Balkana Dataset 1 XceptionUNet 8 2x107° 21 min
Balkana Dataset 1 InceptionUResNet v2 8 1x 107 33 min
Balkana Dataset 2 ResUNet50 8 3x107° 40 min

Crna Rijeka Dataset 3 ResUNet50 8 4x107° 3h

5. Results and Discussion

In this paper, U-Net networks were used for semantic segmentation of floating plastics. Table 3
shows the performance of the four different encoder architectures tested for the extraction of different
kinds of plastic materials. Each architecture was pre-trained on the ImageNet datasets and the
performance was tested on Dataset 1. Due to simplicity, the results are shown only for the classes that
represent plastic.

Table 3. Comparison of different encoder architectures for floating plastic detection (where P, R, F1, are
precision, recall, and F1-score respectively) (Dataset 1).

ResUNet50 ResUNext50 XceptionUNet InceptionResUNet v2
P R F1 P R F1 P R F1 P R F1

OPS 086 086 0.86 099 019 031 081 039 053 0.01 0.00 0.00
Nylon 092 085 0.88 077 096 0.85 076 087 0.81 0.76 0.74 0.75
PET 092 092 092 082 09  0.88 078 075 077 0.60 0.72 0.65

As shown, ResUNet50 has the highest accuracy (F1-score > 0.86) for detecting any of the three
plastic classes, while the InceptionResUNet v2 has the lowest (Table 3). Ground truth data and the
results of the classification using the four algorithms are shown in Figure 4 for visual inspection
(Data set 1). On the one hand, the results show that the ResUNet50 model detected and classified all
plastic types with almost no commission or omission errors, matching the ground truth data very
accurately (Figure 4 (ResUNet50)). On the other hand, the high recall and low precision obtained
by ResUNext50 and XceptionUNet (Table 3.) indicated an overestimation of floating plastic, due
to misclassification of water pixels (Figure 4. (ResUNext50, XceptionUNet)). In addition to the
misclassification of water pixels, the low accuracy obtained with the InceptionResUNet v2 model (F1:
0; 0.75; 0.65 for each plastic type) was caused by the misclassification between nylon (rope) and PET
(bottles), and PET and wood (Figure 4. (InceptionResUNet v2)). The plastic squares were completely
omitted by the InceptionResUNet v2, while ResUNext50 strongly misclassified them as wood. On the
one hand, the XceptionUNet was capable of detecting small variations in the reflection of different
plastic materials (squares F1: 0.53) while, on the other hand, it showed the highest sensitivity to
the edge-effect, misclassifying them and decreasing the F1 score. Innamorati et al. [57] showed that
segmentation errors are higher for pixels near the edges and even worse at corners [58], due to the lack
of the contextual information.

For the underwater squares (Figure 5a), all algorithms, except ResUNet50, misclassified OPS as
PET. It should be noted that the total reflection of transparent floating plastic on the water surface is
defined as the sum of water reflection, plastic reflection, and the reflection of the light transmitted
through the plastic [15,59]. In this study, the presence of plastic bottles (PET) increased, on average,
the amount of reflected energy from water by 19%, while OPS increased the reflection by only 3.5%
(Figure 6), making it challenging to differentiate between these two classes. This difference is even
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lower in the case of underwater plastic, due to water absorption, and it can explain the low accuracy
of the OPS class for three of the tested models. The quantitative accuracy assessment and the visual
inspection confirmed that, among the tested models and for the Lake Balkana study area, ResUNet50
was the most sensitive to detect small differences in the amount of reflected energy, which is crucially
important for plastic detection and for identifying different types of plastic. Therefore, all the tests
used to achieve the remaining goals of this paper (2, 3, 4) were performed using the ResUNet50 model.

The relationship between the image spatial resolution and the size of the detected plastic was
evaluated by using the ResUNet50 model and the ground truth data from Dataset 2. The results of the
accuracy assessment are shown in Table 4.

Xception ResUNext5 ResUNet50 True data Ortophoto

InceptionResUNe

Legend: Il water [l orS M gauze [l nylone [l wood PET

Figure 5. Ground truth data and results of the classification using the four tested models for detecting
different plastic materials, located underwater (a) and overwater (b—d) (Dataset 1). Where: OPS is
Oriented Polystyrene and PET is Polyethylene terephthalate.
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Figure 6. Spectral signatures of water, PET and OPS.

Table 4. The effect of spatial resolution (mm) on ResUNet50 performance (where P, R, F1 are precision,
recall, and F1-score respectively) (Dataset 2).

13 mm 18 mm 23 mm 30 mm
P R F1 P R F1 P R F1 P R F1

OPS 088 077 0.82 069 071 070 079 031 044 075 045 0.56
Nylon 089 075 0.82 091 052 0.66 076 026 0.39 087 020 0.33
PET 092 083 087 078 084 081 083 068 075 077 070 073

The results showed that the spatial resolution of the image and the accuracy of the model were
directly related, i.e., the accuracy decreased with the decrease in spatial resolution. Those findings are
in line with the results presented by [60]. As expected, ResUNet50 performed the best on the 4 mm
resolution images for all kinds of plastics and the lowest accuracy was obtained for the 30 mm spatial
resolution image (Table 4.). The exception was the OPS class, which was mostly omitted in the 23 mm
classified orthophoto. Due to changes in of weather conditions (sunny intervals) between the flights,
sun glint appeared in the 23 mm orthophoto and increased the reflection [61], in comparison with
other images, which led to the misclassification between OPS and gauze (Figure 7 (23 mm), a, b, ¢),
causing the low F1 value. In addition, the amount of reflected energy decreased with the decrease in
spatial resolution, due to the larger amount of mixed pixels, resulting in a lower classification accuracy.
Visual inspection showed that the algorithm tended to classify mixed pixels as water when the plastic
fraction of the target area was larger than the water fraction (e.g., Figure 7d). This result agrees with
Jiet. al. [62], who reported that in the case of imbalanced training datasets, mixed pixels tend to be
classified as the majority class, even when most of the mixed pixel represents a minority class.

In general, for all the tested spatial resolutions, the algorithm achieved high precision and lower
recall values indicating that the model cannot detect all plastic pixels, but that it can be trusted when it
does. Taking as a reference value the classification obtained from the 4 mm orthophoto, the largest
difference in the extension of the area classified as plastic was obtained from the 23 mm orthophoto
(OPS: —16.1%; Nylon: —33.2%; PET: —22.3 %) (Figure 8). The smallest difference for the OPS and
Nylon classes was obtained from the 18 mm orthophoto (OPS: —1.8%; Nylon: —4.2%), while the 30 mm
orthophoto provided the closest area to the reference for PET plastic (PET: —8.9%) (Figure 7).

The visual inspection showed that with the 4 mm orthophoto the algorithm detected all the OPS
squares, while with the 13 mm and 18 mm orthophotos the algorithm omitted the 1 and 2 cm squares
on the water surface, and the 1 to 4 cm squares that were underwater. For the 23 mm image, it omitted
all the OPS squares smaller than 11 cm, while for 30 mm image, the 1 to 4 cm squares, which were on
the water surface, and the 1 to 6 cm squares located underwater, were misclassified as water (Figure 7).
Based on these results it can be concluded that the algorithm needs at least one pure pixel (a pixel that
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includes a single surface material) for detecting plastics on the water surface, and two pure pixels for
the detection of underwater plastics. According to the presented results, orthophotos with of 18 mm
spatial resolution can be used for litter surveys which follow OSPAR [9], NOAA [11] or UNEP/IOC [12]
guidelines, while 4 mm orthophotos should be used for CSIRO [10] surveys, since according to CSIRO
guidelines, the minimum size of detected plastic should be 1 cm?.

On the one hand, floating plastic is more accurately extracted from images with higher spatial
resolution. On the other hand, the higher the spatial resolution of the image, the smaller the extension
of the area covered by the image, as showed in Figure 9. Therefore, a compromise between spatial
resolution and the covered area needs to be found.

23 mm 18 mm 13 mm 4 mm True data

30 mm

Legend: [l water [l ops M gauze [l nylone [l wood | PET

Figure 7. Ground truth data and results of the classification using the ResUNet50 algorithm for visual
comparison, at different spatial resolutions and for different plastic materials, located underwater (a)

and overwater (b—d) (Dataset 2).
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Figure 8. Differences in the extension of the detected area covered by plastic (using the classification of
the 4 mm orthophoto as a reference value).

80
70
60
50
40
30

Area covered [ha]

20
10

0
04 08 12 16 20 24 28 32 36 40 44 48

Resolution [cm/pix]
—qlCa

Figure 9. Relationship between the spatial resolution (cm/pixel) and the area covered by an image
gathered by the DJI Mavic ProCamera (grid mission with an 80 % overlap).

To test the model performance in an independent scenario, the Crna Rijeka study area was
surveyed. Based on the size of the study area and the size of the majority of the plastic items (bottles)
that were present, a 30 mm orthophoto was used (Dataset 3), as well as the ResUNet50 model.
The results of the accuracy assessment are presented in Table 5.

Table 5. Precision, Recall, and F1-score of plastic classes in the Crna Rijeka study area.

Precision  Recall F1

Plastic 0.82 0.75 0.78
Maybe Plastic 0.62 0.34 0.43

The ResUNet50 showed a stable performance to classify plastic in the different datasets (Dataset
2 (PET class) and Dataset 3 (plastic class)) when comparing the same spatial resolution (F1: 0.73 vs.
0.78, respectively) (Tables 4 and 5). The highest confusion was obtained for the “maybe plastic” class,
which was misclassified as water or plastic. For that class the precision was high, while recall was low,
indicating the underestimation of the area covered by the maybe plastic class. Although precision,
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recall, and F1 score provide a deeper insight into the performance of the algorithm, the area and
volume of the detected plastics are more useful for stakeholders. From an operational point of view,
when planning a cleaning campaign, that information is the basis for site selection, and for estimating
the number of people required and the approximate time needed. In the Crna Rijeka case study, the
algorithm only underestimated the plastic area by 3.4%, proving the great potential of its application
to optimize cleaning campaigns.

The visual inspection shows (Figure 10) that the locations of the plastic pieces were accurately
detected, but some plastic pixels on the border were misclassified as the surrounding class.
No differences were observed in the performance of the model between grouped (Figure 10a) or single
plastic items (Figure 10b).

Unexpectedly, the algorithm detected plastic accurately in shallow water (Figure 10c). Shallow
water is highly challenging for mapping plastic because the presence of the river bed increases water
reflectance (same as plastic does) [15]. In this study case, the algorithm accurately extracted the plastic
pieces that were omitted from the training data (Figure 10d), showing good generalization abilities,
Moreover, the model showed its potential for plastic detection not just in water but also on land, with
lower accuracy compared with the floating plastics (Figure 10e).

Orthophoto True data Classification result

(@)

(b)

(c)

(d)

(e)

Legend: Il water [l land [l wood [l plastic Bl maybe plastic rock

Figure 10. Visual comparison between the orthophoto, true data (ground truth) and classification
results for the five different scenarios: (a) group of plastics, (b) single plastic items, (c) plastic in shallow
waters, (d) training data errors (orange lines), which were misclassified by the operator and correctly
classified by the algorithm (e) plastic on the ground.
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It should be also taken into account that the results are also affected by the accuracy of the training
data. The creation of training data was time consuming and a tedious task. Just in the case of the
Crna Rijeka orthophoto (Dataset 3), the 418,542 segments were manually labeled, assigning 5519 to
the plastic class and 4014 to the maybe plastic one. Visual labeling of plastic pieces is a difficult task
which involves errors due to the limited ability to exactly determine the boundary between plastic and
maybe plastic. Therefore, in the case of misclassifications between those two classes, it cannot be stated
if it was an error in the algorithms or if it was due to a misclassification during the manual labeling
stage. To address this limitation, we suggest that during the collection of training data, two UAVs with
the same flight pattern should be used (Figure 11). The first UAV would fly at a higher altitude while
the second UAV would fly lower to provide higher resolution images which can be used for precise
delineation and labeling of the plastic class and other classes, to therefore obtain an accurate data
mask. Since floating plastic moves continuously, especially on windy days, the speed of the second
UAV should be lower than the first one, to synchronize their flight missions and reduce time overlap
between surveys.

Figure 11. Proposed flight planning methodology to obtain accurate datasets for algorithm calibration.

Moreover, the UAV surveys should be carried out during cloudy weather to reduce the sunglint
effect, since it limits the quality and accuracy of remote sensing data from water bodies [61]. Anggoro
et al. [63] reported that the reduction of the sunglint effect increased the overall accuracy by 7%.
The same accuracy degradation of was noted in the classification of the 23 mm orthophoto (Table 4.;
Figure 7 (23 mm)). Also, the wind speed should be as low as possible, especially in the case of small
UAUVs. The stability of the camera is affected by the wind and it can cause blurred imagery. In addition,
the SfM reconstructs a 3D point cloud based on the matching of multiple views, so if the plastic pieces
shift their relative position from image-to-image due to wind-induced movements, the reliability of the
point cloud and the accuracy of the produced orthophoto is compromised.

6. Conclusions

Automatic floating plastic extraction from high-resolution UAV orthophotos can be accurately
achieved using the end-to-end semantic segmentation ResUNet50 algorithm. Among the other tested
algorithms, ResUNet50 showed a stable performance to detect and classify floating plastic in the
different datasets and for different spatial resolutions, for underwater and floating targets (F1 score
> 0.73). The ResUNext50 and XceptionUNet models led to an overestimation of the floating plastic
due to misclassification of water pixels. The model also showed its suitability for plastic detection
on water, shallow water and also on land, with lower accuracy compared with the floating plastics.
An underestimation of the plastic area of only 3.4% showed its utility to monitor plastic pollution
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effectively and makes it possible to use it to optimize cleaning campaigns, as well as the integration
and comparison of the estimations.

It was possible to accurately detect and classify the three different plastic types located in the
study area (OPS, PET, Nylon) using the ResUNet50 model (F1: OPS: 0.86; Nylon: 0.88; PET: 0.92),
which was the most sensitive to detect small differences in the amount of reflected energy.

Regarding the relationship between spatial resolution and detectable plastic size, the classification
accuracy decreased with the decrease in spatial resolution, performing best on 4 mm resolution images
for all the different kinds of plastic. The model cannot detect all plastic pixels, but it can be trusted when
it does, for all the tested spatial resolutions. Moreover, the algorithm needs at least one pure plastic
pixel (a pixel that only contains that material) to detect plastics on the water surface, and two pure
pixels for the detection of underwater plastics. The results obtained with the 18 mm spatial resolution
orthophotos and the proposed method meet the requirements described in OSPAR [9], NOAA [11] or
UNEP/IOC [12] guidelines, while CSIRO [10] surveys will require the use of 4 mm orthophotos.

Taking as a reference value the classification obtained for the 4 mm orthophoto, the largest
difference in the extension of the area classified as plastic was obtained using the 23 mm orthophoto
(OPS: 16.1%; Nylon: 33.2%; PET: 22.3 %) (Figure 8). The smallest difference for the OPS and Nylon
classes was obtained using the 18 mm orthophoto (OPS: 1.8%; Nylon: 4.2%), while the 30 mm
orthophoto provided the closest area to the reference for PET plastic (PET: 8.9%) (Figure 8).

When planning a UAV survey to map floating plastic, the following issues should be taking into
account: (i) reaching a compromise between the spatial resolution and the area covered by each image,
(ii) two UAVs with the same flight pattern should be used, one to collect the imagery to obtain the
maps and a second one flying lower than the other, so it can capture very high spatial resolution data
to delineate an accurate training dataset, (iii) synchronizing the two flight missions and reduce time
overlap between surveys, (iv) flying during cloudy weather to reduce the sunglint effect, and (v) wind
speed should be as low as possible, so the quality of the orthophoto is not compromised.
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