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Abstract: Urban road intersection bottleneck has become an important factor in causing traffic delay
and restricting traffic efficiency. It is essential to explore the prediction of the operating performance
at intersections in real-time and formulate corresponding strategies to alleviate intersection delay.
However, because of the sophisticated intersection traffic condition, it is difficult to capture the
intersection traffic Spatio-temporal features by the traditional data and prediction methods. The
development of big data technology and the deep learning model provides us a good chance to
address this challenge. Therefore, this paper proposes a multi-task fusion deep learning (MFDL)
model based on massive floating car data to effectively predict the passing time and speed at
intersections over different estimation time granularity. Moreover, the grid model and the fuzzy C-
means (FCM) clustering method are developed to identify the intersection area and derive a set of key
Spatio-temporal traffic parameters from floating car data. In order to validate the effectiveness of the
proposed model, the floating car data from ten intersections of Beijing with a sampling rate of 3s are
adopted for the training and test process. The experiment result shows that the MFDL model enables
us to capture the Spatio-temporal and topology feature of the traffic state efficiently. Compared
with the traditional prediction method, the proposed model has the best prediction performance.
The interplay between these two targeted prediction variables can significantly improve prediction
accuracy and efficiency. Thereby, this method predicts the intersection operation performance
in real-time and can provide valuable insights for traffic managers to improve the intersection’s
operation efficiency.

Keywords: intersections; floating car data; multi-task fusion deep learning model; grid model

1. Introduction

Intersections are the sites of collection and turn of vehicles, which can easily be the
bottlenecks of restricting the entire road network operation efficiency fully. Improving the
traffic efficiency of intersections has always been the concern of transportation researchers
and engineers. Short-term traffic forecasting of the intersection operation state can provide
real-time traffic information, which is helpful for traffic managers to optimize signal control
schemes to mitigating traffic delays.

The main traffic parameters of intersections, including the passing time, traffic speed
and waiting time, etc., are used to detect the intersection’s operating performance. Among
these parameters, the passing time and traffic speed can intuitively reflect the intersection’s
overall operating performance [1]. With the development of traffic sensors, especially
the emergence of mobile Internet, it is possible to extract traffic parameters from large-
scale traffic data. The mobile sensors-equipped vehicles (i.e., the floating car) can monitor
the traffic operation performance of large-scale intersection groups at low cost [2]. It
can transfer the real-time traffic information to the database by the Global Positioning
System (GPS) and modern communication technology, which have gradually become the
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mainstream approach to probe the intersection operation performance. The GPS is one of
the Global Navigation Satellite System (GNSS), which can accurately locate the vehicle
trajectory in real time [3]. The GPS system can track vehicle trajectory and collect traffic
data, which usually contains temporal information (i.e., timestamps), spatial information
(i.e., longitude and latitude) and speed information [4]. Meanwhile, we also consider
the external factors that affect the intersection operation performance, such as weather
conditions, temperature, wind speed and precipitation. Since bad weather conditions will
affect the speed of vehicles, resulting in delays at intersections [5].

Nowadays, there are two methods to extract traffic parameters, including the digital-
map-based [6,7] and grid-based methods [8]. Even though the digital-map-based method
is a higher accuracy approach, it has two drawbacks: computational complexity and the
high quality of the GIS Digital Map. Especially for the intersection, it is sometimes difficult
to obtain a high-precision digital map to correspond to the more complex structures.
Recently, we proposed an efficient grid-based method to visualize the signal intersections
and evaluate the intersection operation state [9]. The grid-based method can discretize
intersections into grids to improve the efficiency of extracting the traffic parameters. This
efficient grid-based method is extended for the intersection. Moreover, based on the grid
model, we can use the clustering method to identify the affected areas to explore the spatial
traffic feature.

In the traffic prediction stage, the short-term traffic prediction development is based
on the traditional statistical methods such as the Historical Average (HA), Autoregressive
Integrated Moving Average (ARIMA) [10] and Kalman filter (KF) [11], etc. It is noted
that the mathematical statistics-based methods have three main drawbacks: certain ideal
assumptions, insufficient computing and massive multidimensional data. Primarily, it
is inadequate to predict the complex real-time traffic state of intersections. With the
development of computing technology, machine learning methods have made up for
statistical defects. For instance, Support Vector Regression (SVR) [12], artificial neural
networks (ANN) [13] are typical machine learning methods, which have been successfully
applied to traffic flow forecasting. It is noted that the machine learning models above are
difficult to deal with the large-scale Spatio-temporal traffic data.

With the development of intelligent technology, the deep learning method emerges as
the times require. The typical time series model is the long short-term memory (LSTM) [14],
which is evolved from the Recurrent Neural Networks (RNN) [15]. Compared with the
RNN model, the LSTM has more advantages in processing long short-term time-series
data, whose model structure is more advanced. Furthermore, Gated Recurrent Unit (GRU)
model is a variant of the LSTM, which has a more concise structure and promotes faster
convergence [16]. However, neither LSTM nor GRU model can capture the spatial traffic
feature in intersections. In our previous research, we used the grid method to extract the
spatial feature of floating car data in the expressway [16]. Noted that the intersection’s
spatial traffic features are more complex, which is affected by travelers’ route choices and
management control. In terms of spatial correlations, the convolutional neural networks
(CNN) model is a mature method to extract spatial traffic features [17]. Even though the
CNN model can extract intersections’ spatial features, the CNN model cannot reveal the
intersection’s topology structure. The most plausible way to incorporate intersections
topology into the deep learning model is to employ a graph convolutional neural network
(GCN) [18,19]. Furthermore, to extract the Spatio-temporal traffic feature simultaneously,
the fusion deep learning (FDL) models were proposed to predict the traffic Spatio-temporal
state, such as the Convolutional LSTM Network (i.e., ConvLSTM) [20], CNN-LSTM fusion
model [21] and GCN-GRU model [22]. Moreover, to distribute the weight of the FDL model
reasonably, the attention mechanism is adopted to capture the corresponding weight of
the MFDL model, which has been applied to short-term traffic prediction [23]. The ResNet
has been applied to traffic prediction, such as the traffic flow predictions [24,25]. To our
best knowledge, however, the ResNets rarely apply to predict the traffic performance of an
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intersection. Therefore, we combine the residual network with CNN model to extract the
spatial features of intersections.

This research focuses on devising the multi-task fusion deep learning model (MFDL)
to predict the intersection operation performance. The multi-task learning method has been
applied in traffic fields such as network traffic classification [26], traffic flow forecasting [27]
and traffic demand prediction [28]. Moreover, the multi-task learning method is rarely
used in intersection prediction. The two main reasons are that the intersection’s traffic
state is more complex and the high-precision data is not easy to obtain. This paper selects
the passing time and speed as the prediction targets, which can reflect the process state
and the visual state of the intersection. Compared with the existing multi-task model,
we adopted the attention mechanism to assign the weight of variables to achieve feature
fusion automatically. The multi-task learning method considers the difference between
passing the time and speed and sharing each task’s common feature, which is a more
comprehensive intersection operation state prediction. The contribution of this work is
as follows.

First, based on the grid model, the traffic parameters are extracted. The grid-based
method can identify the intersections rapidly without the digital map, which is easily
transferred to other cities.

Second, the residual network (ResNet) is incorporated into the MFDL model to en-
hance the depth of the model, which contributes to alleviate the problem of gradient
disappearance. Furthermore, based on the GCN model, the intersections’ topological
propagation patterns are also considered, which previous studies were rarely involved.

Third, the MFDL framework integrates the deep learning method, preprocessed the
data, extracts the traffic feature of the intersection, and finally predicts the passing time
and speed of the intersections. Compared with the benchmark models, the MFDL model
not only captures the Spatio-temporal traffic feature of intersections but also has better
accuracy and robustness. Meanwhile, compared with the signal-task model, the MFDL
can significantly improve the prediction accuracy and efficiency. The MFDL can be easily
transferred to other cities for the traffic operation performance prediction of the intersection.

Using the intersection groups of Beijing as a case study, the proposed method’s accuracy
and stability are demonstrated. The rest of this paper is organized as follows. Section 2
describes the floating car data and details the proposed methodology. Section 3 conducts a
case study from the Beijing core area and an in-depth analysis of the experimental results.
Finally, Section 4 ends with major conclusions and discussions for future research.

2. Methodology

Figure 1 shows the multi-task fusion deep learning method framework, which includes
the data process procedures, the model construct and model evaluation. For the first and
second sections, according to the reconstructed intersection, the coordinate of floating
car data (i.e., FCD) would be transformed to a based-grid coordinate to extract traffic
parameters. For the third section, we construct the multi-task fusion deep learning model by
fusing the CNN, GCN, LSTM and ResNet, an attention mechanism. For the fourth section,
after entering the dataset into the model, we evaluate and verify the model’s effectiveness.
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Figure 1. The flowchart of the prediction method.

2.1. Data Preprocessing

The sampling rate of the obtained floating car data is 3 s, obtaining from DiDi company,
one of the companies with the largest number of car Hailing users globally. The FCD data
mainly contains three kinds of information: temporal, spatial and speed information. The
variables and attributes of FCD are lists in Table 1.

Table 1. The detailed data attributes of the FCD system.

Characteristic Field Name Field Type Field Description

Id Order ID String Marking each vehicle
t Timestamp Timestamp Accurate to second

lng Longitude Floating Accurate to six decimal places
lat Latitude Floating Accurate to six decimal places
v Vehicle Speed Integer Kilometer per hour

The data used in this case study include about 110 million floating cars’ trajecto-
ries, which the geographic coordinate ranges from 116.399450 to 116.431700 and the
39.947934 to 39.966344. The data are the same as those used in the previous study [9,29].
Figure 2a shows the trajectory points, and according to trajectories, we can obtain the topol-
ogy of the intersection (see Figure 2b). We select ten intersections as the target objects in
this study area, whose ID from No.0 to No.9 (see Figure 2b). The selected intersections
cover three types, including the regular intersection with four legs (i.e., No.0 to No.7) and
the intersection with three legs (i.e., No.8 and No.9).
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Figure 2. Diagram of intersection area; (a) trajectory points; (b) topology of intersection.

Due to the block of GPS signal and the error of hardware/software in the process of
data collection and transmission, there may be some errors in the original floating car data.
It is necessary to preprocess the FCD to reduce the impact of error data and improve the
prediction results accuracy. A more detailed data preprocessing process has been described
in previous studies [9,16,29]. This paper introduces two main steps as follows:

Step 1: Remove the FCD, which is out of range of the intersection area; Delete the
FCD whose speed is over 90 km/h; Eliminate the redundant FCD, which is similar or
duplicate data.

Step 2: Replenish the missing data by the interpolation method due to the weak
satellite signal or operation error during the FCD collecting.

2.2. The Grid Model

In this study, the intersection area range (i.e., IA) is set to 300 m, covering the range of
intersection proposed by the previous study [30]. In the intersection area, the intersection
will be divided into discrete grids with a side length of D; If the grid size is too large,
it may be out of the intersection area. Furthermore, if the grid size is too small, it can-
not cover a floating car adequately. Previous study thought that the grid size of the
identified intersection should be range from 1 to 10 m [31]. Given the above considera-
tion, the length of the grid is set to 5 m, and the intersection area can be composed of
Rows × Columns × 5 × 5 m2, and the Rows = Columns = 60 in this study (See Figure 3).

Figure 3. Grid model.

After dividing the intersection area into square grids, the floating car data is matched
to the grid by the basic arithmetic algorithm, which is efficient and simple. Thereby, the
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FCD is transformed into the grid-based dataset (i.e., GFCD). Mathematically, the algorithm
is as follows: {

Dlat =
IAright−IAle f t

NR
Dlng =

IAup−IAdown
NC

(1)

 Rlat =
Trlat−IAle f t

Dlat

Clng =
Trlng−IAdown

Dlng

(2)

where IAright, IAle f t, IAup, IAdown are the right, left, up and down boundaries of the inter-

section area; NR, NC are the number of rows and columns;
(

Rlat, Clng

)
is the grid coordi-

nate that a trajectory point belongs to, whose latitude and longitude are
(

Trlat, Trlng

)
.

2.2.1. Identification of Traffic Intersection Area

Due to the unique Spatio-temporal characteristics of each signalized intersection, the
corresponding range of the influence area of signalized intersection is also different. If
we define the influence area of signal intersection as a fixed area, it cannot sufficiently
reflect the unique traffic characteristics of a signalized intersection. It is well known that
the intersection is the bottleneck in the road network, where the stop-and-go phenomenon
is also the most common. Therefore, we extracted the stop feature to define the range of
the intersection. The stop frequency in a special area at intersections varies with the GFCD
spatial feature. In general, the entrance area is more distinguished than other areas since
the stop frequency in the entrance area is higher than the upstream and inner areas. Based
on this feature, we constructed the stop dataset of GFCD by making statistics of stops in
each intersection area grid.

Based on the stop dataset, the intersection area can be clustered into three groups,
including the upstream area, the entrance area, and the nearby stop-line area. In order
to distinguish the three areas, this study adopts the fuzzy C-means (FCM) clustering [32]
method to identify the clusters. FCM clustering combines the essence of the fuzzy theory
and provides more flexible clustering results [33]. In most cases, the traffic areas cannot be
divided into obviously separated clusters. The membership degree of the FCM clustering
method ranges from 0 to 1, which is suitable for the traffic stop scenario clustering. Based
on the FCM, the function of FCM is as follow:

J(U, v1, . . . , vc) =
c

∑
k=1

n

∑
l=1

um
kld

2
kl =

c

∑
k=1

n

∑
l=1

um
kl‖vl − ck‖2

kl (3)

where U = {ukl , k = 1, · · · , c; l = 1, · · · , n;} is the membership degrees, which is restricted
by the normalization rules (i.e., ∑c

k=1 ukl = 1), where n is the number of GFCD and c is the
number of cluster center; d2

kl is the Euclidean Distance; vl is the spatial vector of GFCD; ck
is the spatial vector of cluster centers;

Under the constraint ∑c
k=1 ukl = 1, to minimize the objective function, it can be got

through determining the derivation of Lagrangian. Then, iteratively update ukl and vl by
using the following equations:

ukl =
dkl

2
m−1

∑c
j=1 djl

2
m−1

(4)

ck =
∑n

l=1 um
klvl

∑n
l=1 um

kl
(5)

According to the prior knowledge about the stop dataset, the number of clusters is
set to three clusters: the low, medium and high frequency of stops corresponding to three
areas (i.e., upstream, the entrance and nearby stop-line area). For the Beijing center area
case, the intersection can be clustered into several groups (see Figure 4). Figure 4 presents
the GFCD cluster result corresponding to the three areas, which shows the effectiveness
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of the proposed method. It intuitively can be seen that the cluster 1, 2 and 3 represent the
upstream, entrance lane and nearby stop-line area. Moreover, the stop lines’ central area of
intersections can be determined by the highest frequency of the stop. It is noted that the
central areas of intersection 0 and 2 contain a part of cluster 2 since the left-turn phase is
not set. This leads to the obvious conflict point between straight and turning left direction,
leading to a high stop frequency in the central area. Furthermore, according to the different
clustering results, we constructed the dataset of upstream, approach and central area of
the intersection.

Figure 4. Identified the intersection area.

2.2.2. Identification of the Floating Car Trajectories Direction

After defining the intersection area range, the turning direction will be identified
based on the grid model. First, the legs of the intersection are identified by GFCD and
label (see Figure 5). The intersection legs can be divided into five areas, and the points
of FCD are then mapped to the five areas. Then, based on the order of entering and exit
Area ID, the direction of trajectory is identified, respectively. Taking southbound straight
as an example, the entrance Area_ID is 2 and the exit Area ID is 1, and it also passes
through the central area of the intersection (i.e., Area_ID = 0). Based on the grid model’s
algorithm, it is simple to identify the direction of the floating cars’ trajectories passing
through the intersection.
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Figure 5. Identified the direction of the trajectory.

2.3. The Multi-Task Fusion Deep Learning Model

The multi-task fusion deep learning (MFDL) model architecture is composed of Resid-
ual Network, GCN, CNN, LSTM and Attention mechanism. Since the LSTM or the GRU
only extracts the temporal information, the proposed model architecture can capture the
Spatio-temporal feature and the topological structure of the intersection.

2.3.1. The Residual Network

More road network features can be extracted by the deeper model [16]. However, the
deeper models are easy to encounter the problem of gradient explosion and vanish-
ing. To solve the problem, the Residual Network (i.e., ResNet) emerges as the times
require [34], whose core idea makes the model deeper through the skip layer connection
(see Figure 6a). The “Conv” indicates a convolutional layer, “BN” denotes a batch- normal-
ization layer, and “ReLU” represents an activation layer. In this study, we use the improved
structure of ResNet, which can solve the vanishing or exploding gradient problem better
(see Figure 6b). The ResNet model is shown as follows:

XT+1 = F(XT) + XT (6)

where the XT is the residual block input; XT+1 is the residual block output.

Figure 6. Residual block (a) Original structure; (b) Improved structure.
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2.3.2. The GCN

The road network can be regarded as a topological structure composed of points
and lines, which points are intersections and lines are roads. When capturing the spatial
feature, the CNN models cannot process the non-Euclidean structure’s data and extract
the intersection’s topological relationship. In contrast, the Graph Convolutional Network
(i.e., GCN) can make up for this defect [22]. It can capture the intersection of topological
dependencies. In this study, the intersections are defined on the graph and focus on the
structured traffic time series of pass intersection time (see Figure 7). At the time step t,
the intersections graph can be defined as G =

(
Vt, E, Wij

)
. The observation Vt is the set of

vertices, corresponding to the observations from n approaches in the intersections and the
E is the set of edges, indicating the connectedness between approaches in the intersections,
while the Wij ∈ Rn×n is the weighted adjacency matrix of G.

Figure 7. Graph convolutional network.

The GCN function can be defined as follows:

Hl = σ(LHl−1W l−1) (7)

Hl = σ(D̂−
1
2 L̂D̂−

1
2 Hl−1W l−1) (8)

In Equation (8), σ() is an activation function; L̂ = L + I, L ∈ Rn×n is the adjacency
matrix, I represents the identity matrix; D̂ denotes the diagonal node-degree matrix of L̂;
the W l−1 is the weight of the parameter matrix.

It should be noted that the calculation of stacking multiple GCN layers is more
complex, and the gradient is easier to disappear [35]. Furthermore, with the deeper GCNs
arising, the over-smoothing will make the features of the same vertex indistinguishable
and debase the forecast accuracy [36]. Therefore, the ResNet GCN is proposed to make up
for them. Then the graph signal Pt of intersection is transformed to P′t as the ResNet input.
The P′ has the same shape as the P and the contains the topological information between
the intersections.

Pt′ = LPt = D̂−
1
2 L̂D̂−

1
2 Pt (9)

In Equation (9), D̂−
1
2 L̂D̂−

1
2 is the Laplacian matrix (see Equation (9); P ∈ Rt×a is the

input; a is the approaches of intersections; t is the time steps for approaches in intersections.

2.3.3. Multi-Task Fusion Deep Learning Method

In this section, a novel multi-task fusion deep learning model framework is proposed
to realize the intersection operation performance forecast. The framework integrates the
historical pattern, real-time pattern, spatial pattern, topological structure and weather
condition to predict the passing time and speed of the intersection. Herein, there are four
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variable groups in the multi-task fusion deep learning method (see Figure 8). In the first
variable group, the passing time is used as the input variable to capture the temporal
feature. The second variable group extracts the intersection topological information. The
third variable group captures the Spatio-temporal features of speed. The fourth variable
group shows that the effect of weather on prediction accuracy. The fusion section is used to
fuse the information from four variable groups.

Figure 8. Multi-task fusion deep learning model framework.

For the passing time variable group, the passing time is the most intuitive parameter
representing the intersections’ operation performance [9]. Noted that the historical passing
intersection time reveals the normal propagation rule and verifies the real-time passing
time pattern. Therefore, this section adopts the historical and real-time pattern of passing
intersection time as the input matrix. We extracted the passing time from the floating car
data (see Figure 9).

Figure 9. The passing time of the intersection.
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According to the definition of intersection region effect, for intersection approach
n ∈ N in different intersections, the i ∈ I trajectory’s passing time can be calculated by
ti
out− ti

in. Since the trajectory points do not coincide with the boundary of the intersection
approach, it is necessary to estimate the time stamp of the approach boundary (i.e., ti

out, ti
in)

based on the acceleration formula. In Equations (10) and (11), by calculating the distance
(i.e., RArccos(sin

(
lati

in|out

)
sin
(

lati
s|e

)
cos
(

lngi
in|out−lngi

s|e

)
+ cos

(
lati

in|out

)
cos
(

lati
s|e

))
, R

is the radius of the earth, | means or) between FCD point and the boundary of the inter-
section approach in geodetic coordinates, and combining with the time interval (i.e., Tin),
we can obtain the time difference between the points and the boundary of the intersection
approach. Therefore, according to Equations (10) and (11), the average passing time (i.e., pt)
can be calculated by Equation (12):

ti
in = ti

s + Tin Arccos(sin(lati
in) sin(lati

s) cos(lngi
in−lngi

s)+cos(lati
in) cos(lati

s))

Arccos(sin(lati
s) sin(lati

s+1) cos(lngi
s−lngi

s+1)+cos(lati
s) cos(lati

s+1))
(10)

ti
out = ti

e − Tin Arccos(sin(lati
e) sin(lati

o) cos(lngi
e−lngi

o)+cos(lati
e) cos(lati

o))

Arccos(sin(lati
e) sin(lati

e−1) cos(lngi
e−lngi

e−1)+cos(lati
e) cos(lati

e−1))
(11)

pn
t =

It
∑

i=1
(ti

out − ti
in)

It
, t = (5, 10, 15, 20...)min (12)

where the
{

lati
in, lngi

in

}
,
{

lati
o, lngi

o

}
are the coordinates of the entrance and exit boundary

of the intersection, respectively;
{

lati
s, lngi

s

}
,
{

lati
e, lngi

e

}
are the coordinates of the trajec-

tory points that enter and exit, respectively; Tin represents the time interval, and the time
interval of the floating car data in this study is 3 s.

The passing-time matrix Pn
t is given by:

Pr
t,n =


pr

t−k,1 pr
t−k,2 . . . pr

t−k,n
pr

t−k+1,1 pr
t−k+1,2 . . . pr

t−k+1,n
...

...
. . .

...
pr

t,1 pr
t,2 · · · pr

t,n

 (13)

Ph
t,n =


ph

t−k+1,1 ph
t−k+1,2 . . . ph

t−k+1,n
ph

t−k+2,1 ph
t−k+2,2 . . . ph

t−k+2,n
...

...
. . .

...
ph

t,1 ph
t,2 · · · ph

t,n

 (14)

The input of the passing time variable group (i.e.,I1) is given by:

I1 = (Pr
t,n, Ph

t,n) (15)

where n ∈ N is the number of entrances of intersections, and t is the time steps for each
entrance of intersections, Pr

t,n presents the real-time pattern, Ph
t,n presents historical patterns.

In the passing time variable group, the three-time steps (i.e., t− 2, t− 1, t) are adopted
to predict t + 1 passing time. For example, when time granularity is 10 min, there are
96 time-slices in the daytime (i.e., from 6:00 to 22:00), and the dataset possesses 31 days
of data. Therefore, for the 92 entrances lane at intersections, the input dimension matrix
(Pr

t,n, Ph
t,n) is [92 × 2 × 96 × 31]. The passing time matrix is divided into two datasets, the

training dataset, whose proportion is 70% (i.e., [92 × 2 × 96 × 31 × 70%]), the test dataset,
whose proportion is 30% (i.e., [92 × 2 × 96 × 31 × 30%]).

For the speed variable group, because of the spatial correlation between the upstream,
inner areas and the entrance area, we selected three parameters: the upstream average Vu

t,n,
the inner average speed Vin

t,n and the entrance speed as the input variables Ve
t,n. The speed
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matrices Vu
t,n,Ve

t,n,Vin
t,n are defined as Equations (16)–(18). The input of the speed variable

group (i.e., I2) is given by Equation (19).

Vu
t,n =


vu

t−k,1 vu
t−k,2 . . . vu

t−k,n
vu

t−k+1,1 vu
t−k+1,2 . . . vu

t−k+1,n
...

...
. . .

...
vu

t,1 vu
t,2 · · · vu

t,n

 (16)

Ve
t,n =


ve

t−k,1 ve
t−k,2 . . . veu

t−k,n
ve

t−k+1,1 ve
t−k+1,2 . . . ve

t−k+1,n
...

...
. . .

...
ve

t,1 ve
t,2 · · · ve

t,n

 (17)

Vin
t,n =


vin

t−k,1 vin
t−k,2 . . . vein

t−k,n
vin

t−k+1,1 vin
t−k+1,2 . . . vin
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I2 = (Vu
t,n, Ve

t,n, Vin
t,n) (19)

In the graph variable group, the intersection group’s topology has a great influence
on the passing time. The ResNet GCN model is adopted to capture the topology of the
intersection group. The passing time and average speed are input into the ResNet GCN
model as the graph signal, respectively. According to Equations (9), (13) and (17), the graph
variable can be defined as:

I3 = (L× Pr
t,n, L×Ve

t,n) (20)

In the weather variable group, we consider four categories of weather variables,
including temperature (i.e., TE, measured by Celsius degree), atmospheric pressure (i.e., PR,
measured by Pascal), wind speed (i.e., WS, measured by a mile per hour) and precipitation
(i.e., RA, measured by millimeter). The weather condition obtains one value per hour (see
Table 2). The data is obtained from the free meteorological data website called “Wheat A”
(Wheat A) [37]. To correspond to the time granularity of the average passing time, the time
slice of weather-condition data should be transformed to the corresponding time bucket
(e.g., the weather-condition from 6:00 to 6:10 will be equal to the recorded data from 6:00
to 7:00 (see the first row in Table 2). Similarly, according to the data division rules, the
weather-condition data should be split into training and test dataset.

Table 2. Examples of weather-condition data.

Date/Time Temperature Pressure Precipitation Wind Speed

1 August 2017 6:00 37.9 979.8 0.0005 4.20
1 August 2017 7:00 37.3 979.3 0.0005 4.56
1 August 2017 8:00 36.2 979.1 0.0004 4.78
1 August 2017 9:00 33.6 979.2 0.0003 4.83

The input of the weather variable matrix is given by Equation (21).

WEr
t,n =


TEr

t−k,1 PRr
t−k,2 RAr

t−k,2 WSr
t−k,n

TEr
t−k+1,1 PRr

t−k+1,2 RAr
t−k+1,2 WSr

t−k+1,n
...

...
...

...
TEr

t,1 PRr
t,2 RAr

t,2 WSr
t,n

 (21)
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In the feature fusion layer, the attention mechanism can distribute the different weights
of the features from the neural network layers. In this paper, the attention layer is proposed
to capture weight scores of different time steps, usually assigning a heavier weight score to
adjacent time periods and a lower weight score to distant time periods [38].

M = tanh(H) (22)

ω = H(so f tmax(XT M))
T

(23)

OutFusion =
4

∑
i=1

(ωi ◦Vi) (24)

where H is a matrix consisting of output vectors [h1, h2, · · · hT ], T is the length of the vector.
the Vj, j ∈ [1, 4], represents the feature variable from four subsection; ωj, j ∈ [1, 4] are the
weight of the different features; and the ⊗ is the Hadamard product.

2.4. Model Configuration

The model experiment was implemented using Python 3.6 with Tensorflow [39],
Keras [40] on Windows 10 for comparing the models. The experiment’s platform’s calcula-
tion cell is constructed with 32 CPU cores, 64G RAM and NVIDIA GeForce RTX 2080 GPU
to meet the requirements of this experiment.

There are four subsections, the feature fusion and the output section, in the model
framework. Moreover, the Rectified Linear Unit (ReLu) is used to solve the explod-
ing/vanishing gradient problem. The dropout is set to 0.5 to prevent over-fitting. Further-
more, the Adam algorithm is proposed to update the parameters of the neural network.
The partial hyper-parameter settings are shown in Table 3.

Table 3. Hyper-parameter setting.

Variable Passing Time Speed Graph Weather

Number of filters 32 and 64 32 and 64 32 and 64 -
Kernel size 2× 2 3× 3 3× 3 -
FC layers 92 92 92 92

Hidden units - - - 128

2.5. Models to Be Compared

This section will feed the training and test dataset to the proposed MFDL and bench-
mark models, respectively. Three typical benchmark models are selected to compare
with the proposed MFDL model, including the mathematical statistics-based models (MS)
(e.g., ARIMA), machine-learning-based model (ML) (e.g., SVR) and the deep learning model
(DL) (e.g., LSTM, GRU, CNN and ConvLSTM). To ensure fairness, the following benchmark
algorithms have the same input features (the same category and the time interval).

MS model: For the ARIMA model, we use the Akaike Information Criterion (AIC) as
the standard to select the optimal model. Noted that it is difficult for the ARIMA model to
capture the Spatio-temporal feature of the intersections, so we constructed 92 models to
represent the 92 intersection entrance lanes.

ML model: Two main parameters selection of SVR (i.e., the penalty coefficient “C”
and the parameter “Gamma”) are based on the cross-validation, and the kernel function is
set to the radial basis function.

DL model: For LSTM and GRU both have two hidden layers and 128-unit neurons.
For the CNN and ConvLSTM, the kernel size is 2 × 2, and the kernel layers are set to
32 and 64 filters, respectively.

MFDL model: We consider four models: the MFDL without weather (i.e., No weather),
the MFDL without graph information (i.e., No Graph), the MFDL without CNN (i.e., No
CNN), and the MFDL model.
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The time lag is set to 10 min, and the hyperparameters are set the same as the proposed
model. Then we use the RMSE and MAE to measure the total predictive accuracy of fitting
in the whole test data and use WMAPE to measure the models’ predictive performance.

2.6. Loss Function and Evaluation Metrics

In order to compare the proposed fusion deep learning model framework with the
benchmark models, three indicators are required to evaluate model performance, including
the Mean Absolute Error (MAE), the Root-Mean-Square Error (RMSE) and weighted-mean-
absolute-percentage error (WMAPE). The mean-squared error (MSE) is adopted as the loss
function of speed and the passing time. Furthermore, the weight of loss is set to 0.5. These
definitions are as follows:

MAE(Yi,
∧
Yi) =

1
n

n

∑
i=1
|Yi −

∧
Yi| (25)

RMSE(Yi,
∧
Yi) =

[
1
n

n

∑
i=1
|Yi −

∧
Yi|2

] 1
2

(26)

WMAPE(Yi,
∧
Yi) =

n

∑
i=1

(
1

n
∑

j=1
Yi

|Yi −
∧
Yi|

Yi
) (27)

Loss1 = Loss2 = MSE(Yi,
∧
Yi) =

1
n

n

∑
i=1
|Yi −

∧
Yi|2 (28)

where n is the number of test samples; Yi is the real values;
∧
Yi is the predicted values; Yi is

the average values.

3. Result and Analysis
3.1. The Spatio-Temporal Patterns of the Intersection

Figure 10 shows the average daily order volume of floating cars at ten intersections.
It can be found intuitively that the order volume on the weekdays is larger than on the
weekend, which means that the traffic pattern on weekdays is different from that on
weekends. Meanwhile, the order volume of the ten intersections of different periods
is different. It means that the traffic Spatio-temporal pattern of different intersections
is different.

Figure 10. The order of FCD distribution (a) Hourly and (b) daily distributions of traffic flow at the selected intersections.

Figure 11 shows the trends of the average speed and passing time on both weekdays
and weekends, respectively. It can be seen that the tendencies of the two-variables fluctua-
tion are constant in the evening (0:00–5:00) both on the weekday and weekend. Therefore,
when exploring the variables feature, we choose the daytime (6:00–22:00). Meanwhile,
during the peak hours (i.e., 6:00–9:00, and 17:00–20:00), the speed tendency on the weekend
is faster than the weekday in general. Corresponding to the speed tendency, the passing
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time on the weekday is longer than the weekend, meaning that the variables’ temporal
features are discrepancies. Therefore, it is necessary to consider the temporal characteristics
in the prediction experiment.

Figure 11. The average speed and the passing time on weekdays and weekends; (a) The speed (b) The passing time.

3.2. The Correlation between Speed and the Passing Time

The passing time can directly represent the operation performance of a signalized
intersection, and the speed can directly reflect the visual state of the intersection operation
state. It is necessary to carry out a correlation analysis between the passing time and
the speed to enhance the interpretability of the model and improve the accuracy of the
model [41]. The Pearson correlation coefficient can reflect the correlation degree of the
two variables, which range from −1 to 1 [42]. Suppose the correlation degree is greater
than zero, which indicates that two variables are positively correlated. In that case, that
is, the greater the value of one variable, the greater the value of the other variable. If the
correlation degree is small than zero, which is means that the two variables are negative
correlation; that is, the larger the value of one variable is, the smaller the value of the
other variable.

The total correlation degree between the average speed and the passing time is −0.84,
which means that the two variables are a strong negative correlation. Moreover, we select
four typical intersections, including the No.0 with fewer orders, the No.6 with a one-way
lane, the No.9 with three legs and the regular No.3 (see Figure 12). It can be seen that
the absolute value of correlation degree of No.3 is the largest (i.e., −0.89), and due to
the influence of intersection topology and signal phase, the correlation degree of other
intersections decreases.

3.3. Model Performance Comparisons and Result Analysis

Figure 13 shows that the training procedure, to training the optimal model and avoid
the overfitting problem, the early stopping technique is proposed. It can be seen that the
training and validation loss decrease rapidly. Furthermore, the training and validation
loss has remained stable in 50 epochs, which means that the proposed model’s robustness
is strong.
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Figure 12. The correlation degree of intersection.

Figure 13. The training epoch: (a) the total training process; (b) the passing time and speed training process separately.

The prediction performances are shown in Table 4. As shown in Table 4, the MFDL
considerably outperforms mathematical statistics-based and machine-learning-based mod-
els in most cases. The ARIMA model has the worst performance since the ARIMA lacks
capturing the spatial feature of traffic parameters and processing the complicated nonlinear
problems. Moreover, the SVR also has poor performance. It is difficult for SVR to deal with
large-scale Spatio-temporal data when it consumes limited computing resources.
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Table 4. Compare the prediction performance with different models.

Target Tg
Category MS ML DL MFDL

Indicators ARIMA SVR LSTM GRU CNN Conv-LSTM No-CNN No Graph NoWeather MFDL

Speed

10
RMSE 3.64 2.43 2.29 1.98 1.99 1.97 1.96 1.92 1.90 1.70
MAE 2.63 2.01 1.62 1.71 1.58 1.51 1.82 1.42 1.36 1.29

WMAPE 30.29% 24.54% 19.88% 20.90% 18.98% 18.03% 22.34% 17.31% 16.65% 15.82%

15
RMSE 3.99 2.69 2.19 2.06 1.98 2.31 2.00 1.98 1.96 1.85
MAE 2.93 2.87 1.62 1.52 1.52 1.60 1.52 1.46 1.44 1.42

WMAPE 32.91% 25.48% 20.32% 21.32% 20.54% 20.10% 19.06% 18.28% 18.11% 15.95%

20
RMSE 4.39 3.44 2.06 2.19 3.31 3.06 2.18 2.01 1.98 1.94
MAE 3.05 2.92 1.53 1.51 2.61 2.17 1.56 1.44 1.45 1.43

WMAPE 37.35% 26.43% 24.50% 24.69% 23.17% 23.61% 19.64% 18.82% 18.47% 17.97%

Passing time

10
RMSE 30.27 25.73 19.72 19.87 18.24 17.25 18.64 18.23 16.19 15.26
MAE 24.90 23.92 13.87 13.93 13.43 12.34 13.41 13.39 11.24 10.86

WMAPE 43.39% 39.05% 25.31% 22.42% 22.04% 22.69% 22.34% 22.23% 20.52% 19.76%

15
RMSE 31.39 26.06 22.28 19.95 18.78 19.16 20.12 19.66 19.07 17.89
MAE 25.25 24.17 15.65 14.28 14.92 12.67 14.30 13.65 13.33 12.59

WMAPE 46.27% 44.14% 24.86% 24.52% 23.12% 23.14% 26.12% 24.93% 24.34% 22.99%

20
RMSE 32.77 28.23 22.78 20.78 19.36 20.12 20.52 20.67 21.04 18.41
MAE 27.78 26.39 16.06 14.65 15.24 13.37 14.42 13.82 14.14 13.16

WMAPE 49.93% 47.97% 25.51% 25.28% 25.26% 24.31 26.18% 25.12% 24.70% 23.94%
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Compare with the MS and ML models, the deep learning models perform better.
Through the control method of input, activation, and output of traffic data flow, continu-
ously circulate iteration, the deep learning model can better capture a large-scale time series’
characteristics. Among the deep learning models, the Conv-LSTM has the best performance
since the Conv-LSTM can capture the temporal information and the spatial information.

The experimental results illustrate that the multi-task fusion deep learning models
work best among these methods, which can efficiently learn the Spatio-temporal feature of
the two targets’ predicted variables. As Table 4 shows, taking the prediction speed and
the passing time in 10 min time granularity as an example, the MFDL model outperforms
the MS model on RMSE, MAE and WAPE with the improved accuracy of 1.94, 1.34,
14.47%, 15.01, 14.04 and 23.63%, respectively. This is because the MFDL models contain the
characteristics of time series, space, topology and weather. It is noted that the MFDL model
is less affected by the weather, and the prediction accuracy is not significantly affected
when the weather subsection is deleted. In contrast, the No-CNN model result (i.e., the
MFDL without graph) changed more significantly, although the No-CNN model reveals
better performance to capture the intersection’s topology dealing with the temporal feature
with low ability.

In general, with the increase of the time granularity (Tg), the prediction performance
gets worse. This phenomenon is due to the larger the time granularity, the smaller the
data sample. In addition, all of the speed metrics values are smaller than the passing
time since the passing time’s random fluctuations at different intersections have a more
significant disturbance.

Figure 14 shows the overall prediction errors produced by the different methods on
different time granularities (i.e., Tg = 10, 15 and 20). It intuitively indicates that the proposed
model reveals the best performance on the passing time and speed among the benchmark
models. In contrast, the ARIMA model has the most significant error dispersion, which
indicates that the ARIMA model cannot regress the multi-task Spatio-temporal feature.
Furthermore, it can be seen that the MFDL model has a smaller interquartile range, whose
distance between Quartile 1 and 3 is smaller, and the metrics values are more concentrated
than other models. Moreover, with the increase of time granularity, the error distribution
becomes more dispersed, which revealed the results mentioned in Table 4.

Figure 15 demonstrates the comparison of the benchmark model and the proposed
model in terms of various time steps by WMAPE. As shown in Figure 15, the ARIMA and
SVR models work worst in different time steps. In contrast, the proposed MFDL model can
provide reliable prediction precision, which the WMAPE is the lowest among the models
in different time steps. Furthermore, as the increase of time step, the increase of the metrics
of the MFDL is the least, indicating the stability of the MFDL model is excellent.
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Figure 14. Comparison of the prediction errors for each method. (a) MAE of the predicted passing time; (b) MAE of the
predicted speed; (c) RMSE of the predicted passing time; (d) RMSE of the predicted speed.

Figure 15. Comparison of different methods in terms of various time steps. (a) the speed (b) the
passing time.
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Table 5 shows the comparison of individual prediction metrics and multi-task predic-
tion in 50 epochs. It can be seen that the prediction precision of the passing time and speed
in multi-task fusion deep learning (MFDL) is better than the prediction of the passing time
and speed in single-task learning (STL) in different time granularity. This phenomenon
indicates that the passing time and speed can promote each other to improve the prediction
accuracy. In addition, the training time in the STL model consumes more time than the
MFDL model in 50 epochs. It is noted that when the time granularity is 10 min, the training
time is reduced by 8.3 min and the efficiency increases by 46.42%, which means that the
MFDL is more efficient.

Table 5. The comparison of signal-task prediction and multi-task prediction.

Tg Metrics Passing Time of
STL Speed of STL Passing Time of

MFDL Speed of MFDL

10 min

RMSE 16.39 1.90 15.26 1.7
MAE 11.42 1.37 10.86 1.29

WMAPE 20.84% 16.74% 19.76% 15.82%
Training time 13.4 + 13.4 = 26.8 min 18.3 min

15 min

RMSE 17.92 1.94 17.89 1.85
MAE 12.79 1.48 12.59 1.42

WMAPE 23.36% 17.07% 22.99% 15.95%
Training time 9.2 + 9.2 =18.4 min 12.5 min

20 min

RMSE 19.14 2.14 18.41 1.94
MAE 13.71 1.56 13.16 1.43

WMAPE 24.93% 19.80% 23.94% 17.97%
Training time 6.7 + 6.7 = 13.4 min 9.25 min

Figure 16 shows the heat maps of the absolute error (i.e., |groundtruevalues− predictedvalues|)
ofaveragespeedandthepassingtimeandtherelativeerror(i.e., |groundtruevalues− predictedvalues|
/groundtruevalues) of average speed and the passing time at the intersection entrance lane
in a one-time step by MFDL. The x-axis represents the time of daytime (from 6:00 to 22:00),
and the y-axis represents the 92 entrance lanes of the intersection. In Figure 16, the deeper
the red color areas are, the more significant the errors are, and the deeper the blue color
areas are, the lower the errors are.

From Figure 16a, it can be seen that most of the passing-time absolute errors are below
10 s. Minority entrance lanes have a slightly higher absolute error at a specific time. Noted
that although the absolute delay of some entrances is significant, the relative error is small
(see Figure 16b). For example, the absolute error on the entrance 26 (i.e., northbound
left-turn entrance lane of intersection No.2) is significant during 7:50 to 8:40, 12:10 to 12:30
and 19:10 to 19:20, etc. However, the relative error of entrance 26 is inconspicuous. This
phenomenon is probably due to the average passing time of entrance 26 is longer (i.e., 141 s)
than the average passing time (i.e., 69.4 s) in intersection 2, which has more interference
factors leading to absolute error.

From Figure 16c,d, it can be intuitively seen that there is a significant difference
between the pattern of relative error and the pattern of absolute error of speed. Even
though some of the speed absolute errors of some entrance lanes are significant, the relative
errors are minor. Since the average speed is smaller (i.e., 7.78 m/s), the relative error of
speed is more sensitive to the ground-true speed, which may lead to a larger relative error.
Taking the entrance lane 18 (i.e., southbound right-turn of intersection 1) as an example,
the absolute error and the relative error are significant, indicating that data fluctuation is
volatile, affecting prediction accuracy.
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Figure 16. The absolute errors and the relative errors of MFDL: (a) the absolute errors of the passing time; (b) the relative
errors of the passing time; (c) the absolute errors of speed; (d) the relative errors of speed.

Overall, the MFDL model can primarily capture the Spatio-temporal characteristics of
the passing time and traffic speed in the intersections and make an accurate prediction. The
prediction error visualization can significantly express the accuracy of prediction results.

3.4. Sensitivity Analysis

For the MFDL models, the temporal features of inputs are likely to be associated with
the accuracy and stability of the prediction result, and we select the RMSE as the evaluation
index. Figure 17 shows the RMSEs of the passing time and speed. The red curve means
the fluctuation trend of the RMSE median, and the blue box pattern represents the error
distribution of 92 entrance lanes in different periods. It can be seen that the RMSEs of
the MDFL model fluctuate slightly throughout the day, indicating that the MFDL model
has strong robustness. Moreover, the RMSEs fluctuate of the passing time rise slightly
during the peak hour (i.e., 7:00–8:00, 17:00–18:00), whose median only increases by 2.4 of
an entire day. Meanwhile, the RMSEs fluctuate in the speed prediction is also relatively
low. In conclusion, the proposed model has high accuracy and fine stability under various
temporal features.
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Figure 17. The prediction accuracy in different time of day: (a) The prediction accuracy of the passing time; (b) The
prediction accuracy of speed.

Furthermore, the spatial features of input may be associated with the accuracy of
the prediction result. Since it is not significant to build a GCN model only for a single
direction prediction experiment. Therefore, we carry out the experiment by the MFDL-No-
Graph model. Figure 18 shows the result of the evaluation metric (WMAPE) of different
time slices in different directions. It can be seen that the WMAPE in different directions
is different. The floating data fluctuates in various spatial positions, which influences
the prediction results. Obviously, the WMAPE of the turn-right direction is significant
due to the turn-right data having more interference factors (i.e., non-motor vehicles and
pedestrians), leading to more data fluctuates. Moreover, the WMAPEs increase with the
time granularity, which implies that the more samples, the higher prediction accuracy.

Figure 18. Prediction precision of the passing time and speed in different directions. (a) the prediction precision of the
passing time; (b) the prediction precision of speed.

It has been explained that the weather has an impact on the prediction accuracy in
Table 4. To further analyze the weather factors on prediction accuracy, we investigated and
tested the model of weather effect, including four conditions: without temperature (i.e., No
temperature model), without pressure (i.e., No pressure model), without precipitation
(i.e., No precipitation model) and without wind speed (i.e., No wind speed model) (see
Figure 19). It intuitively shows that the precipitation has a more significant impact on the
prediction than other weather factors in different time granularity. It is not difficult to
understand because the precipitation affects travel speed leading to the traffic operation
state various, which verifies the previous research [43].



Remote Sens. 2021, 13, 1919 23 of 26

Figure 19. Influence of weather factors on prediction accuracy: (a) the prediction accuracy of the passing time; (b) the
prediction accuracy of speed.

4. Discussion

In this study, we constructed a multi-task fusion deep learning framework for in-
tersection traffic operation performance prediction. The passing time and the speed are
selected to be prediction targets, which can reflect the process state and the visual state of
the intersection operation performance.

In the data-collecting stage, the floating car data is used as the data source to verify
the prediction model’s availability, which can reflect the traffic performance of large-
scale intersection areas. The floating car data can accurately describe the upstream and
downstream traffic state of the intersection, which makes up for the shortage of small
coverage of fixed sensor data [16].

In the parameter extraction stage, we adopted the grid model, which can identify
the intersections rapidly without the digital map. The novel grid model is proposed to
extract the traffic parameters from the floating car data. On the one hand, the grid model
simplifies the complex map-matching algorithm and improves the efficiency without the
digital map. On the other hand, the intersection affected area and the direction of GFCD
can be identified by the grid model and the fuzzy C-means (FCM) clustering method,
which exceeded the limit of fixed influence area of intersection [44]. It indicated that the
grid model has significant universality, which can be applied to other cities.

In the construction model stage, we design the MFDL framework of four variable
groups. Meanwhile, to enhance the depth of the model, the ResNet is incorporated into
the MFDL model, which can enhance the depth of the model and alleviate the problem
of gradient disappearance [45]. The MFDL can capture the temporal, spatial, topology
feature of the passing time and speed and the prediction results are promising. The two
target predictions are negatively correlated, and the interplay between these two targeted
prediction variables can significantly improve the prediction accuracy and efficiency, which
is consistent with the studies of Kunpeng Zhang et al. [46]. This proposed method predicts
the intersection operation performance in real-time and can provide valuable insights for
traffic managers to improve the intersection’s operation efficiency.

There is more work ahead in the future development of this study. First, although
accurate speed and time can be extracted from a single data source (i.e., FCD), it is difficult
to estimate the actual traffic flow because the permeability cannot be obtained [47]. In
order to comprehensively detect the operation performance of signalized intersections,
it is necessary to import multi-source data, such as induction loop data [48], microwave
data [49], etc., to extract traffic flow information. Second, in the passing time pattern, we
consider the real-time and historical pattern. In future work, we will consider more passing
time patterns to improve the accuracy. Lastly, the existing amount of data is enough to
support the construction and validation of the model. Naturally, if a larger range of floating
car data can be obtained in the future, using this proposed model to predict the traffic
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performance of intersections and validate the model will better reflect the universality of
the model.

5. Conclusions

In this paper, a multi-task fusion deep learning framework is proposed for intersection
traffic operation performance prediction. The passing time and the speed are selected to
be prediction targets, which can reflect the intersection operation performance. The main
conclusions of this paper are summarized as follows.

MFDL model enables us to capture the Spatio-temporal and topology feature of the
traffic state efficiently. Comparisons with benchmark models show that the fusion deep
learning model achieves the best prediction accuracy and robustness among the baseline
model in different time granularity. In the process of STL and MFDL comparison, when
the time granularity is 10 min and the epoch is 50, the training time is reduced by 8.3
min, and the efficiency increased by 46.42%, which means that the MFDL is more efficient.
In the analysis of weather factors, the precipitation has a more significant impact on the
prediction than other weather factors in different time granularities.

Future work will concentrate on exploring the novel deep learning structure based
on the fusion method. For the influence factors of intersections operation state, we will
consider multi-source input variables, including the time scheme, traffic flow, waiting time,
etc., to improve the prediction accuracy.
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