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Abstract: Many previous studies have attempted to distinguish fog from clouds using low-orbit and
geostationary satellite observations from visible (VIS) to longwave infrared (LWIR) bands. However,
clouds and fog have often been misidentified because of their similar spectral features. Recently,
advanced meteorological geostationary satellites with improved spectral, spatial, and temporal
resolutions, including Himawari-8/9, GOES-16/17, and GeoKompsat-2A, have become operational.
Accordingly, this study presents an improved algorithm for detecting daytime sea fog using one
VIS and one near-infrared (NIR) band of the Advanced Himawari Imager (AHI) of the Himawari-8
satellite. We propose a regression-based relationship for sea fog detection using a combination of the
Normalized Difference Snow Index (NDSI) and reflectance at the green band of the AHI. Several case
studies, including various foggy and cloudy weather conditions in the Yellow Sea for three years
(2017–2019), have been performed. The results of our algorithm showed a successful detection of
sea fog without any cloud mask information. The pixel-level comparison results with the sea fog
detection based on the shortwave infrared (SWIR) band (3.9 µm) and the brightness temperature
difference between SWIR and LWIR bands of the AHI showed high statistical scores for probability of
detection (POD), post agreement (PAG), critical success index (CSI), and Heidke skill score (HSS).
Consequently, the proposed algorithms for daytime sea fog detection can be effective in daytime,
particularly twilight, conditions, for many satellites equipped with VIS and NIR bands.
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1. Introduction

Sea fog often causes automobile, aviation, and marine transportation accidents because of its low
visibility, with subsequent losses to life and socioeconomic impacts occurring throughout the ocean
and in coastal regions [1]. The Yellow Sea, including the Korean western coast and eastern Chinese
coast regions, often experiences heavy fog, especially from April to July [2] with the formation of
advection cooling fogs [3]. These regions often experience severe fog-related impacts on their seafaring
activities. For example, in South Korea, over 50% of 800 sea fog-related ship collisions between 1981
and 2010 occurred in the Yellow Sea due to dense sea fog [4], and a tragic fog-related accident left
11 dead and 50 injured from a pileup of 29 cars and trucks on a major highway near the western coast
of South Korea [5].

Fog generally develops at night or during pre-dawn hours [6]. Poor discrimination between fog
and clouds has been thoroughly established from many satellite remote sensing studies [7], although
it is not difficult for human eyes to identify fog from clouds in visible (VIS) images from satellite
observation using different spatial contexts and temporal variations. Cloud mask information has
been provided by several satellite sensors, including the Advanced Very-High-Resolution Radiometer
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(AVHRR), and Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging
Radiometer Suite (VIIRS) of polar orbiting satellites, Advanced Baseline Imager (ABI), Advanced
Meteorological Imager (AMI), and Advanced Himawari Imager (AHI) [8] of geostationary satellites.
However, these sensors tend to misidentify fog, sea ice, and snow as clouds because of their similar
spectral features in the VIS bands of satellite sensors [9,10]. Notably, the cloud products retrieved at the
same bands of different satellites can be quite different because of differing instrument characteristics,
spectral response function, physical assumptions, and retrieval algorithm [11,12].

Several fog detection techniques have been developed and utilized based on spectral signatures,
radiative properties, and geometrical textures [13–20] during recent decades. The VIS band has been
applied to identify sea fog because of the clear contrast in the albedo between foggy and ambient
clear areas during the daytime, however, it is limited during night-time owing to the lack of solar
irradiation [21]. In the IR band, generally, the difference of brightness temperature between shortwave
infrared (SWIR) (3.9 µm) and longwave infrared (LWIR) (10.8 µm) [22], referred to as bispectral image
processing (BIP) [23], has been used to distinguish fog from clouds [24]. For example, the negative or
near zero values of brightness temperature differences (BTD) between 3.9 and 11 µm channels during
the nighttime indicates low stratus/fog or vegetated/ocean surfaces, respectively [23,25]. However,
the IR-based sea fog detection algorithm is limited under twilight conditions. Recently, a sea fog
detection algorithm based on the decision tree approach was presented [26]. Wan et al. [27] presented
a sea fog detection algorithm based on dynamic thresholds at dawn and dusk for the Yellow Sea and
Bohai Sea using many bands (0.47, 0.64, 0.86, 1.6, 3.9, and 11.2 µm) of the AHI data.

In this study, we present a novel daytime sea fog detection algorithm with the advantage of the VIS
band and compensating for the disadvantages of the IR-based algorithm in twilight conditions around
the Yellow Sea region using observations from the AHI [8]. First, we define the study area within the
Yellow Sea and the AHI data. Second, the developed method to detect sea fog based on the Normalized
Difference Snow Index (NDSI) is described in detail. Third, the findings of several case studies on sea
fog or mixtures of sea fog and clouds performed using the proposed algorithm are compared to the
results of sea fog detection based on the SWIR band and BTD method to demonstrate the algorithm’s
efficiency, especially under twilight conditions. Fourth, the advantages and disadvantages of the
proposed algorithm are discussed. Finally, the summary and conclusion of this study are described.

2. Study Area and Data

In this study, we chose the Yellow Sea surrounded by the Korean Peninsula and parts of China as
the study area because of the area’s frequent sea fog occurrence rate. Figure 1 shows the study area
with an occurrence of sea and land fog on 14 March 2018, at 00:30 UTC (09:30 Korean Standard Time
(KST)) observed from the AHI.

A large distribution of sea fog can easily be observed in the Yellow Sea, while instances of land
fog occur in the coastal and inland areas of the Korean Peninsula and China. This study, however,
focuses on the sea fog. Thus, land fog was masked using the land/sea flag information included by
the AHI data.

Recently, advanced geostationary meteorological satellites with 16 spectral bands from VIS to
IR, such as the Geostationary Operational Environmental Satellite (GOES)-16 [28], Himawari-8/9 [8],
and GeoKompsat-2 Atmosphere (GK-2A) [29] have become operational. Specifically, Himawari-8/9
and GK-2A are appropriate for monitoring the sea fog in the Yellow Sea because they have widespread
spatial coverage and a high temporal resolution. This study used Himawari-8 data equipped with
an AHI sensor containing three VIS channels (0.47, 0.51, and 0.64 µm), three near-IR (NIR) channels
(0.86, 1.61, and 2.26 µm), and 10 IR channels [8,25]. The spatial resolution at the nadir point is 0.5 km
for the VIS channel at 0.64 µm, 1 km for the VIS channels at 0.47, 0.51, and 0.86 µm, and 2 km for
the remaining NIR and all IR channels. The AHI can make full-disk measurements every 10 min,
and observations of Japan and other target areas can be acquired every 2.5 min [8]. Table 1 summarizes
the characteristics of the AHI sensor and their atmospheric applications.
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Figure 1. Study area of the Yellow Sea. The Red-Green-Blue (RGB) image observed from the Advanced
Himawari Imager (AHI) sensor shows sea fog and clouds on 14 March 2018, 00:30 UTC (09:30 Korean
Standard Time (KST)).

Table 1. Characteristics of the AHI channels.

Channel Central Wavelength (µm) Spatial Resolution (km) Physical Properties

1 0.47 1 Vegetation, Aerosol
2 0.51 1 Vegetation, Aerosol
3 0.64 0.5 Low cloud, Fog
4 0.86 1 Vegetation, Aerosol
5 1.6 2 Cloud phase
6 2.3 2 Particle size
7 3.9 2 Low cloud, Fog, Forest fire
8 6.2 2 Mid- and upper-level moisture
9 6.9 2 Mid-level moisture

10 7.3 2 Mid- and lower-level moisture
11 8.6 2 Cloud phase, SO2
12 9.6 2 Ozone content
13 10.4 2 Cloud imagery, Information of cloud top
14 11.2 2 Cloud imagery, Sea surface temperature
15 12.4 2 Cloud imagery, Sea surface temperature
16 13.3 2 Cloud top height, CO2

We used the reflectance data of AHI green band (0.51 µm) and NIR band (1.6 µm) provided by the
National Meteorological Satellite Centre (NMSC) of the Korea Meteorological Administration (KMA).
Table 2 summarizes the case study of fog events evaluated in this study.

Table 2. Cases including sea fog used in this study.

Cases Date Purpose

Fogy and partly cloudy

11 March 2017. 00:30 UTC test

14 March 2018. 00:30 UTC algorithm development

24 February 2019. 02:00 UTC test

1 March 2019. 01:30 UTC test

26 March 2019. 02:00 UTC test
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Table 2. Cont.

Cases Date Purpose

Foggy and cloudy

9 April 2018. 04:00 UTC test

27 May 2018. 22:30 UTC test

6 June 2018. 00:30 UTC test

4 June 2019. 01:30 UTC test

Weak signal of SWIR band 27 May 2018. 22:30 UTC test

Absence of SWIR data
11 March 2017. 01:20 UTC test

30 April 2017. 22:30 UTC test

1 June 2017. 02:20 UTC test

Continuous variation of sea fog
with 30-min interval

13 March 2018. 22:30 UTC
14 March 2018. 03:00 UTC test

26 March 2018. 00:00–04:00 UTC test

3. Method

3.1. NDSI and Reflectance

Sea fog and clouds show different roughness patterns in the visible bands [26]. Generally,
the 0.51 µm band shows equal brightness levels for both clouds and snow cover. Thus, the homogeneity
is useful for distinguishing sea fog from low water clouds [26], because the top of sea fog is relatively
smooth, while cloud tops are rough due to motion fluctuation [30].

In addition, the 1.6 µm band is transparent for the atmosphere and not reflective for snow [10]
as it benefits from the relatively large difference between the refraction components of water and ice.
Thus, this SWIR band is useful to distinguish sea fog from ice clouds in satellite applications.

The NDSI is a combination of visible and SWIR bands. The NDSI can evaluate atmospheric effects
and observing angle dependence [31]. Thus, it has been used in a previous snow cover study [32].

Therefore, this study proposes an algorithm to detect sea fog using a combination of the
NDSI [33,34] and the reflectance in the AHI green band (0.51 µm) because of the advantage of the VIS
band for distinguishing sea fog from low clouds and that of the SWIR band for separating sea fog
from ice clouds.

The NDSI [34] was computed by dividing the difference in reflectance observed in the AHI green
band (0.51µm) and the SWIR band (1.6 µm) as follows:

NDSIobs =
R0.51µm −R1.6µm

R0.51µm + R1.6µm
(1)

where R0.51µm and R1.6µm are the reflectances at 0.51 and 1.6 µm of the AHI, respectively.
Figure 2 shows an example of the signals for sea fog and sea surfaces from the NDSIobs at the

same date and time with that shown in Figure 1. The NDSIobs values are low (0 to 0.4) for sea fog and
medium (0.4 to 0.6) and high (0.6 to 0.8) for sea surfaces.

3.2. Regression Relationship Between NDSI and the VIS Green Band

To identify the spectral features of sea fog, we chose sea fog pixels separately from fog-free and
cloud-free sea surfaces, as shown in Figure 3a, on March 14 2018, at 00:30 UTC (09:30 KST, daytime).
Figure 3b shows the scatter-plot of distributions of sea fog and sea surface in NDSI versus reflectance at
AHI 0.51 µm band (R0.51µm) on the same date as Figure 3a. Sea fog pixels were distributed in a specific
area within the NDSI-R0.51µm plane; this approach was different from other pixels such as sea surfaces
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because of the distinct optical properties among sea fog and sea surfaces in VIS bands. Distinctively,
sea fog pixels were clustered in the NDSI-R0.51µm plane.
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To develop a sea fog detection algorithm, we chose the 0.51 µm band as an independent parameter
to map the NDSI value. Our algorithm was constructed as follows.

First, we proposed the following regression relationship between NDSI and R0.51µm as follows.

NDSIcal = a0 + a1·R0.51µm + a2·R2
0.51µm (2)

where NDSIcal is the calculated NDSI using R0.51µm as an independent variable, R0.51µm is the reflectance
at band 2 (0.51 µm) of the AHI, and a0, a1, and a2 are the regression coefficients for sea fog detection.
For the case shown in Figure 3b, the regression coefficients a0, a1, and a2 of NDSIcal were 1.100, −10.161,
and 23.544, respectively.

Second, we realized that uncertainties may occur in the NDSI values using Equations (1) and (2).
Thus, we considered the uncertainty of fog detection using a range of threshold value (σ) for sea
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fog pixels around the regression relationships, which was estimated from the distribution of NDSI
difference (NDSIdi f f ) between observations (NDSIobs) and calculations (NDSIcal) as follows:

NDSIobs −NDSIcal < σ for sea fog detection (3)

where σ is the threshold value to be determined from the case studies, which was the maximum value
of the NDSIdi f f in the manually-chosen sea fog pixels.

Figure 4a displays the area chosen for sea fog (red box), clouds (green box), and fog-free and
cloud-free sea surfaces (blue box) based on the NDSIobs in Figure 2. Figure 4b shows the scatter-plot
of distributions of sea fog, clouds, and sea surface in NDSIobs versus NDSIdi f f on the same date as
Figure 4a. The red, cyan, and blue dots indicate the pixels of sea fog, clouds, and clear-sky sea surface,
respectively. The grey dots indicate all pixels in the Yellow Sea excluding land surface. The land
pixels were masked using the land/sea mask information. Sea fog pixels were distributed in a specific
area within the NDSIdi f f -NDSIobs plane. The NDSIobs was not enough to distinguish sea fog from
clouds, while NDSIdi f f was sufficient. Distinctively, sea fog pixels were separable from cloud pixels
in the NDSIdi f f -NDSIobs plane. Sea fog and clear-sky sea surface pixels were distinctly clustered in
the NDSIobs and NDSIdi f f plane. From this case, the NDSIobs and NDSIdi f f for sea fog determination
ranged from −0.029 to 0.29, and −0.065 to 0.076, respectively. Thus, the threshold value (σ) of the
NDSIdi f f was determined to be 0.076 for sea fog detection.
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3.3. Sea Fog Detection Using 3.9 µm of AHI

A SWIR band has the capability of detecting low-level cloud and fog [8]. The 3.9 µm SWIR
band is traditionally used for fog detection because of its sensitivity to the thermal energy. Physically,
sea fog and clouds have different brightness temperatures at the 3.9 µm band because of the altitude
difference between sea fogs and clouds. The split window algorithm (SWA) has widely been used
for the analysis and classification of satellite imagery [35]. The BTD between the 11 and 3.7 µm bands
(BTD11-3.7) are effective for detecting low-level water clouds during the daytime [35,36]. In addition,
the BTD between the 11 and 3.7 µm bands with the geostationary satellite is effective for nighttime fog
detection across a wide range of terrain and temperature regimes if fog is not obscured by any clouds
above [24]. However, this BTD method is limited in shallow fog detection because of small BTD values
within the range of instrument noise [26,37]. In addition, the 3.9µm band for daytime fog detection has
an unstable threshold affected by solar and Earth radiation [37].

In this study, the proposed sea fog detection algorithm was compared with the sea fog determined
by the BTD methods between the 11.2 and 3.9 µm bands of the AHI for various case studies.
This approach was taken because of the lack of ground-based sea fog observation data. The threshold
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values of sea fog using BTD was determined by using Otsu’s method, which extracts objects from their
background using binarization for the distribution of the histogram [38,39]. Notably, for algorithm
validation, this study did not use the data of locations and types of clouds and aerosols provided by
the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the CALIPSO
satellite [40] because of its low spatial and temporal coverage. In addition, this study did not apply
any cloud mask information to develop the sea fog detection algorithm.

Figure 5 shows an example of the brightness temperatures at AHI 3.9 µm and the BTD between
AHI 3.9 µm and AHI 11.2 µm, which included sea fog, clouds, and a clear-sky sea surface in the study
area. We can distinguish the sea fog area (dark grey color) from clouds (white color pixels) in Figure 5a,
from that (grey color) in Figure 5b. Figure 5c displays the results of the Otsu method with the threshold
value and histogram of the BTD between AHI 3.9 µm and AHI 11.2 µm. Figure 5d shows the final sea
fog area result determined after applying the threshold value to the AHI data.

Remote Sens. 2020, 11, x FOR PEER REVIEW 7 of 18 

(BTD11-3.7) are effective for detecting low-level water clouds during the daytime [35,36]. In addition, 
the BTD between the 11 and 3.7 μm bands with the geostationary satellite is effective for nighttime 
fog detection across a wide range of terrain and temperature regimes if fog is not obscured by any 
clouds above [24]. However, this BTD method is limited in shallow fog detection because of small 
BTD values within the range of instrument noise [26,37]. In addition, the 3.9μm band for daytime fog 
detection has an unstable threshold affected by solar and Earth radiation [37]. 

In this study, the proposed sea fog detection algorithm was compared with the sea fog 
determined by the BTD methods between the 11.2 and 3.9 μm bands of the AHI for various case 
studies. This approach was taken because of the lack of ground-based sea fog observation data. The 
threshold values of sea fog using BTD was determined by using Otsu’s method, which extracts objects 
from their background using binarization for the distribution of the histogram [38,39]. Notably, for 
algorithm validation, this study did not use the data of locations and types of clouds and aerosols 
provided by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board 
the CALIPSO satellite [40] because of its low spatial and temporal coverage. In addition, this study 
did not apply any cloud mask information to develop the sea fog detection algorithm. 

Figure 5 shows an example of the brightness temperatures at AHI 3.9 μm and the BTD between 
AHI 3.9 μm and AHI 11.2 μm, which included sea fog, clouds, and a clear-sky sea surface in the study 
area. We can distinguish the sea fog area (dark grey color) from clouds (white color pixels) in Figure 
5a, from that (grey color) in Figure 5b. Figure 5c displays the results of the Otsu method with the 
threshold value and histogram of the BTD between AHI 3.9 μm and AHI 11.2 μm. Figure 5d shows 
the final sea fog area result determined after applying the threshold value to the AHI data. 

  
(a) (b) 

 
 

(c) (d) 

Figure 5. Examples of (a) brightness temperature (TB) at AHI 3.9 μm and (b) brightness temperature 
differences (BTD) between AHI 3.9 μm and AHI 11.2 μm, (c) histogram of BTD and threshold value 
determined using the Otsu method, and (d) the sea fog area after applying the threshold value. 

Figure 5. Examples of (a) brightness temperature (TB) at AHI 3.9 µm and (b) brightness temperature
differences (BTD) between AHI 3.9 µm and AHI 11.2 µm, (c) histogram of BTD and threshold value
determined using the Otsu method, and (d) the sea fog area after applying the threshold value.

3.4. Statistical Comparison

In this study, the pixel-by-pixel statistical comparison between the proposed sea fog detection
algorithm with NDSI and the 0.51 µm band and the sea fog data obtained from BTD using the 3.9 µm
and 11.2 µm bands of AHI was performed using the probability of detection (POD), post agreement
(PAG), critical success index (CSI), and Heidke skill score (HSS) metrics as follows:
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POD =
a

a + c
(4)

PAG =
a

a + b
(5)

CSI =
a

a + b + c
(6)

HSS =
2(ad− bc)

(a + c)(c + d) + (a + b)(b + d)
(7)

where a means that both the proposed sea fog and the BTD sea fog indicate a sea fog pixel, b means
that the proposed algorithm shows a sea fog pixel while BTD does not show a sea fog pixel, c means
that the proposed algorithm does not indicate a sea fog pixel while BTD shows a sea fog pixel, and d
means that both algorithms do not show sea fog (Table 3). The statistical results between the proposed
sea fog detection algorithm and the BTD sea fog algorithm are considered in accordance if the POD,
PAG, CSI, and HSS are close to 1 [41]. The contingency table is summarized in Table 3.

Table 3. Contingency table.

BTD = 1 (Yes) BTD = 0 (No)

Proposed algorithm = 1 (Yes) a b
Proposed algorithm = 0 (No) c d

Figure 6 shows a flow chart of the proposed fog detection algorithm. First, the AHI calibrated
reflectances at 0.51 and 1.6 µm were used as input data. Next, the NDSI was calculated. Notably,
any cloud flag information was not provided and applied. Sea fog pixels were retrieved using the
proposed sea fog detection algorithm using the NDSI and NDSIdi f f . Finally, our sea fog detection
algorithm was compared with the sea fog pixels retrieved using AHI 3.9 µm and the BTD between
SWIR and LWIR via the Otsu method.
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4. Results

4.1. Sea Fog Detection Algorithm

Figure 7 shows an example of sea fog detection results using the proposed sea fog detection
algorithm on the same date as Figure 1. Notably, any cloud mask information was not applied. Figure 7a
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displays the difference between NDSIobs and NDSIcal. The NDSIobs −NDSIcal values of sea fog were
relatively lower than those for sea surface and clouds. Figure 7b shows the sea fog area determined
from the proposed algorithm in the NDSI-R0.51µm plane. The proposed sea fog detection algorithm
produced qualitatively similar results to the sea fog using the AHI 3.9 µm and BTD between SWIR and
LWIR via Otsu’s method in Figure 5d.
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Figure 8 shows a qualitative comparison of the proposed sea fog detection algorithm and the
AHI BTD sea fog in Figure 5. The purple color indicates that both sea fog algorithms detected pixels
as sea fog. The cyan pixels mean that only the proposed sea fog algorithm detected the pixels as
sea fog. The greenish pixels indicate that only the BTD sea fog algorithm detected the pixels as sea fog.
A yellow color indicates the masked land area. In this case, POD, PAG, CSI, and HSS were 0.954, 0.887,
0.851, and 0.911, respectively.
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4.2. Foggy and Partly Cloudy Cases

Figure 9 shows the results of the proposed sea fog detection algorithm for foggy and partly cloudy
weather cases. The first column shows the true color Red-Green-Blue (RGB) images. The second column
shows the black and white images of AHI 3.9 µm. The third column shows the sea fog area of the
proposed sea fog detection algorithm. The fourth column displays the comparison results of sea fog
detection between the BTD algorithm and the proposed algorithm for sea fog cases on 24 February
2019, at 02:00 UTC, 1 March 2019, at 01:30 UTC, and 26 March 2019, at 02:00 UTC. The POD ranged
from 0.843 to 0.981. The PAG ranged from 0.742 to 0.935. The CSI ranged from 0.731 to 0.874. The HSS
ranged from 0.835 to 0.927. Thus, the two algorithms were mostly in accordance with each other.
Table 4 summarizes the POD, PAG, CSI, and HSS values for each case.
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Figure 10 shows the results of the proposed sea fog detection algorithm for a mixture of fog and 
clouds. Notably, the proposed algorithm is still in accordance with the BTD sea fog detection 

Figure 9. Results of the proposed sea fog detection algorithm for foggy and partly cloudy weather
cases on (a) 24 February 2019, at 02:00 UTC, (b) 1 March 2019, at 01:30 UTC, and (c) 26 March 2019,
at 02:00 UTC. The green and cyan colors indicate the sea fog pixels obtained using only AHI 3.9 µm and
the BTD algorithm and only the proposed sea fog algorithm, respectively. The purple color indicates
that both sea fog algorithms detected pixels as sea fog.

Table 4. Statistical results for foggy and partly cloudy cases.

POD PAG CSI HSS

24 February 2019 02:00 UTC 0.843 0.886 0.760 0.857
1 March 2019 01:30 UTC 0.981 0.742 0.731 0.835
26 March 2019 02:00 UTC 0.930 0.935 0.874 0.927

4.3. Foggy and Cloudy Cases

Figure 10 shows the results of the proposed sea fog detection algorithm for a mixture of fog and
clouds. Notably, the proposed algorithm is still in accordance with the BTD sea fog detection algorithm.
However, both the proposed sea fog detection algorithm and the BTD sea fog detection algorithm
misidentified sea fog as clouds when the sea fog occurred under clouds. Thus, the POD, PAG, CSI,
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and HSS values were worse in foggy and cloudy cases than in foggy and partly cloudy cases. However,
the range of the statistical scores were reasonable. POD ranged from 0.684 to 0.898, PAG ranged from
0.633 to 0.984, CSI ranged from 0.590 to 0.711, and HSS ranged from 0.688 to 0.790. Table 5 summarizes
the POD, PAG, CSI, and HSS for each case.
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Figure 10. Sea fog and cloud mixtures. Results of the proposed sea fog detection algorithm on (a)
9 April 2018, at 04:00 UTC, (b) 6 June 2018, at 00:30 UTC, and (c) 4 June 2019, at 01:30 UTC. The green
and cyan colors indicate the sea fog pixels obtained using only AHI 3.9 µm and the BTD algorithm
and only the proposed sea fog algorithm, respectively. The purple color indicates that both sea fog
algorithms detected pixels as sea fog.

Table 5. Statistical results for sea fog and cloud mixtures.

POD PAG CSI HSS

9 April 2018 04:00 UTC 0.898 0.633 0.590 0.734
6 June 2018 00:30 UTC 0.684 0.872 0.621 0.688
4 June 2019 01:30 UTC 0.719 0.984 0.711 0.790

4.4. Cases of Sea Fog Variation with 30-Minute Intervals

Figure 11 shows the results of the proposed sea fog detection algorithm for continuous variation
of sea fog on 26 March 2019, from 00:00 UTC to 04:00 UTC with 30-min intervals. The first, second,
third, and fourth rows indicate the AHI RGB, the brightness temperature at 3.9 µm, NDSIobs −NDSIcal,
and sea fog detection results using the proposed algorithm, respectively. The fifth row shows the
temporal variation of the statistical comparison between the two sea fog algorithms. This case shows
the stable accordance between the two sea fog detection algorithms.
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5. Discussion

5.1. Advantage of the Proposed Algorithm

In this section, we present the advantage of the proposed sea fog detection algorithm. As stated
previously, the BTD method based on IR observations cannot easily detect shallow fog because of
small BTD values within the range of instrument noise [26,37] and the unstable thresholds [37].
The SWIR-based sea fog detection algorithm is limited in the twilight conditions. Thus, the signal of sea
fog from the SWIR band is weak and cannot distinguish between sea fog and the sea surface because
of the minimal differences in brightness temperatures between the sea fog and sea surface. Figure 12
shows an example where the proposed sea fog detection algorithm displays superior performance
versus the BTD algorithm. In this case of near twilight, the difference in brightness temperature between
the sea fog and sea surface is minimal. Thus, sea fog detection is difficult in this case. Meanwhile,
the proposed sea fog algorithm detected sea fog in the Yellow Sea regardless of the existence of clouds.
In this case, POD = 0.395, PAG = 0.256, CSI = 0.184, and HSS = 0.175.

Figure 13 shows the results of another continuous variation of sea fog on 13 March 2019,
at 22:30 UTC to 14 March 2019, at 03:00 UTC with 30-min intervals. Notably, the brightness temperature
at 3.9 µm increased over time. Specifically, the difference between sea fog and the sea surface was
indistinguishable in twilight conditions (red box), such as on 13 March 2019, at 22:30 UTC. However,
the proposed algorithm detects sea fog (red box) in the Yellow Sea. The performance of the 3.9 µm
band improved over time within the algorithm. Thus, this example shows the applicability of using
the proposed algorithm during twilight conditions.
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5.2. Cases of Absence of Observation at SWIR Band

Figure 14 shows the results of the proposed sea fog detection algorithm for cases of no data from
the 3.9 µm observation on 11 March 2017, at 01:20 UTC, 30 April 2017, at 22:30 UTC, and 1 June 2017,
at 02:20 UTC. Thus, the proposed algorithm played a role in detecting sea fog when the brightness
temperature at 3.9 µm was not available. The proposed algorithm still shows a qualitatively strong
performance for foggy and partly cloudy conditions as well as mixed conditions of fog and clouds.
These cases were not quantitatively compared because of a lack of 3.9 µm data.Remote Sens. 2020, 11, x FOR PEER REVIEW 13 of 18 
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Figure 14. Cases of absence of SWIR band observation. Results for sea fog detection using the proposed
algorithm on (a) 11 March 2017 at 01:20 UTC, (b) 30 April 2017, at 22:30 UTC, and (c) 1 June 2017,
at 02:20 UTC.
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6. Summary and Concluding Remarks

Low visibility due to fog often causes losses of life and socioeconomic activities throughout the
Yellow Sea and its coastal regions. Cloud mask information is an important parameter retrieved from
satellites for generating useful geophysical and meteorological parameters for surface information such
as fog, surface temperature, vegetation, and so on. Discriminating between low clouds and fog using
satellite observations has been difficult because of the radiometric similarity between them. This study
presented a novel approach to detect sea fog using the observed reflectance at one VIS and one NIR
bands of the AHI. Methodologically, we present the regression-based relationships between NDSI and
reflectances at the green band of AHI for sea fog. The uncertainty caused by the regression relationships
was considered with the threshold values estimated from a satellite-observed NDSI and a comparison
between the satellite-observed NDSI and calculated NDSI. In this study, we did not use any cloud
mask information. The results of our study show reasonable and high POD, PAG, CSI, and HSS values
for various sea fog cases. Consequently, the proposed sea fog detection algorithm is useful for many
users and a variety of optical satellites without SWIR bands such as 3.9 µm. In addition, our study
is expandable to other geostationary satellites with spectral bands similar to those on the Himawari
satellite, such as GOES-16/17 and Geo-Kompsat-2A. The combination of geostationary satellites can
increase the temporal resolution of sea fog detection.
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