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Abstract: Image enhancement (IE) technology can help enhance the brightness of remote-sensing
images to obtain better interpretation and visualization effects. Convolutional neural networks
(CNN), such as the Low-light CNN (LLCNN) and Super-resolution CNN (SRCNN), have achieved
great success in image enhancement, image super resolution, and other image-processing applications.
Therefore, we adopt CNN to propose a new neural network architecture with end-to-end strategy
for low-light remote-sensing IE, named remote-sensing CNN (RSCNN). In RSCNN, an upsampling
operator is adopted to help learn more multi-scaled features. With respect to the lack of labeled
training data in remote-sensing image datasets for IE, we use real natural image patches to train firstly
and then perform fine-tuning operations with simulated remote-sensing image pairs. Reasonably
designed experiments are carried out, and the results quantitatively show the superiority of RSCNN
in terms of structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) over conventional
techniques for low-light remote-sensing IE. Furthermore, the results of our method have obvious
qualitative advantages in denoising and maintaining the authenticity of colors and textures.

Keywords: convolutional neural network; low-light enhancement; remote-sensing image

1. Introduction

Remote-sensing images play a significant role in large-scale spatial analysis and
visualization, including climate change detection [1], urban 3D modelling [2], and global
surface monitoring [3]. However, due to the effects of remotely sensed devices, undesirable
weather conditions, such as haze, blizzards, storms, clouds, etc. [4], have a great negative
impact on the visibility and interpretability of remote-sensing images. Low-light images
create more difficulties for many practical tasks such as marine disaster monitoring and
night monitoring. Therefore, it is a great necessity to enhance the contrast and brightness
of low-light images automatically when we want to achieve a high-quality remote-sensing
image dataset with large scale and long time series.

The purpose of image enhancement (IE) is to improve the visual interpretation of
images and to provide better clues for further processing and analyzing [4–6]. Over
time, many low-light IE methods have been proposed and achieved great success in image
processing and remote-sensing fields. Histogram Equalization (HE) [7] and its variants such
as Dynamic Histogram Equalization (DHE) [8], Brightness Protecting Dynamic Histogram
Equalization (BPDHE) [9], and Contrast Constrained Adaptive Histogram Equalization
(CLAHE) [10] are classic traditional contrast-enhancement methods. The purpose of HE
is to increase the contrast of the entire image by expanding the dynamic range of the
image. It is a global adjustment process without considering the change in brightness,
which is prone to local overexposure, color distortion, and poor denoising. This kind
of method can automatically obtain images with stronger contrast and better brightness.
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However, the details in dark areas are not appropriately enhanced [11] and there may be
color distortions [12].

Retinex theory has attracted a lot of attention as a biologically meaningful method
to enhance low-light images. The basis of Retinex theory is that the color of any object
in images is determined by its ability to reflect long-wave (red), medium-wave (green),
and short-wave (blue) rays rather than by the reflected light intensity, which means the
object’s color is not affected by light inhomogeneity and is consistent. Therefore, Retinex
theory decomposes the image into two parts: reflectance and illumination. Single-scale
Retinex (SSR) [13] uses a Gaussian filter to estimate the illumination and then to wipe
it off to keep the reflection only. Extending SSR, Multi-scale Retinex (MSR) [14] uses a
multi-scale Gaussian filter to achieve simultaneous dynamic range compression, but it
fails to produce good color rendition. Considering this, in Multi-scale Retinex with Color
Restoration (MSRCR) [15], a color recovery factor was added to adjust the color distortion
caused by the enhanced contrast in local areas of the image. Additionally, methods like
“Low-light Image Enhancement (LIME)” [16] are also based on Retinex theory, but they
only estimate the luminance map. LIME embeds the problem of optimizing lighting into
the optimization problem, taking into account the fidelity and structure of the image,
customizing an optimized objective function and corresponding constraints, and then
adopting the traditional Lagrangian multiplier method to solve this optimization problem.
Bio-Inspired Multi-Exposure Fusion (BIMEF) fuses multiple exposure images through
the camera response model and then uses the image fusion weight matrix obtained by
illuminance estimation technology to fuse the input image to obtain the enhanced result [17].
Those methods can obviously enhance details [16,18]. However, when SSR estimates the
illumination of the image, it is assumed that the initial illumination slowly changes, that
is, the illumination is smooth. However, this is not the case. At the edge of the region
where the brightness varies greatly, the illumination is usually not smooth. Therefore,
the enhanced images often suffer from halo-like artifacts in high-contrast regions [19].
Other machine-learning methods such as Discrete Wavelet Transform and Singular Value
Decomposition (DWT-SVD) [20,21] are commonly used for low-light IE tasks. It uses
wavelet transform to decompose the high-low frequency channels of the original image.
Each channel is then processed respectively and fused to obtain the final enhancement
result based on an inverse DWT (IDWT) operator. However, they are unable to capture
deep and abstract features for image recovery, resulting in some color distortion.

The Deep Learning (DL) method provides a new solution for low-light image IE tasks.
There are two common patterns of DL-based low-light enhancement methods: one involves
light estimation, and the other is direct end-to-end training.

For the first type, the authors of [22] proposed a CNN-based network for weakly
illuminated image enhancement. LightenNet is a four-stage model. It firstly estimates
the illumination map using a four-convolutional-layer network; then, the same as in [16],
Gamma correction and guided image filter are applied for a refined illumination map.
Experiments show that LightenNet achieves a better estimated illumination map than
LIME, naturally leading to a better enhancing result with Retinex theory. In [23], inspired
by Retinex theory, the authors proposed a CNN-based network, named Retinex-Net. It
firstly uses a decomposition module to decompose the input image into reflectance and
illumination. Then, in the adjustment module, the reflectance channel is processed by a
denoise operation and the illumination channel is brightened up via an encoder-decoder-
based multi-scale skip-connection subnetwork. Finally, the reconstruction module is
applied to fuse the individually processed channels for enhanced results.

The end-to-end type is more common. Low-light Net (LLNet) [24] innovatively
extends the work in [25] and proved that the stacked sparse denoising autoencoder based
on the training of synthetic data can enhance and denoise low-light images with noise
adaptively. Experiments of LLNet show that, as for an end-to-end DL method, the batch
size, patch size, and layer complexity of the model all have effects on the enhanced result.
Smaller batch sizes tend to help find the global minima during optimization and generate
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enhanced image with better sharpness, but it may cause worse denoising. Besides, a
proper layer size is required to adequately capture the characteristics of training data
while reducing the risk of a vanishing gradient as much as possible. Low-light CNN
(LLCNN) [26] firstly introduces CNN convolutional layers into low-light IE and achieves
better result in terms of peak signal-to-noise ratio (PSNR) and structural similarity index
(SSIM) compared to LLNet and many other traditional methods. LLCNN utilizes a specially
designed convolutional module and residual learning to achieve a deeper network while
coping with the vanishing gradient problem. It adopts SSIM as the training loss to obtain
better texture preservation. The same as in [24], a gamma degradation method with
the parameters randomly set in the range (2, 5) is used to generate low-light images for
training. Multi-branch Low-light Enhancement Network (MBLLEN) [27] uses a CNN-
based module to extract and enhance feature maps at different levels and fuses them to
obtain the final result. The authors of [28] trained pure fully convolutional end-to-end
networks, which operate on raw sensor data of extreme low-light images directly to obtain
an enhanced result.

With respect to remote-sensing low-light image enhancement, most researchers still
focus on traditional and machine learning methods. For example, the authors of [29]
applied HE for contrast enhancement, that of [30] used dominated brightness level analysis
and adaptive intensity transformation to enhance remote-sensing images, the authors
of [21] proposed DWT-based methods for remote-sensing IE tasks, and the work in [4]
enhanced low-visibility aerial images using the Retinex representation method. Deep
learning methods have not received enough attention yet.

According to a previous discussion, obviously, convolutional network has shown its
great superiority in low-light image processing. Therefore, in this paper, we proposed a
purely CNN-based architecture called remote-sensing CNN (RSCNN) for low-light remote-
sensing IE. Different kernels in the RSCNN are used to capture various features such as the
textures, edges, contours, and deep features of low-light images. Then, all the feature maps
are integrated to obtain the final images which have been enhanced properly. It is well
known that definition of the loss function of a neural network is very crucial. The L1 loss is
very popular for measuring the whole similarity of two images. In addition, the SSIM loss
is also applied in this paper to retain more accurate image textures. The sum of the L1 and
SSIM loss functions are adopted as the overall loss function to take advantage of the two
loss functions. With respect to the lack of training dataset for remote-sensing IE, we adopt
transfer-learning from the pretrained RSCNN model for the natural image enhancement
dataset and fine-tune it for remote-sensing IE with simulated low-light and normal-light
remote-sensing image pairs.

Reasonable experiments are carried out with two datasets. Compared to 10 baselines,
both quantitative and qualitative results illustrate that RSCNN has great advantages over
other methods for low-light remote-sensing IE.

2. Materials and Methods
2.1. Formatting of Mathematical Components

The framework of RSCNN is shown in Figure 1. A deep CNN-based model extracts
the abstract features and learns the detailed information from the input low-light images.
Since CNN-based models can directly process multi-channel images without color space
conversion, all information of input images can be retained and the complex nonlinear
relation patterns between low-light and normal-light image pairs can be well learned,
thereby generating images with proper light, stronger contrast, and natural textures.
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Figure 1. The framework of the RSCNN.

In detail, there are four main different types of components in the deep learning
network, as described below.

(1) Convolution layer

The whole network has 8 convolution layers. Each layer consists of multiple kernels,
and the weights of these kernels do not change during the convolution process, i.e., there
is weight sharing. With the convolution operation, RSCNN extracts the different features
of the input images at different convolution levels. The output of the first CNN layer
roughly depicts the location of low-level features (edges and curves) in the original image.
On this basis, another convolution operation is carried out, and the output will be the
activation map representing higher-level features [31]. Such features can be semicircles
(a combination of curves and lines) or quadrilateral (a combination of several lines). The
more convolution layers, the more complex feature activation map will be obtained. There
are several parameters that need to be determined for each layer, such as the kernel size K,
padding P, and stride S. The number of kernels N is the number of output feature maps.
W and H denote the width and height of images, respectively. Thus, the size of the output
feature maps can be calculated as follows:

WOut =
W − K + 2P

S
+ 1 (1)

HOut =
H − K + 2P

S
+ 1 (2)

Since we want to fix the tensor size of the input and the output for each convolution
layer, we set K = 5, S = 1, and P = 2 for the first convolution layer and K = 3, S = 1, and P = 1
for the rest.

(2) Activation layer

The activation layer is vital in a deep CNN because the nonlinearity of the activation
layer introduces nonlinear characteristics to a system which has just undergone linear
computation, gives RSCNN a stronger representational power, and avoids the occurrence
of gradient saturation during training. We adopt rectified linear unit (ReLU) for its advance-
ment in improving the training speed of RSCNN without obvious changes in accuracy. The
activation layer is applied over the output of the previous layer.

Every value obtained from upper stream convolution layer should be activated by
ReLU before it is input into the downstream convolution layer.

(3) Upsampling operation

Inspired by the CNN for super resolution methods [32–34], in the RSCNN, we adopt
bilinear interpolation to magnify the image by two times for a better receptive field and then
add another CNN layer after that in order to learn more complex features with different
scales. We use Bicubic as the interpolation method in this operation to help preserve clearer
edges [35].

(4) Max-pooling operation

We adopt the pooling operation in RSCNN with two purposes: Firstly, the pooling
operation is helpful to reduce the number of parameters and to resize the image to the
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original patch image size, decreasing the training cost by a meaningful extent. Secondly,
the pooling operation can cut down the possibility of overfitting, helpful to suppress noise.

In RSCNN, we set the kernel size to 2 for each max-pooling operation.

2.2. Loss Function

A combination of the SSIM loss function and the L1 loss function is adopted in RSCNN.
The L1 loss function, noted as Ll1, is given as Equation (3).

Ll1(P) =
1
N ∑

pεP
|o(p)− e(p)| (3)

where p and P represent the index of the pixel and the patch, respectively. o(p) and e(p)
represent the values of the pixels in the processed patch and target ones, respectively. L1
loss can preserve pixel-wise relations between the target images and the enhanced ones of
every training pair, helping enhanced images have similar light intensity to the target one.
However, it gives less consideration to the overall structure of the whole image, resulting
in a lack of textural details.

Additionally, low-light capture usually causes structural distortions such as blurs and
artifacts, which is visually salient but cannot be well handled by pixel-wise loss functions
such as the mean squared error.

The SSIM loss function, however, is helpful under this situation. The SSIM value for
patch P is defined as Equation (4).

SSIM =

(
2µxµy + c1

)
×
(
2σxy + c2

)(
µ2

x + µ2
y + c1

)
×
(

σ2
x + σ2

y + c2

) (4)

where x is the original normal-light image, y is the enhanced one, µx and µy are the
respective pixel value averages, σ2

x and σ2
y are the respective variances, σxy is the covariance,

and c1 and c2 are the constants to prevent the denominator from being zero. A larger SSIM
is means better quality of the processed images. Therefore, Lssim is defined as 1− SSIM.

For L, we combine Lssim and Ll1 as Equation (5).

L = Ll1 + p× Lssim (5)

The value of p is set to 0.1 in L. The training target is to minimize L.

2.3. Training

(1) Datasets

There are two datasets that are used in this work: the DeepISP dataset [36] and the
UCMerced dataset [37]. Their descriptions are as follows.

DeepISP: A total of 110 pairs of normal exposure and low-light exposure images
are included, 77 for training and 33 for testing. The scenes captured include indoor and
outdoor images, and sun light and artificial light with a Samsung S7 rear camera. The
image pairs are almost the same, except that the low-light one has a 1/4 of the exposure
time of the normal one. The resolution of each image is 3024 × 4032. Original images are
divided into patches with sizes of 256 × 256. Figure 2 illustrates the representative images
of every type. This dataset is named Dataset1.
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UCMerced: It is composed of 21 types of land use images secondarily processed based
on United States Geological Survey (USGS) National Map with a pixel resolution of one
foot. Each category has 100 images of 256 × 256 pixels. Figure 3 shows some representative
images of UCMerced datasets. This dataset is named Dataset2.
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As far as we know, there is no specific open dataset for low-light remote-sensing
image enhancement training. With respect to this dilemma, a set of natural low-light and
normal-light image pairs generated from an ordinary image dataset, that is Dataset1 in this
paper, is adopted for the pretrained training.

Then, because the light source angle and camera angle of remote-sensing imaging
equipment have their own obvious characteristics compared with natural images, it is not
proper to directly apply a model that was trained using natural image pairs to remote-
sensing images. Therefore, a fine-tuning process is indispensable. First, we choose “dense
residential” images from the UCMerced dataset because, compared with other categories,
these images have more diverse features, richer textures, more complex shadows, and
blurrier boundaries. These complex conditions make low-light images more difficult to
enhance. Then, we follow the methods of [19,29] to set the original image as the ground
truth and use the degradation method to generate the corresponding low-light image.
A pair of low-light images and the corresponding one is used as the input and label
for RSCNN training and testing. A random gamma adjustment is used to simulate the
low-light images. The parameter gamma is randomly set in the range of (2, 5), enabling
RSCNN to adaptively enhance the image and to have better generalization. Finally, a total
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of 100 pairs of normal exposure and low-light exposure images is used. They are split into
80 pairs for training and 20 pairs for testing, respectively. This dataset is named Dataset2.

(2) Evaluation criteria

PSNR, SSIM [11], and CIEDE2000 [38] are used to evaluate the performance of RSCNN.
Since SSIM has already been described, here, we briefly describe the PSNR evaluator

as follows. 
MSE = 1

H×W

H
∑

i=1

W
∑

j=1
(X(i, j)−Y(i, j))2

PSNR = 10× log10
(MAX)2

MSE(X,Y)

(6)

where X is the normal-light image and Y is the enhanced one generated from the low-light
image. MAX represents the maximum signal value that exists in X. The higher the PSNR,
the better RSCNN performs.

According Equation (6), we can see that PSNR is a variant of mean squared error (MSE).
It is a pixel-wise full-reference quality metric, computed by averaging the squared intensity
differences of the enhanced result and reference image pixels [11]. It is easy to calculate
and has clear physical meanings but is not sensitive to the change in image structure and is
not completely in accordance with human visual characteristics. SSIM makes up for PSNR.
According to Equation (4), SSIM puts focus on image structure similarity and measures
the image similarity from brightness (µx, µy), contrast (σ2

x , σ2
y ), and structure (σxy). PSNR

and SSIM are widely used to evaluate the performance of low-light image-processing
methods [22,24,26,39,40] and remote-sensing image-processing methods [20,41,42]. With
the help of PSNR and SSIM, we can effectively evaluate the color retention and structural
differences between enhanced images and reference images.

Furthermore, we adopt CIEDE2000 as the evaluation criteria. It is a color difference
equation based on CIE’s lab color space (CIELAB) and is published by the International
Commission on Illumination (CIE) in Publication 142-2001. It can help us evaluate the
degree of color difference between the ground-truth image and the enhanced image. The
smaller CIEDE2000 is, the closer the result image is to the ground-truth image. We use the
“imcolordiff” function in Matlab 2020b for CIEDE2000. It is based on [43].

2.4. Implementation Details

There are 3 kinds of CONVs: 1-D-CNNs, 2-D-CNNs, and 3-D-CNNs. Since we want
to treat the input image patches as a whole with spatial information, we choose a 2-D-CNN
as the CONV in our network [44]. The configuration of each convolution layer is shown in
Figure 1. The weights of each CONV layer are initialized using kaiming_normal [45].

During training, the patch-size is set to 256 × 256 and the depth of the whole network
is 8. In addition, Adam optimization is adopted with a weight decay of 0.0001. The base
learning rate is 0.001, and the batch size is 8. Our model is trained using PyTorch.

2.5. Baselines

Ten different methods, which are shown in Table 1, are compared with our proposed
method.

As observed, different types of models are considered. The models that are used apply
the default settings suggested by the authors.
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Table 1. Methods for comparison experiments.

Methods Abbreviation Type

1 Histogram Equalization [7] HE Histogram
2 Dynamic Histogram Equalization (DHE) [8] DHE Histogram

3 Contrast Limited Adaptive Histogram
Equalization [10] CLAHE Histogram

4 Single-scale Retinex [13] SSR Retinex
5 Multi-scale Retinex [14] MSR Retinex
6 Multi-Scale Retinex with Color Restoration [15] MSRCR Retinex
7 Low-light image enhancement method [16] LIME Illumination map estimation and Retinex

8 Bio-Inspired Multi-Exposure Fusion Framework
for Low-light Image Enhancement [17] BIMEF Illumination map estimation and camera

response model

9 Discrete Wavelet Transform and Singular Value
Decomposition [21] DWT-SVD Frequency domain

3. Results and Discussion
3.1. Comparison Results on Dataset1

The experiment is first carried out on Dataset1, and 9 different methods are compared
with RSCNN. Detailed results are presented in Table 2. In the experimental results, the
SSIMs of DHE and CLAHE are significantly improved compared to ordinary HE, and the
PSNR result of DHE is the best. Compared with the histogram equalization algorithms,
the Retinex algorithms achieve better indicator results. Among them, the SSIM of the
MSRCR method is about 12% higher than that of DHE but, because its adjustment method
is not global pixel-wise, the PSNR is 8% lower than that of DHE. With respect to LIME
and BIMEF, compared with the traditional histogram method and the Retinex method, it
has a better effect in maintaining the overall visual characteristics and pixel-wise results.
DWT-SVD is often used for low-light remote-sensing image enhancement. The results of
DWT-SVD are similar to the enhancement algorithms based on luminance estimation.

Table 2. Average structural similarity indexes (SSIMs) and peak signal-to-noise ratios (PSNRs) of the
testing results after pretraining.

SSIM PSNR

HE 0.482 16.774
DHE 0.546 18.080

CLAHE 0.548 14.192
SSR 0.570 14.529
MSR 0.585 13.959

MSRCR 0.610 16.582
LIME 0.464 17.152

BIMEF 0.632 17.646
DWT-SVD 0.617 17.806

RSCNN 0.825 28.194

Obviously, from the perspective of quantitative analysis indicators, the results of
RSCNN have better results than various traditional low-light enhancement algorithms and
can be applied to low-light remote-sensing image enhancement tasks. For example, the
SSIM of the RSCNN is 0.825, which is 0.2 higher than that of the widely used DWT-SVD
algorithm. As for the PSNR, our method achieved 28.123 dB, which is much better than
those of all these baselines since their PSNRs are lower than 20 dB.

As shown in Figure 4, in general, all the methods are able to obtain brighter images
with stronger contrast. However, the results of many methods are not sufficient and satisfac-
tory. For example, HE-based methods such as HE, DHE, and CLAHE can inappropriately
enhance the dark background (too bright or too dark) and can cause color distortions. SR-
based methods (i.e., SSR, MSR, and MSRCR) and LIME are able to appropriately enhance



Remote Sens. 2021, 13, 62 9 of 13

the dark background, but the color distortions are also very severe and the background is
enhanced to be blue instead of actual dark.

As for color distortion, CLAHE, DWT-SVD, and RSCNN work relatively better, and
the backgrounds of the enhanced images are very close to those of the target images.
However, DWT-SVD and CLAHE suffer from over-enhanced and insufficient brightness,
respectively, in the high-contrast region, which is not as natural as that of our proposed
RSCNN. In addition, the HE and DHE enhanced images have significant noise, and SSR
and MSR generate images that appear to be covered by haze. Meanwhile, the images that
are enhanced by our proposed method are sharper and have better brightness than those
of other methods thanks to its powerful feature extraction ability and learning ability.
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Equalization (DHE), Contrast Constrained Adaptive Histogram Equalization (CLAHE), Single-scale Retinex (SSR), Multi-
scale Retinex (MSR), Multi-scale Retinex with Color Restoration (MSRCR), Low-light Image Enhancement (LIME), Bio-
Inspired Multi-Exposure Fusion (BIMEF), Discrete Wavelet Transform and Singular Value Decomposition (DWT-SVD), and
RSCNN.

3.2. Comparison Results on Dataset2

To evaluate the performance of RSCNN on the low-light remote-sensing images, we
fine-tuned the trained model and tested it using Dataset2. The results are presented in
Table 3. In addition, Figure 5 shows the visual results to compare the proposed method
with other methods. In remote-sensing image enhancement, preserving accurate textural
and structural information is very important for many applications including scene classifi-
cation [46] and object detection [47]. In addition, obtaining images with natural colors is
also of great significance for visual discrimination and further analysis.
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Table 3. Average SSIMs and PSNRs of the test results after fine-tuning.

SSIM PSNR CIEDE2000

HE 0.730 15.905 67.628
DHE 0.706 16.357 52.272

CLAHE 0.546 13.857 70.600
SSR 0.711 20.424 30.972
MSR 0.751 20.610 28.586

MSRCR 0.680 19.088 38.212
LIME 0.630 15.074 60.154

BIMEF 0.728 16.302 50.697
DWT-SVD 0.564 13.989 76.490

RSCNN 0.852 21.691 19.496

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 13 
 

 

Table 3. Average SSIMs and PSNRs of the test results after fine-tuning. 

 SSIM PSNR CIEDE2000 

HE 0.730 15.905 67.628 

DHE 0.706 16.357 52.272 

CLAHE 0.546 13.857 70.600 

SSR 0.711 20.424 30.972 

MSR 0.751 20.610  28.586 

MSRCR 0.680 19.088 38.212 

LIME 0.630 15.074 60.154 

BIMEF 0.728 16.302  50.697 

DWT-SVD 0.564 13.989 76.490 

RSCNN 0.852 21.691 19.496 

 

Figure 5. Results of remote-sensing image enhancement with different methods, including HE, DHE, CLAHE, SSR, MSR, 

MSRCR, LIME, BIMEF, DWT-SVD, and RSCNN. 

As we can see from Table 3, the comparison results indicate that RSCNN has the best 

performance compared to all other low-light image enhancement methods. Specifically, 

the SSIM, PSNR, and CIEDE2000 of our method are 0.791, 20.936 dB, and 19.496, respec-

tively. To comprehensively support the qualitative conclusions of the superiority of 

RSCNN, visual comparison and analysis are also needed. 

Figure 5 shows the image-enhancement results obtained using different methods for 

qualitative comparison. In addition, the patches in the two red boxes are enlarged to show 

detailed information. As shown in Figure 5, all the methods obtain images with stronger 

contrast and brightness. However, the results of CLAHE, BIMEF, and DWT-SVD may not 

be sufficiently enhanced since the brightness is still somewhat dim. In addition, different 

methods have different characteristics, resulting in different effects. 

For example, in terms of the image colors, the buildings obtained by HE, DHE, and 

LIME are enhanced to be different colors, which are far from the standard natural images. 

The estimated images generated by SSR, MSR, and RSCNN are much better than other 

methods. As for detailed information such as edges and textures in dark regions, HE, 

DHE, and LIME are able to obtain clear cars. However, several other methods cannot ac-

Figure 5. Results of remote-sensing image enhancement with different methods, including HE, DHE, CLAHE, SSR, MSR,
MSRCR, LIME, BIMEF, DWT-SVD, and RSCNN.

As we can see from Table 3, the comparison results indicate that RSCNN has the best
performance compared to all other low-light image enhancement methods. Specifically, the
SSIM, PSNR, and CIEDE2000 of our method are 0.791, 20.936 dB, and 19.496, respectively.
To comprehensively support the qualitative conclusions of the superiority of RSCNN,
visual comparison and analysis are also needed.

Figure 5 shows the image-enhancement results obtained using different methods for
qualitative comparison. In addition, the patches in the two red boxes are enlarged to show
detailed information. As shown in Figure 5, all the methods obtain images with stronger
contrast and brightness. However, the results of CLAHE, BIMEF, and DWT-SVD may not
be sufficiently enhanced since the brightness is still somewhat dim. In addition, different
methods have different characteristics, resulting in different effects.

For example, in terms of the image colors, the buildings obtained by HE, DHE, and
LIME are enhanced to be different colors, which are far from the standard natural images.
The estimated images generated by SSR, MSR, and RSCNN are much better than other
methods. As for detailed information such as edges and textures in dark regions, HE, DHE,
and LIME are able to obtain clear cars. However, several other methods cannot accurately
replicate the detailed information. For example, the textures of cars that are generated by
CLAHE, BIMEF, and DWT-SVD are very dark and blurred, which make it hard to figure
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out the shape, and even the trees cannot be visually recognized since they are nearly black.
Additionally, although the results from MSR and SSR are free of apparent color distortion,
they suffer from apparent grid-like veins, which can be avoided by using our method. As a
whole, the visual effects of the RSCNN are the closest to the original image in both color
and texture. For instance, RSCNN preserves the details of trees and cars and enhances
remote-sensing image with little information loss, thus making the images more realistic
than those of other methods.

4. Conclusions

An end-to-end RSCNN model is proposed in this paper to get brighter images from
degraded low-light images and is applied to remote-sensing images. A CNN architecture
is used to achieve end-to-end enhancement for low-light remote-sensing images. The
usampling and downsampling operators are designed to learn deep features from different
scales. In this way, the enhanced images can have more detailed features. Compared to
other traditional methods, our result achieves more natural results with more realistic
textures and vivid details while revealing the edge features and structural features as
much as possible. It can help a lot with subsequent high-level remote-sensing image
information-discovery tasks.
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